NeBIO_3-2-_Ningthoujam_17

Embed Size (px)

Citation preview

  • 8/13/2019 NeBIO_3-2-_Ningthoujam_17

    1/5

    NeBIOVol. 3, No. 2, June 2012, 102-106

    Author for correspondence

    Ramesh K. NingthoujamEmail: [email protected]

    NECEER, Imphal

    Amazon Forest Greenness and MODISs Enhanced Vegetation Index

    Ramesh K. Ningthoujam

    Global Environmental Change and Earth Observation Research Group, Geography and Environment,

    University of Southampton, UK..

    ABSTRACT

    Large and intact matured rainforest of Amazon experienced large seasonal

    vegetation greenness by satellite MODIS EVI data during dry and wet seasons

    including the 2005 drought highlighting different cues behind the greening of

    EVI. An effort is made to reconcile the divergent views of the Amazon greening

    through this brief article.

    KEYWORDS: Amazon Rainforest, MODIS EVI, 2005 Drought.

    The Amazon forest biome within the tropicalecosystem represents the biologically richest regionwith nearly 25% of global biodiversity, and is amajor contributor to the Earth system through

    biogeochemical and biogeophysical processes (Malhiet al. 2008). This includes approximately 50% of theworlds undisturbed and matured intact rainforest

    (FAO, 1992) with 10% terrestrial net primaryproductivity (Melillo et al. 1993), and a majorsurface evaporation process globally (Choudhury andDiGirolamo, 1998). Thus, relatively small changes or

    shift in forest structure and dynamics in Amazon,therefore have the potential to substantially affect theenvironment regionally and globally and impacts ofclimate change itself (Phillips et al. 2009).

    The Amazon region experienced an average annualair temperature of 26 C and 2400 mm (between>3000 mm in North West and

  • 8/13/2019 NeBIO_3-2-_Ningthoujam_17

    2/5

    Amazon Forest Greenness and MODISs Enhanced Vegetation Index Ningthoujam

    __________________________________________________________________________________________________

    NeBIO I www.nebio.in I Vol. 3, No. 2, June 2012, 102-106 103

    et al. 1998). Moreover, the sensitivity or resilience oftropical forests to drought could potentially reflectthe magnitude of the effects and feedbacks of thechanging ecology of Amazon forest in carbon cycle-climatic changes and may provide a proxy (evidence)for future climate conditions as predicted by some ofthe large-scale mathematical models (Cox et al.2008).

    The MODIS Vegetation Indices (VI) products areprimarily designed to provide consistent, spatial andtemporal resolutions for monitoring vegetation

    photosynthetic and seasonal phenology (Running etal. 1994). Of particular, two MODIS derived VInamely, Normalized Difference Vegetation Index(NDVI) and Enhanced Vegetation Index (EVI), are

    produced at 5-km, 1-km and 500-m spatial and 16-day and monthly compositing periods globally. TheMODIS EVI defined as an algebraic manipulation ofvegetation reflectances at NIR, red and bluewavelengths with particular sensitivity to NIRreflectance (Huete et al. 2002). It is a measure ofvegetation greenness that generally correlates wellwith insitu photosynthesis and chlorophyll contentthrough a de-coupling of the canopy backgroundsignal and reduced atmospheric influences,

    particularly useful in high biomass tropical forests

    like the Amazon (Huete et al. 2006). Mathematically,EVI can be expressed as:

    Figure 2.Spatial patterns of dry season greenness changesas depicted by EVI C5 (55 km2 spatial resolution) fromJune (EVIjun) to October (EVIoct) 2005 expressed as EVI(EVIoct - EVIjun) in the Amazon as similar to Huete et al.

    (2006).

    Not surprisingly, the EVI displays increased in thelate dry season compared to the wet season or earlydry season over the tropical forests of Amazon(Heute et al. 2006; Xiao et al. 2006; Saleska et al.2007; Brando et al. 2010) (see Figure 2). But whatdoes an increase in MODIS EVI mean to the remotesensing community? The large increased in EVI ofamazon forests particularly during the light-rich dryseason has been variously interpreted with a generalcharacterisation of a greening of amazon forestsduring dry season (Heute et al. 2006; Xiao et al.2006; Myneni et al. 2007; Brando et al. 2010). Thus,the aim of this article is to reconcile the divergentinterpretations of dry season greening of Amazonforests using MODIS EVI with special emphasis todrought in 2005.

