Ocular Drug Delivery.pdf

Embed Size (px)

Citation preview

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 1/23

    Goto:

    Goto:

    AAPSJ.2010Sep12(3):348360.Publishedonline2010May1.doi:10.1208/s1224801091833PMCID:PMC2895432

    OcularDrugDeliveryRipalGaudana,HariKrishnaAnanthula,AshwinParenky,andAshimK.MitraDivisionofPharmaceuticalSciences,SchoolofPharmacy,UniversityofMissouriKansasCity,2464CharlotteSt.,KansasCity,Missouri641082718USAAshimK.Mitra,Phone:+18162351615,Fax:+18162355190,Email:[email protected]:BruceAungstandCraigK.SvenssonReceived2009Nov26Accepted2010Feb24.CopyrightAmericanAssociationofPharmaceuticalScientists2010ThisarticlehasbeencitedbyotherarticlesinPMC.

    AbstractOculardrugdeliveryhasbeenamajorchallengetopharmacologistsanddrugdeliveryscientistsduetoitsuniqueanatomyandphysiology.Staticbarriers(differentlayersofcornea,sclera,andretinaincludingbloodaqueousandbloodretinalbarriers),dynamicbarriers(choroidalandconjunctivalbloodflow,lymphaticclearance,andteardilution),andeffluxpumpsinconjunctionposeasignificantchallengefordeliveryofadrugaloneorinadosageform,especiallytotheposteriorsegment.Identificationofinfluxtransportersonvariousoculartissuesanddesigningatransportertargeteddeliveryofaparentdrughasgatheredmomentuminrecentyears.Parallelly,colloidaldosageformssuchasnanoparticles,nanomicelles,liposomes,andmicroemulsionshavebeenwidelyexploredtoovercomevariousstaticanddynamicbarriers.Noveldrugdeliverystrategiessuchasbioadhesivegelsandfibrinsealantbasedapproachesweredevelopedtosustaindruglevelsatthetargetsite.Designingnoninvasivesustaineddrugdeliverysystemsandexploringthefeasibilityoftopicalapplicationtodeliverdrugstotheposteriorsegmentmaydrasticallyimprovedrugdeliveryintheyearstocome.Currentdevelopmentsinthefieldofophthalmicdrugdeliverypromiseasignificantimprovementinovercomingthechallengesposedbyvariousanteriorandposteriorsegmentdiseases.

    Keywords:nanoparticles,retina,transporter

    INTRODUCTIONDesigningadrugdeliverysystemtotargetaparticulartissueoftheeyehasbecomeamajorchallengeforscientistsinthefield.Theeyecanbebroadlyclassifiedintotwosegments:

    http://www.ncbi.nlm.nih.gov/pubmed/?term=Parenky%20A%5Bauth%5Dhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/citedby/http://www.ncbi.nlm.nih.gov/pmc/about/copyright.htmlhttp://www.ncbi.nlm.nih.gov/pubmed/?term=Gaudana%20R%5Bauth%5Dhttp://www.ncbi.nlm.nih.gov/pubmed/?term=Ananthula%20HK%5Bauth%5Dhttp://www.ncbi.nlm.nih.gov/pubmed/?term=Mitra%20AK%5Bauth%5Dhttp://dx.doi.org/10.1208%2Fs12248-010-9183-3mailto:dev@null

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 2/23

    Goto:

    anteriorandposterior.Structuralvariationofeachlayerofoculartissuecanposeasignificantbarrierfollowingdrugadministrationbyanyroute,i.e.,topical,systemic,andperiocular.Inthepresentwork,weattemptedtofocusonvariousdrugabsorptionbarriersencounteredfromallthreeroutesofadministration.Structuralcharacteristicsofvariousoculartissuesandtheireffectivenessasbarriersforthedeliveryofdrugsandtheircolloidaldosageformshavebeendiscussed.Theroleofeffluxpumpsandstrategiestoovercomethesebarriersutilizingthetransportertargetedprodrugapproachhavealsobeentouchedupon.Currentdevelopmentsinoculardosageforms,especiallycolloidaldosageforms,andtheirapplicationsinovercomingvariousstaticanddynamicbarriershavebeenelucidated.Finally,variousdevelopmentsinnoninvasivetechniquesforoculardrugdeliveryhavealsobeenemphasized.

    MODESOFADMINISTRATION,BARRIERS,ANDTHEIRSIGNIFICANCEINOCULARDRUGDELIVERYComparedwithdrugdeliverytootherpartsofthebody,oculardrugdeliveryhasmetwithsignificantchallengesposedbyvariousocularbarriers.Manyofthesebarriersareinherentanduniquetoocularanatomyandphysiologymakingitachallengingtaskfordrugdeliveryscientists.Thesebarriersarespecificdependingupontherouteofadministrationviz.topical,systemic,andinjectable.Mostoftheseareanatomicalandphysiologicalbarriersthatnormallyprotecttheeyefromtoxicants.Moreover,variouspreformulationandformulationfactorsneedtobeconsideredwhiledesigninganophthalmicformulation.TableIsummarizesvariousroutesofadministration,theirbenefits,andchallengesinoculardrugdelivery.Figure1representsimportantpartsoftheeyealongwithdifferentroutesofdrugadministrationrepresentedinitalics.

    TableISummaryofRoutesofAdministration,Benefits,andChallengesinOcularDelivery

    Fig.1Routesofdrugadministrationtoeye

    Topicaladministration

    Topicaladministration,mostlyintheformofeyedrops,isemployedtotreatanteriorsegmentdiseases.Formostofthetopicallyapplieddrugs,thesiteofactionisusuallydifferentlayersofthecornea,conjunctiva,sclera,andtheothertissuesoftheanteriorsegmentsuchastheirisandciliarybody(anterioruvea).Uponadministration,precornealfactorsandanatomicalbarriersnegativelyaffectthebioavailabilityoftopicalformulations.