    By contrast, the climatological 2005 drought in intactAmazon forests showed a significant increase in theMODISs EVI C4 data, suggesting a possible higher

    photosynthetic activity (greenness) as a result ofincreased solar radiation (due to reduced cloudiness)(Saleska et al. 2007). And moreover, this increasedEVI has been interpreted as closely coinciding withthe flushing of new leaves with seasonal peaks insolar irradiance (Saleska et al. 2003; Huete et al.2006). Thus, suggesting sunlight to be the main

    climatic driver for the increased seasonal and leafflushing in the intact tropical forests during drymonths than rainfall at least in Amazonia (Wrightand van Schaik, 1994) and further, suggesting moreresilient in response to short-term climatic anomalies

    particularly 2005 drought in Amazonia by these

    intact forests than earlier thought; thus a large-scalegreening of Amazon forests during the 2005drought was emphasized (Saleska et al. 2007).However, this observation was challenged andinterpreted possibly due to atmospheric cloud

    corruption and aerosol loadings from forest biomassburning using the improved version of EVI C5(Samanta et al. 2010), suggesting evidence of large-scale non- greening of Amazon forests during the2005 drought with lesser greening than in Saleska et

    al. (2007). During the dry seasons and the drought of2005, a reduction in the moisture content ofvegetation was observed (Anderson et al. 2010);leading to increase leaf-shedding and drying leaveswith higher spread and frequency of forest fires

    particularly in the drought-affected region. This

    frequent drought-induced forest fires has beenregarded more likely to be the major driver of forest

    EVI = 2.5

    nir

    red

    nir

    + 6 red

    7.5 blue

    + 1

  • 8/13/2019 NeBIO_3-2-_Ningthoujam_17

    3/5

  • 8/13/2019 NeBIO_3-2-_Ningthoujam_17

    4/5

    Amazon Forest Greenness and MODISs Enhanced Vegetation Index Ningthoujam

    __________________________________________________________________________________________________

    NeBIO I www.nebio.in I Vol. 3, No. 2, June 2012, 102-106 105

    Choudhury, B.J., and DiGirolamo, N.E. 1998. Abiophysical process based estimate of global landsurface evaporation using satellite and ancillary data-I.Model description and comparison with observations.

    Journal of Hydrology205: 164-185.

    Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. andTotterdell, I.J. 2000. Acceleration of global warmingdue to carbon-cycle feedbacks in a coupled climatemodel.Nature408: 184-187.

    Cox, P.M., Harris, P., Huntingford, C., Betts, R.A., Collins,M., Jones, C.D., Jupp, T., Marengo, J.E. and Nobre,C.A. 2008. Increasing risk of Amazonian drought dueto decreasing aerosol pollution.Nature452: 212-215.

    Doughty, C.E. and Goulden, M.L. 2008. Seasonal patternsof tropical forest leaf area index and CO2 exchange.

    Journal of Geophysical Research 113: G00B06-G00B18.

    FAO. 1992. Third interim report on the state of tropicalforests. Food and Agriculture Organis-ation, Rome.

    Galvo, L.S., dos Santos, J.R., Roberts, D.A., Breunig,F.M., Toomey, M. and de Moura, Y.M. 2011. On intra-annual EVI variability in the dry season of tropicalforest: A case study with MODIS and hyperspectraldata.Remote Sensing of Environment115: 2350-2359.

    Graham, E.A., Mulkey, S.S., Kitajima, K., Phillips, N.G.and Wright, S.J. 2003. Cloud cover limits net CO2uptake and growth of a rainforest tree during tropicalrainy seasons.Proceedings of the National Academy ofSciences of the United States of America100: 572-576.