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/figure/Fig1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/figure/Fig1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab1/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/figure/Fig1/

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 3/23

    Precornealfactorsincludesolutiondrainage,blinking,tearfilm,tearturnover,andinducedlacrimation(1).Tearfilm,whosecompositionandamountaredeterminantsofahealthyocularsurface,offersthefirstresistanceduetoitshighturnoverrate.Mucinpresentinthetearfilmplaysaprotectiverolebyformingahydrophiliclayerthatmovesovertheglycocalyxoftheocularsurfaceandclearsdebrisandpathogens(2).Humantearvolumeisestimatedtobe7l,andtheculdesaccantransientlycontainaround30loftheadministeredeyedrop.However,tearfilmdisplaysarapidrestorationtimeof23min,andmostofthetopicallyadministeredsolutionsarewashedawaywithinjust1530safterinstillation.Consideringalltheprecornealfactors,contacttimewiththeabsorptivemembranesislower,whichisconsideredtobetheprimaryreasonforlessthan5%oftheapplieddosereachingtheintraoculartissues(3).

    Inaddition,variouslayersofthecornea,conjunctiva,andscleraplayanimportantroleindrugpermeation.Thecornea,theanteriormostlayeroftheeye,isamechanicalbarrierwhichlimitstheentryofexogenoussubstancesintotheeyeandprotectstheoculartissues.Itcanbemainlydividedintotheepithelium,stroma,andendothelium.Eachlayeroffersadifferentpolarityandapotentialratelimitingstructurefordrugpermeation.Thecornealepitheliumislipoidalinnaturewhichcontains90%ofthetotalcellsinthecorneaandposesasignificantresistanceforpermeationoftopicallyadministeredhydrophilicdrugs.Furthermore,superficialcornealepithelialcellsarejoinedtooneanotherbydesmosomesandaresurroundedbyribbonliketightjunctionalcomplexes(zonulaoccludens)(4,5).Presenceofthesetightjunctionalcomplexesretardsparacellulardrugpermeationfromthetearfilmintointercellularspacesoftheepitheliumaswellasinnerlayersofthecornea.

    Thestroma,whichcomprises90%ofthecornealthickness,ismadeupofanextracellularmatrixandconsistsofalamellararrangementofcollagenfibrils.Thehighlyhydratedstructureofthestromaposesasignificantbarriertopermeationoflipophilicdrugmolecules.Endotheliumistheinnermostmonolayerofhexagonalshapedcells.Eventhoughendotheliumisaseparatingbarrierbetweenthestromaandaqueoushumor,ithelpsmaintaintheaqueoushumorandcornealtransparencyduetoitsselectivecarriermediatedtransportandsecretoryfunction(6).Furthermore,thecornealendothelialjunctionsareleakyandfacilitatethepassageofmacromoleculesbetweentheaqueoushumorandstroma(7).Thus,corneallayers,particularlytheepitheliumandstroma,areconsideredasmajorbarriersforoculardrugdelivery.Itisvitaltounderstandthatthepermeantshouldhaveanamphipathicnatureinordertopermeatethroughtheselayers.AschematicofthecorneallayersthatapermeantneedstocrossispresentedbyBararetal.(6).

    Comparedtocornea,conjunctivaldrugabsorptionisconsideredtobenonproductiveduetothepresenceofconjunctivalbloodcapillariesandlymphatics,whichcancausesignificantdruglossintothesystemiccirculationtherebyloweringocularbioavailability.Conjunctivalepithelialtightjunctionscanfurtherretardpassivemovementofhydrophilicmolecules(8).Thesclera,whichiscontinuouswiththecorneaoriginatesfromthelimbusandextendsposteriorlythroughouttheremainderoftheglobe.Thescleramainlyconsistsofcollagenfibersandproteoglycansembeddedinanextracellularmatrix.Permeabilitythroughthescleraisconsideredtobecomparabletothatofthecornealstroma.Recentreportsindicatethatthepermeabilityofdrugmoleculesacrossthescleraisinverselyproportionaltothemolecularradius(9).Dextranswithlinearstructureswerelesspermeableascomparedtoglobularproteins(9).Furthermore,thechargeofthedrugmoleculealsoaffectsits

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 4/23

    permeabilityacrossthesclera.Positivelychargedmoleculesexhibitpoorpermeabilitypresumablyduetotheirbindingtothenegativelychargedproteoglycanmatrix(10).

    Systemic(parenteral)administration

    Followingsystemicadministration,thebloodaqueousbarrierandbloodretinalbarrierarethemajorbarriersforanteriorsegmentandposteriorsegmentoculardrugdelivery,respectively.Bloodaqueousbarrierconsistsoftwodiscretecelllayerslocatedintheanteriorsegmentoftheeyeviz.theendotheliumoftheiris/ciliarybloodvesselsandthenonpigmentedciliaryepithelium.Bothcelllayersexpresstightjunctionalcomplexesandpreventtheentryofsolutesintotheintraocularenvironment(6)suchastheaqueoushumor.Bloodretinalbarrierrestrictstheentryofthetherapeuticagentsfrombloodintotheposteriorsegment.Itiscomposedoftwotypesofcells,i.e.,retinalcapillaryendothelialcellsandretinalpigmentepitheliumcells(RPE)knownastheinnerandouterbloodretinalbarrier,respectively.RPE,locatedbetweentheneuralretinaandthechoroid,isamonolayerofhighlyspecializedcells.RPEaidsinbiochemicalfunctionsbyselectivetransportofmoleculesbetweenphotoreceptorsandchoriocapillaris.Furthermore,itmaintainsthevisualsystembyuptakeandconversionofretinoids(11).However,tightjunctionsoftheRPEefficientlyrestrictintercellularpermeation.Followingoralorintravenousdosing,drugscaneasilyenterintothechoroidduetoitshighvasculaturecomparedtoretinalcapillaries.Thechoriocapillarisarefenestratedresultinginrapidequilibrationofdrugmoleculespresentinthebloodstreamwiththeextravascularspaceofthechoroid.However,outerbloodretinalbarrier(RPE)restrictsfurtherentryofdrugsfromthechoroidintotheretina.Eventhoughitisidealtodeliverthedrugtotheretinaviasystemicadministration,itisstillachallengeduetothebloodretinalbarrier,whichstrictlyregulatesdrugpermeationfrombloodtotheretina.Hence,specificoralorintravenoustargetingsystemsareneededtotransportmoleculesthroughthechoroidintodeeperlayersoftheretina(12).

    Recentadvancementsinnanotechnologyencouragedresearcherstofindwaystoovercomebloodretinalbarrier.InonesuchstudyusingC57BL/6mice,theresearchersdemonstratedthatintravenouslyadministered20nmgoldnanoparticlescouldpassthroughthebloodretinalbarrieranddistributeinalltheretinallayerswithoutcytotoxicity.Theviabilityofretinalendothelialcells,astrocytes,andretinoblastomacellswasalsonotaffected.Incontrast,larger100nmnanoparticleswerenotdetectedintheretina(13).Afewattemptshavealsobeenmadeforgenedeliverytotheeyebyintravenousrouteofadministration.AdiffuseexpressionofSV40/galactosidasegeneinmouseinnerretina,RPE,iris,aswellasconjunctivalepithelium,wasobserveduponintravenousadministrationofpolyethyleneglycol(PEG)conjugatedimmunoliposomes(14).Amorerecentreportdemonstratestheutilityofintravenousadministrationoftransferrin,arginineglycineasparticacidpeptide,ordualfunctionalizedpoly(lactidecoglycolide)(PLGA)nanoparticles.ThesefunctionalizedPLGAnanoparticlesweresuccessfulintargeteddeliveryofantivascularendothelialgrowthfactorintraceptorplasmidtochoroidalneovascularization(CNV)lesions.ThedeliveryofnanoparticlestotheneovasculareyewasattributedtotheleakybloodretinalbarrierasaresultofCNVinthelasertreatedrateye(15).

    Pharmacokineticstudiesinvolvingvariousdrugssuchasmicafungin(16),marbofloxacin(17),andamphotericinB(18)demonstratedthatthesedrugsaredistributedinoculartissuesuponintravenousadministration.Onemarketedintravenouslyadministeredformulationis

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 5/23

    visudyne,whichisusedinphotodynamictherapyforthetreatmentofwetagerelatedmaculardegeneration(AMD).However,owingtothetoxicityanddeliveryconcerns,intravenousadministrationisnotverycommonintreatingoculardisorders.

    Oraladministration

    Oraldelivery(1921)orincombinationwithtopicaldelivery(22)hasbeeninvestigatedfordifferentreasons.Topicaldeliveryalonefailedtoproducetherapeuticconcentrationsintheposteriorsegment.Also,oraldeliverywasstudiedasapossiblenoninvasiveandpatientpreferredroutetotreatchronicretinaldiseasesascomparedtoinjectableroute.However,limitedaccessibilitytomanyofthetargetedoculartissueslimitstheutilityoforaladministrationwhichnecessitateshighdosagetoobservesignificanttherapeuticefficacy.Thiscanresultinsystemicsideeffects.Hence,parameterssuchassafetyandtoxicityneedtobeconsideredwhentryingtoobtainatherapeuticresponseintheeyeuponoraladministration.Forexample,inglaucomatherapy,oralcarbonicanhydraseinhibitors,suchasacetazolamideandethoxzolamide,havebeendiscontinuedinmostofthecasesduetotheirsystemictoxicity(23,24).Theoralrouteisnotpredominant,andonlyalimitednumberofcompoundswereinvestigatedforoculardrugdelivery.Theseincludevariousclassesofdrugssuchasanalgesics(25),antibiotics(21,2628),antivirals(29),antineoplasticagents(30),andomega6fattyacids(31).Amajorprerequisiteoftheoralrouteforocularapplicationsishighoralbioavailabilityofthedrug.Followingoralabsorption,moleculesinsystemiccirculationmustalsocrossthebloodaqueousandbloodretinalbarriers.Thefunctionandbarrierpropertyoftheseprotectiveocularstructureswaspreviouslydiscussed.

    Periocularandintravitrealadministration

    Althoughnotverypatientcompliant,theseroutesareemployedpartlytoovercometheinefficiencyoftopicalandsystemicdosingtodelivertherapeuticdrugconcentrationstotheposteriorsegment.Moreover,systemicadministrationmayleadtosideeffectsmakingitalessdesirabledeliveryrouteforgeriatricpatients.Theperiocularrouteincludessubconjunctival,subtenon,retrobulbar,andperibulbaradministrationandiscomparativelylessinvasivethanintravitrealroute(SeeFig.1foranatomicallocationofthesitesofadministrationintheeye,representedinitalics).Thedrugadministeredbyperiocularinjectionscanreachtheposteriorsegmentbythreedifferentpathways:transscleralpathwaysystemiccirculationthroughthechoroidandtheanteriorpathwaythroughthetearfilm,cornea,aqueoushumor,andthevitreoushumor(32).