    Huete, A.R., Didan, K., Miura, T., Rodriguez, E.P., Gao,

    X., and Ferreira, L.G. 2002. Overview of theradiometric and biophysical performance of theMODIS vegetation indices. Remote Sensing of

    Environment83: 195-213.Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P.,

    Saleska, S.R., Hutyra, L.R., Zang, W., Nemani, R.R.and Myneni, R. 2006. Amazon rainforests green-upwith sunlight in dry season. Geophysical Research

    Letters33: L06405.Jurez, R.I.N., Goulden, M.L., Myneni, R.B., Fu, R.,

    Bernardes, S. and Gao, H. 2008. An empiricalapproach to retrieving monthly evapotrans-piration

    over Amazonia. International Journal of RemoteSensing29: 7045-7063.Justice, D.H., Salomonson, V., Privette, J., Riggs, G.,

    Strahler, A., Lucht, R., Myneni, R., Knjazihhin, Y.,Running, S., Nemani, R., Vermote, E., Townshend, J.,Defries, R., Roy, D., Wan, Z., Huete, A., van Leeuwen,R., Wolfe, R., Giglio, L., Muller, J.-P., Lewis, P. andBarnsley, M. 1998. The Moderate Resolution ImagingSpectroradiometer (MODIS): land remote sensing forglobal change research. IEEE Transactions onGeoscience and Remote Sensing36: 1228-1249.

    Keller, M., Alencar, A., Asner, G.P., Braswell, B., Busta-mante, M., Davidson, E., Feldpausch, T., Fernan-

    , F.,Miller, S., Markewitz, D., Nobre, A. D., Nobre, C. A.,

    Filho, N. P., da Rocha, H., Dias, P. S., von Randow, C.and Vourlitis, G. L. 2004. Ecological research in thelarge-scale biosphereatmosphere experiment inAmazonia: Early results. Ecological Applications 14:S3-S16.

    Lewis, S.L., Brando, P.M., Phillips, O.L., van der Heijden,G.M.F. and Nepstad, D. 2011. The 2010 AmazonDrought. Science331: 554.

    Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W.and Nobre, C. A. 2008. Climate change, deforestation,and the fate of the Amazon. Science319: 169-172.

    Malhi, Y. and Wright, J. 2004. Spatial patterns and recenttrends in the climate of tropical rainforest regions.

    Philosophical transactions of the Royal Society of

    London. Series B, Biological Sciences359: 311-329.Marengo, J.A., Nobre, C.A., Tomasella, J., Oya-ma, M.D.,

    de Oliveira, G.S., de Oliveira, R., Camargo, H.,Alves, L.M. and Brown, I.F. 2008. The Drought ofAmazonia in 2005.Journal of Climate21: 495-516.

    Melillo, J.M., McGuire, A.D., Kicklighter, D.W., Moore,B., Vorosmarty, C.J. and Schloss, A.L. 1993. Globalclimate-change and terrestrial net primary production.

    Nature363: 234-240.Myneni, R.B., Yang, W., Nemani, R.R., Huete, A.R.,

    Dickinson, R.E., Knyazikhin, Y., Didan, K., Fu, R.,Negrn Jurez, R.I., Saatchi, S.S., Hashimoto, H.,Ichii, K., Shabanov, N.V., Tan, B., Ratana, P., Privette,J.L., Morisette, J.T., Vermote, E.F., Roy, D.P., Wolfe,R.E., Friedl, M.A., Running, S.W., Votava, P., El-Saleous, N., Devadiga, S., Su, Y. and Salomonson,

    V.V. 2007. Large seasonal swings in leaf area ofAmazon rainforests, Proceedings of the National

    Academy of Sciences of the United States of America104: 4820-4823.

    Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W. M.,Piper, S.C., Tucker, C.J., Myneni, R.B. and Running,S.W. 2003. Climate-driven increase in global terrestrialnet primary production from 1982 to 1999. Science300: 1560-1563.

    Nepstad, D.C., Carvalho, C.R. de, Davidson, E.A., Jipp,P.H., Lefebvre, P.A., Negreiros, G.H. de, Silva, E.D.da, Stone, T.A., Trumbore, S.E. and Vieira, S. 1994.

    The role of deep roots in the hydrological and carboncycles of Amazonian forests and pastures. Nature372:666-669.