    Subconjunctivalinjectionobviatestheconjunctivalepithelialbarrier,whichisratelimitingforpermeationofwatersolubledrugs.Thus,thetransscleralroutebypassescorneaconjunctivabarrier.Nevertheless,variousdynamic,static,andmetabolicbarrierslimitdrugaccesstotheposteriorsegment.Dynamicbarriersincludeconjunctivalbloodandlymphaticcirculation.Variousauthorsreportedrapiddrugeliminationviathesepathwaysfollowingsubconjunctivaladministration(3335).Asaresult,theformulationisdrainedintosystemiccirculationtherebyloweringocularbioavailability.Thus,drugeliminationfromthesubconjunctivalspacebecomesamajordeterminantofthevitreousdruglevelsfollowingsubconjunctivaladministration.Themoleculesthatescapeconjunctivalvasculaturepermeatethroughscleraandchoroidtoreachtheneuralretinaandphotoreceptorcells.Thescleraisnotamajorbarrierasitismorepermeablethanthecornea.Moreover,permeability

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/figure/Fig1/

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 6/23

    Goto:

    acrossthescleraisindependentoflipophilicityunlikecornealandconjunctivallayersbutdependsprimarilyonthemolecularradius(12,36).However,choroidisasignificantbarrierashighchoroidalbloodflowcanalsoeliminateaconsiderablefractionofdrugbeforeitcanreachtheneuralretina.Furthermore,bloodretinalbarrierslimitdrugavailabilitytothephotoreceptorcells.

    Unlikeperiocularinjections,theintravitrealinjectionoffersdistinctadvantagesasthemoleculesaredirectlyinsertedintothevitreous.However,drugdistributioninthevitreousisnonuniform.Smallmoleculescanrapidlydistributethroughthevitreous,whereasthediffusionoflargermoleculesisrestricted.Thisdistributionalsodependsonthepathophysiologicalconditionandmolecularweightoftheadministereddrug(37).Thevitreousalsoactsasabarrierforretinalgenedeliveryfollowinganintravitrealinjection.Hyaluronan,anegativelychargedglycosaminoglycanpresentinthevitreous,caninteractwithcationiclipid,polymeric,andliposomalDNAcomplexes(38).ThisinteractioncanleadtosevereaggregationandcompleteimmobilizationofDNA/cationicliposomecomplexes(39).Similarly,mobilityofnanoparticlesinthevitreousdependsontheirstructureandsurfacecharge.Polystyrenenanospheresdonotdiffusefreelyintothevitreousduetotheiradherencetocollagenfibrillarstructures(39).Hence,surfacemodificationofnanosphereswithhydrophilicPEGchainshasbeenperformed.Arecentstudyusinghumanserumalbuminnanoparticlesalsodemonstratedthatanionicnanoparticleswithazetapotentialof33.3mVdiffusedmorefreelyinthevitreousthancationicparticleswithazetapotentialof11.7mV(40).

    Theinnerlimitingmembrane(ILM),thecelllayerseparatingtheretinaandthevitreous,isabarrierforretinaldeliveryfollowingintravitrealadministrationofgenebasedtherapeutics.Forexample,theILMposesabarrierforpenetrationoftheadenoassociatedvirusintotheretinafromthevitreous.MilddigestionofILMenhancedtransductionofmultipleretinalcelltypesfromthevitreousindicatingitshighbarrierproperty(41).Moreover,drugtransportfromvitreoustotheoutersegmentsofretinaandchoroidismorecomplexduethepresenceofRPE.

    Thehalflifeinthevitreousisanotherfactorthatcandeterminethetherapeuticefficacy.Followingintravitrealinjection,thedrugiseliminatedeitherbytheanteriorrouteorposteriorroute.Theanterioreliminationrouteinvolvesdrugdiffusionacrossthevitreousintotheaqueoushumorthroughzonularspacesfollowedbyeliminationthroughaqueousturnoveranduvealbloodflow.Theposterioreliminationpathwayinvolvesdrugpermeationacrossthebloodretinalbarrierandrequiresoptimumpassivepermeabilityoractivetransportmechanisms.Asaresult,hydrophilicityandlargemolecularweighttendtoincreasethehalflifeofthecompoundsinthevitreoushumor(12).

    MELANINBINDINGThepresenceofmelaninmayalteroculardrugdisposition.Interactionwiththispigmentmayaltertheavailabilityoffreedrugatthetargetedsite.Thereby,melaninbindingmaysignificantlylowerpharmacologicalactivity(42).Inoculartissues,melaninispresentinuveaandRPE.ItbindstofreeradicalsanddrugsbyelectrostaticandVanderWaalsforcesorbysimplechargetransfer(43).Basedonavailableinformation,itmaybeconcludedthatallbasicandlipophilicdrugsbindtomelanin(44).Eventhoughdrugbindingtomelaninis

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 7/23

    Goto:

    notnecessarilypredictiveofoculartoxicity,ithassignificantpharmacologicalconsequencesandrequirescarefulconsiderationinoculardrugdelivery.Melaninbindingintheirisciliarybodyaffectsdrugconcentrationsinanterioroculartissuesanddrugresponse(45).Amelaninbounddrugisnotusuallyavailableforreceptorbindingnecessitatingtheadministrationoflargerdoses(46).Likewise,melaninpresentinchoroidandRPEaffectstheextentofdruguptakeintotheretinaandvitreousfollowingtransscleralorsystemicdrugadministration.Asaresultofmelaninbinding,permeationlagtimeoflipophilicbetablockersthroughbovinechoroidRPEismuchlongerthanmorehydrophilicbetablockers(11).Similarly,bindingoflipophiliccompoundstothebovinechoroidBruch'smembranewasdemonstratedtobehigherduetothepresenceofmelanin.Consequently,thereisagreaterresistancetosolutepermeationacrosschoroidBruch'smembranethanthesclera,whichisdevoidofmelanin(47).

    TRANSPORTERSINEYEThetraditionalapproachtoimproveocularbioavailabilityistomodifythedrugchemicallytoachievethedesiredsolubilityandlipophilicity.However,amorerationalapproachwouldbeatransportertargetedmodificationofthedrug.Transportersaremembraneboundproteinsthatplayanimportantroleinactivetransportofnutrientsacrossbiologicalmembranes.Thepresenceoftransportershasbeenreportedonvariousoculartissues.However,inthepresentarticle,wehavefocusedonthetransportersthatarelocalizedintheepitheliaofthecornea,conjunctiva,andretina.Thesetransportersmaybeamenabletobindandtransportspecifictargetedligandsattachedtodrugmoieties.

    Twotypesoftransportersystemsareofinterestinoculardrugdelivery:effluxtransportersandinfluxtransporters.WidelystudiedeffluxtransportersbelongtotheATPbindingcassettesuperfamily,whereasinfluxtransportersbelongtothesolutecarrier(SLC)superfamily.Effluxtransporterslowerbioavailabilitybyeffluxingthemoleculesoutofthecellmembraneandcytoplasm.ProminenteffluxtransportersidentifiedonoculartissuesincludePgp,multidrugresistanceprotein(MRP),andBCRP.Variousauthorsreviewedtheemergingroleoftransportersinoculardrugdelivery(4850).Pgphasanaffinitytoeffluxlipophiliccompoundsinnormalaswellasincancerouscells,possiblyleadingtoemergenceofdrugresistance.ExpressionandfunctionalactivityofPgpwasidentifiedonvariousocularcelllinesandtissuessuchasthecornea(5153),conjunctiva(54,55),andRPE(5658).However,someauthorsrecentlyindicatedthattheexpressionofPgponhumancornealepitheliummaybenegligibleorabsent(59,60).MRPworksinasimilarmannerbuteffluxesorganicanionsandconjugatedcompounds.OutofnineknownisoformsoftheMRPfamily,onlythreewereidentifiedinoculartissues.MRP2andMRP5wereidentifiedincornealepithelium(61,62),whereasMRP1wasidentifiedinrabbitconjunctivalepithelialcells(63).RPEexpressesMRP1(64).ThepresenceofBCRPwasalsoreportedonthecornealepithelium(65).Expressionpatternsofthesetransporterproteinsinthecelllinesmayvarybasedonitsoriginandculturecondition(5860).Someoftherecentreportshighlightedtheexpressionofpharmaceuticallyrelevanttransportersusingculturedhumanocularcellmodelsandhumanoculartissues(59,60,66).Urttietal.(59)reportedthatonlyMRP1,MRP5,andBCRPwereexpressedinthefreshlyexcisedhumancornealepithelialtissue,whereascellmodelsoverexpressedmanyothereffluxtransporterscomparedtothatofthenormalcornealepithelium.

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 8/23

    Influxtransportersfacilitatethetranslocationofessentialnutrientsandxenobioticsacrossbiologicalmembranes.Theseincludecarriersforaminoacids,peptides,vitamins,glucose,lactate,andnucleoside/nucleobases.Stirredbythesuccessofvalacyclovirandthecharacterizationofdifferentinfluxtransportersinoculartissues,ophthalmicdrugdeliveryscientistsinvestigatedvariousprodrugstargetingtheseinfluxtransporters.Transportertargetedprodrugsoffermultipleadvantages.Theprodrugsoranaloguesdesignedtotargettheinfluxtransporterscansignificantlyenhancetheabsorptionofpoorlypermeatingparentdrugs,astheseconjugatesbecomesubstratesfortheinfluxtransportersandsimultaneouslyevadetheeffluxpumps.Furthermore,physicochemicalpropertiesofthedrugsuchassolubilityandstabilitycanbeimprovedcomparedtotheparentdrug.

    Themostcommonlyapplicableinfluxtransportersforoculardrugdeliveryareaminoacidandpeptidetransporters.Theseproteinsmayhaveaputativeroleinoculardrugdeliveryalongwiththeirphysiologicalroleoftransportingvariousaminoacidsandnutrientsintooculartissues.AminoacidtransportersthatbelongtoSLC1,SLC6,andSLC7genefamilieswereidentifiedatthemolecularlevelinoculartissues,andtheirfunctionalrolewasexaminedaswell.TheSLC1familyconsistsoffivehighaffinityglutamatetransporters(EAAT1EAAT5)andtwoneutralaminoacidtransporters(ASCT1andASCT2).Fewofthesetransporterswereidentifiedsofarinoculartissues.mRNAexpressionofASCT1(SLC1A4)hasbeendetectedinrabbitcorneaandinrabbitprimarycornealepithelialcells(rPCEC)(67).FunctionalactivityofASCT1onrabbitcorneawasalsodemonstratedbystudyingthesaturable,Na+dependentuptakeoflalanineinrPCECcelllineandbydeterminingitspermeabilityacrossisolatedrabbitcornea.MolecularevidenceforASCT2(SLC1A5)expressionwasconfirmedinretinalMullercells,anditwassuggestedthattheaminoaciddserine,synthesizedinMullercells,iseffluxedthroughthistransportersystem(68).B0,+(SLC6A14)isaneutralandcationicaminoacidtransporterwithbroadsubstratespecificity.Blisseandcoworkerscarriedoutarealtimequantitativepolymerasechainreaction(RTPCR)ontotalRNAisolatedfromrabbitcornea,rabbitcornealepithelium,andhumancornea.ThisreportconfirmedtheexpressionoftheaminoacidtransporterB(0,+)oncornea(69).ThisstudyalsoconcludedthatprimarycarrierinvolvedinlargininetransportacrosscornealepitheliumistheB0,+system.Thiscarriersystemisalsoattributedtolargininetransportinpigmentedrabbitconjunctiva(70).IdentificationandfunctionalcharacterizationofanNa+independentlargeneutralaminoacidtransporter,LAT1(SLC7A5),wasreportedinhumanandrabbitcornea(71).PresenceofthistransportersystemalongwithLAT2(SLC7A8)wasalsoconfirmedintheposteriorsegmentwithaninvitrohumanmodelusingRPEcellline(hTERTRPE)atmRNAlevel(72).mRNAexpressionofLAT2wasalsoshowninARPE19cells,anditsroleinNa+independenttransportoflphenylalaninewasemphasized(73).