    Phillips, O.L., Arago, L.E., Lewis, S.L., Fisher, J.B.,Lloyd J., Lpez-Gonzlez, G., Malhi, Y., Monteagudo,A., Peacock, J., Quesada, C.A., van der Heijden,G.M.F., Almeida, S., Amaral, I., Arroyo, L., Aymard,G., Baker, T.R., Bnki, O., Blanc, L., Bonal, D.,Brando, P., Chave, J., Alves de Oliveira, A.C., DvilaCardozo, N., Czimczik, C.I., Feldpausch, T. R., Freitas,M.A., Gloor, E. U., Higuchi, N., Jimnez, E., Lloyd,G., Meir, P., Mendoza, C., Morel, A., Neill, D. A.,

    Nepstad, D., Patio, A., Peuela, M.C., Prieto, A.,

    Ramrez, F., Schwarz, M., Silva, J.E., Silveira, M.,Sota Thomas, A., ter Steege, H., Stropp, J., Vsquez,

  • 8/13/2019 NeBIO_3-2-_Ningthoujam_17

    5/5

    Amazon Forest Greenness and MODISs Enhanced Vegetation Index Ningthoujam

    __________________________________________________________________________________________________

    NeBIO I www.nebio.in I Vol. 3, No. 2, June 2012, 102-106 106

    R., Zelazowski, P., Alvarez Dvila, E., Andelman, S.,Andrade, A., Chao, K-J., Erwin, T., Di Fiore, A.,Honorio, E., Keeling, H.C., Killeen, T.J., Laurance, W.F., Pea Cruz, A., Pitman, N.C.A., Nez Vargas, P.,Ramrez-Angulo, H., Rudas, A., Salomo, R., Silva,

    N., Terborgh, J. and Torres-Lezama, A. 2009. DroughtSensitivity of the Amazon Rainforest. Science 323:1344-1347.

    Running, S.W., Justice, C., Salomonson, V., Hall, D.,Barker, J., Kaufman, Y., Strahler, A., Huete, A.,Muller, J.P., Vanderbilt, V., Wan, Z. M., Teillet, P. andCarneggie, D. 1994. Terrestrial remote sensing scienceand algorithms planned for EOS/MODIS.International

    Journal of Remote Sensing15: 3587-3620.Saleska, S.R., Didan, K., Huete, A.R. and da Rocha, H.R.

    2007. Amazon forests green-up during 2005 drought.Science318: 612.

    Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M.L.,Wofsy, S.C., da Rocha, H.R., de Camargo, P.B., Crill,P., Daube, B.C., de Freitas, H.C., Hutyra, L., Keller,M., Kirchhoff, V., Menton, M., Munger, J.W., Pyle,E.H., Rice, A.H. and Silva, H. 2003. Carbon inAmazon forests: unexpected seasonal fluxes anddisturbance-induced losses. Science302: 1554-1557.

    Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S.,Vermote, E., Knyazikhin, Y., Nemani, R.R. andMyneni, R.B. 2010. Amazon forests did not green-upduring the 2005 drought. Geophysical Research Letters37: L05401.

    Samanta, A., Knyazikhin, Y., Xu, L., Dickinson, R. E., Fu,

    R., Costa, M.H., Saatchi, S.S., Nemani, R. R. andMyneni, R.B. 2012. Seasonal changes in leaf area ofAmazon forests from leaf flushing and abscission.

    Journal of Geophysical Research117: G01015.Toomey, M., Roberts, D. and Nelson, B. 2009. The

    influence of epiphylls on remote sensing of humidforests. Remote Sensing of Environment 113: 1787-1798.

    Wright, S.J., Carrasco, C., Calderon, O. and Paton, S.1999. The El Nino Southern Oscillation, variable fruit

    production, and famine in a tropical forest.Ecology80:1632-1647.

    Wright, S.J. and van Schaik, C.P. 1994. Light and thephenology of tropical trees. American Naturalist143:192-199.

    Xiao, X., Hagen, S., Zhang, Q., Keller, M. and Moore III,B. 2006. Detecting leaf phenology of seasonally moisttropical forests in South America with multi-temporalMODIS images. Remote Sensing of Environment103:465-473.

    Xu, L., Samanta, A., Costa, M.H., Ganguly, S., Nemani,R.R. and Myneni, R.B. 2011. Wide-spread decline ingreenness of Amazonian vegetation due to the 2010drought. Geophysical Research Letters38: L07402.