    Peptidetransportershavebeenwidelyinvestigatedforoculardrugdelivery.Usingexcisedrabbitcornea,Anandetal.reportedfunctionalevidenceforthepresenceoftheoligopeptidetransportersystemakintothepeptidetransporterspresentintheintestine(74).RecentreportsalsoindicatethedetectionofbothPEPT1andPEPT2onthenewlyintroducedcloneticshumancornealepithelium(cHCE)celllineandonhumancorneawithRTPCR(60,75).Furthermore,thedifferenceinthetransporterexpressioninvariousspecieswasstudied(60).TheextenttowhichmRNAlevelscorrelatewithproteinexpressionandtransporteractivityneedstobestudiedingreaterdetail.Existenceofaprotoncoupled

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 9/23

    Goto:

    dipeptidetransportsystemhasbeenreportedonconjunctivalepithelialcellsbydemonstratingitsroleinmediatingtheuptakeofmodeldipeptidelcarnosine(76).Peptidetransporterexpressionwasalsostudiedinthebackoftheeyetissues.Bergeretal.reportedexpressionofPepT2mRNAonretinalMullercells(77).Expressionofpeptidetransportersacrossretinawasalsoshownbyusingocularmicrodialysistechnique.Thisstudyinvolvedvitreousclearanceofcephalosporins,whicharesubstratesofthistransportersystem(78).

    Otherthanaminoacidandpeptidetransporters,organiccation/anion(SLC22),monocarboxylate(SLC16),andnucleosidetransporters(SLC28and29)havebeenidentifiedonvariousoculartissues.Moreover,variousvitamintransporterswerestudiedfortheirfunctionalroleinoculartissues(7982).

    Transportertargetedprodrugsweredevelopedfollowingtheidentificationandcharacterizationofvariousinfluxandeffluxtransportersonoculartissues.Thesestudiesareclinicallyverysignificantsincetransportertargetedprodrugshavethepotentialofimprovingocularabsorptionofpoorlypermeatingparentdrug.Improvementinocularbioavailabilityuponprodrugadministrationwasattributedtotheinvolvementofvariousoculartransporters,changeinphysicochemicalproperties,oracombinationofthesetwofactors.Prodrugsarerecognizedbythemembranetransportersassubstratesresultingintheirtranslocationacrosstheepithelia.AschematicrepresentationofeffluxevasionbytheprodrugandconcomitantcellularentrymediatedbytheinfluxtransporterisdepictedinFig.2.TableIIprovidesasummaryofvarioustransportertargetedprodrugsinvestigatedfordrugdeliverytovariousoculartissuessuchascornea,conjunctiva,andRPE.

    Fig.2Circumventionofeffluxproteinsbyprodrugapproach

    TableIITransporterTargetedProdrugsforOcularDrugDelivery

    COLLOIDALDOSAGEFORMSFOROCULARDRUGDELIVERYColloidaldosageformshavebeenwidelystudiedandemployedinthefieldofoculardrugdelivery(48).Thesedosageformsincludeliposomes,nanoparticles,microemulsions,andnanoemulsionsetc.Barrierstooculardrugdeliveryhavealreadybeendescribedearlierinthecontextofstructureandfunctionofvariousoculartissuesandhoweachtissuecanactasabarrier.Thechronicnatureofmanyoculardiseasesnecessitatesfrequentdrug

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/figure/Fig2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/figure/Fig2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/figure/Fig2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab2/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab2/

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 10/23

    administration.

    Advantagesofcolloidaldosageformsincludesustainedandcontrolledreleaseofthedrugatthetargetedsite,reducedfrequencyofadministration,abilitytoovercomebloodocularbarriers,andeffluxrelatedissuesassociatedwiththeparentdrug(83).Further,thesecarrierscanalsobypassorovercomevariousstabilityrelatedproblemsofdrugmolecules,e.g.,proteinsandpeptides.Designinganidealdeliverysystemforanyoculardiseasedependsonmolecularpropertiesofthedrugsuchassize,charge,andaffinitytowardsvariousoculartissuesandpigments.

    Forsuccessfultranscornealdeliverywithcolloidaldosageform,natureandcharacteristicsofeachlayerofthecorneashouldbeunderstood.Cornealepitheliumandstromaareformidablebarriersforhydrophilicandhydrophobicdrugs,respectively.Cornealepithelialmucosapossessesanoverallnegativecharge,thuspermeabilityofpositivelychargedmoleculesisfavoredatphysiologicalpH(84).Whiledesigningaliposomebasedformulation,selectionofthelipidplaysanimportantrole.Investigatorshavecomparedtranscornealpermeationusingcationic,anionic,andneutralliposomes.Mostly,cationicliposomescontainingvariousdrugmoleculessuchaspenicillinG,tropicamide,andacetazolamideappeartoprovidemaximumdrugtransportacrossthecornearelativetotheanionicandneutralliposomes(8587).Similarchargebehaviorisalsoexpectedforothercolloidaldosageformssuchasnanoparticlesandmicroemulsions.Chitosancoatednanoparticlesappeartoexhibithigherpermeationrelativetouncoatednanoparticles.TableIIIsummarizesavailableliteratureonvariousformulationsdevelopedtosustaindrugreleaseviaboththetranscornealandtransscleralpathways.Apartfromtranscornealabsorption,transscleralandconjunctivalabsorptionalsoplayanimportantrolefollowingtopicaladministration.

    TableIIIDrugsFormulatedinColloidalDosageFormforOcularDelivery

    Transscleralpermeabilityofacompounddependsonvariousparameterssuchasmolecularweight,molecularradius,hydrophilicity,andchargeofthemolecule.Furthermore,theinvivoperformanceofcolloidaldosageformscanbeaffectedbysize,dynamicbarrierssuchasbloodandlymphaticflow,affinityoftheencapsulateddrugtowardsmelanin,andsurfaceconjugationofnanoparticleswithvariousendogenousmolecules.Followingperiocularadministrationofnanoparticles,sizeplaysacrucialroleindeterminingthefateoftheparticlesandtheentrappeddrug.Studiesinferredthatclearanceof20nmparticlesbybloodandlymphaticcirculationwassignificantlyhigher,while200nmparticlescouldbefoundattheinjectionsiteforover2months.Also,thestudyconcludedthat20nmparticleswereabletocrossthescleraltissuetoaverylowextent,while200nmparticlescouldnotcrossthesclera(88,89).AffinityofdrugmoleculestowardsmelaninpigmentpresentinthechoroidRPEalsoplaysanimportantroleinoculardisposition.Moleculeshavingahigheraffinityformelanincanbindtothepigment,andhencedeliverytotheinnerretinallayersandthevitreoushumorcanbedelayed(90).Drugtargetingbyfunctionalizationwithsomeoftheendogenouscarriermolecules,whicharenaturalsubstratesforaparticularreceptoror

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab3/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab3/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab3/

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 11/23

    Goto:

    transportersuchasluteinizinghormonereleasinghormoneagonistandtransferrin,wassuccessful.DiseaseconditionscanalsoaffectdrugavailabilityintotheinnerretinaltissuesincludingMullerandphotoreceptorcells(92).

    Indiabetes,disruptionofthebloodretinalbarriercanresultinsignificantdrugtransporttothetargetsite(92).Followingintravitrealinjectionofadosageform,thefateofcolloidalcarriersdependsonnumerouscriticalparameters.Vitreoushumorisacolloidalfluidcontainingsmallamountsofsolutes,ions,andlowmolecularweightcompounds.Itmainlycontainscollagen(40120g/ml)andhyaluronicacid(100400g/ml).Duetonegativechargeofvitrealhyaluronan,positivelychargedmoleculestendtoaggregateinthevitreoushumor.ThiswasobservedinitiallywiththeDNAlipoplex.Hence,itisverycrucialtoestimatethezetapotentialofacolloidaldosageformunderphysiologicalcondition(38).PEGylationofparticlescansignificantlyminimizeoravoidthisproblemtoalargeextent(93).ILMisalsoknowntorestrictthemovementofparticlesfromvitreoushumortoinnerretinallayers.AchievingsustaineddruglevelsfromperiocularadministrationisnecessaryfortreatingAMD,diabeticmacularedema,anddiabeticretinopathy.Aftersubconjunctivaladministration,colloidaldosageforms(sizeupto20nm)andreleaseddrugmoleculescanberapidlyclearedbyconjunctival,choroidal,andlymphaticcirculations.TableIVsummarizesavailableliteratureinthisfield.

    TableIVFactorsAffectingTransportofDrugMoleculeorItsColloidalDosageForm

    Variousstrategieshavebeenemployedtoavoidclearancefromthesevasculatures.Onesuchstrategyisthedevelopmentofafibrinsealantcontainingthedrugforposteriorsegmentdiseasessuchasretinoblastoma,wetAMD,macularedema,andproliferativevitreoretinopathy.FibrinsealanthasbeenapprovedbytheUSFoodandDrugAdministration.Onceinjectedalongwiththedrugsolution,thissealantimmediatelyformsagelbasedsemisolidstructure,whichsustainsdrugreleaseoveralongerperiod(94).TableVsummarizesrecentadvancesintheuseoffibrinsealantforoculardrugdelivery.Thisapproachwassuccessfullystudiedfordeliveryoftobramycin(keratitis),topotecan,carboplatin(retinoblastoma),andinsulin(diabeticretinopathy).

    TableVStrategiestoSustaintheDrugReleaseUsingFibrinSealantandGel

    MICRONEEDLE,ULTRASOUND,ANDIONTOPHORESISBASEDOCULARDRUGDELIVERYSYSTEMS

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab4/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab5/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab4/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab4/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab5/

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 12/23

    Goto:

    Allthesedeliverysystemsarenoninvasivemethodsdesignedtodeliverdrugstointraocularregions,mainlyforthetreatmentofposteriorsegmentdiseases.Researchershavedevelopeddrugcoatedmicroneedleswithalengthof500to750m.Thedrugtobedeliveredcanbecoatedonthesolidmetal.Followingadministration,coatedmoleculesdissolverapidly,andsubsequently,microneedlesareremovedfromthetissue.Thisdeliverysystemgeneratesamuchhigherconcentrationcomparedtoafreedrugsolution(95).Sodiumfluoresceinandpilocarpinewerecoatedanddeliveredusingasimilartechnique.Inthecaseofsodiumfluorescein,permeationwasfoundtobe60foldhigher,andinthecaseofpilocarpine,rapidconstrictionofpupilwasobserved.Similarly,intrascleralhollowmicroneedleshavealsobeendeveloped.Thisdeliverysystemisabletodelivermicroparticles,nanoparticles,anddrugsinasolutionwithminimalinvasion.Todelivermicroparticles,concomitantadministrationofspreadingenzymessuchashyaluronidaseandcollagenaseisalsonecessary.Theseenzymesrapidlyhydrolyzethecollagenousandextracellularmatrixstructureofthescleramakingthedeliveryofmicroparticlesfeasible(96).

    Similarly,ultrasoundmediateddrugdeliveryhasalsoreceivedattentioninrecentyears.Deliveryofbetablockerssuchasatenolol,carteolol,timolol,andbetaxolol,wasattemptedwithultrasoundapplication(20kHzfor1h)acrosscorneainthetreatmentofglaucoma.Cornealpermeabilityofthesecompoundshasbeensignificantlyenhancedwithultrasound.Recently,researchershaveattemptedtodeliverahydrophilicmolecule,sodiumfluorescein,atanultrasoundfrequencyof880kHzandintensitiesof0.190.56W/cm2withanexposuredurationof5min.Thisstudyreportedatenfoldenhancementincornealpermeationwithminorchangesintheepithelium(97).

    Oculariontophoresishasreceivedalotofattentioninrecentyearsparticularlytodeliverdrugsacrosscorneaandsclera.Transcornealiontophoresisofciprofloxacinhydrochloride(ocularinfection),gentamicin(pseudomonaskeratitis),andantisenseoligonucleotides(treatmentofangiogenesisincornea)appearedtoproduceencouragingresults(98100).Dexamethasonephosphate,methylprednisolone(posteriorsegmentinflammation),carboplatin(retinoblastoma),andmethotrexate(inflammatorydiseasesandintraocularlymphoma)werealsosuccessfullydeliveredusingthistechnique(101104).

    TOPICALDELIVERYOFDRUGSFORPOSTERIORSEGMENTEYEDISEASESDrugdeliverytoposteriorsegmenttissuesfollowingtopicaladministrationremainsachallengingtask.Intheearliersection,wehavebrieflydescribedthebarrierswhichrestrictdrugmovementtotheposteriorsegment.Barringafew,mostmoleculescannotreachtheposteriorsegmenttissuesupontopicaladministration.Insomecases,significantlyhigherpermeationofdrugmoleculesacrosscornea,sclera,orconjunctivafollowedbytopicaladministrationresultedinsignificantdistributionintointraoculartissues,e.g.,brimonidine,betaxolol,andnepafenac(105107).Higheraffinityofmemantinehydrochloridetowardsmelaninpigmentalsoplayedanimportantroleinthedistributiontotheposteriorsegment(108).TableVIsummarizesalistofmoleculesforwhichtopicalapplicationresultedinsignificantlevelsinposteriorsegmenttissuessuchastheretina,choroid,andvitreoushumor.Inonesuchapproach,ourlaboratoryhasdevelopedanovelplatformtechnology

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab6/

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 13/23

    Goto:

    Goto:

    Goto:

    Goto:

    consistingofmixednanomicellarformulationofadrugmoleculetodeliverittotheposteriorsegmentupontopicalapplication(USpatentapplication20090092665).VitaminETPGSandoctoxynol40wereusedassurfactantstoprepareamixednanomicellarclearaqueousformulationofalipophiliccompound.SelectionofasurfactanthavingtheHLBdifferencegreaterthanthreewasverycrucialforthisformulation.Hydrophobicdrugssuchasvoclosporinanddexamethasoneweresuccessfullyincorporatedinthemicellarbasedformulation.Upontopicalapplicationofmicellarformulation(1020nm),theresearcherswereabletodeliverdrugstotheretinaintherapeuticlevels.Anotherimportantbenefitofthisapproachwastheabsenceofdruglevelsinthelensorvitreous.Thisdistributionpatterncanbecrucialtoavoidordelaythedevelopmentofmajorsideeffectsofsteroidssuchascataractformationandintraocularpressureelevation,whichoftenresultindiscontinuationofthetherapy.

    TableVISummaryofDrugsWhichCanBeDeliveredtoPosteriorSegmentTissuesFollowingTopicalAdministration

    CONCLUSIONEffectivetreatmentofoculardiseasesisaformidabletaskbecauseofthenatureofdiseasesandpresenceoftheocularbarriers.Challengesindrugdeliverytooculartissueshavebeenpartiallymetbytheidentificationoftransportersandmodificationofdrugsubstancestotargetthesetransporters.Thespecificityoftransportersaidsintargetingspecifictissuestherebyloweringsideeffectsandimprovingbioavailability.Developmentofnoninvasivedeliverytechniqueswillrevolutionizeoculardrugdelivery.Thepotentialforthegrowthofsustaineddrugdeliverysystemsinvolvingpolymericsystemsislimitless,andnewerpolymerswouldservethepurposeofcontrolledandsustaineddeliveryfortreatingvisionthreateningdiseases.Advancesinnanotechnologyandnoninvasivedrugdeliverytechniqueswillremainintheforefrontofnewandnovelophthalmicdrugdeliverysystems.

    AcknowledgementsThisresearchhasbeensupportedbygrantsR01EY0917114andR01EY1065912fromtheNationalEyeInstitute.

    FootnotesRipalGaudanaandHariKrishnaAnanthulacontributedequallytothiswork.

    References1.AnanthulaHK,VaishyaRD,BarotM,MitraAK.Duane'sOphthalmology.In:TasmanW,JaegerEA,editors.Bioavailability.Philadelphia:LippincottWilliams&Wilkins2009.2.GipsonIK,ArguesoP.Roleofmucinsinthefunctionofthecornealandconjunctival

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab6/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/table/Tab6/http://www.ncbi.nlm.nih.gov/pubmed/14713002

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 14/23

    epithelia.IntRevCytol.2003231:149.doi:10.1016/S00747696(03)310010.[PubMed][CrossRef]3.AhmedI.Thenoncornealrouteinoculardrugdelivery.In:MitraAK,editor.Ophthalmicdrugdeliverysystems.NewYork:MarcelDekker2003.pp.33563.4.KlyceSD,CrossonCE.Transportprocessesacrosstherabbitcornealepithelium:areview.CurrEyeRes.19854(4):32331.doi:10.3109/02713688509025145.[PubMed][CrossRef]5.McLaughlinBJ,CaldwellRB,SasakiY,WoodTO.Freezefracturequantitativecomparisonofrabbitcornealepithelialandendothelialmembranes.CurrEyeRes.19854(9):95161.doi:10.3109/02713689509000002.[PubMed][CrossRef]6.BararJ,JavadzadehAR,OmidiY.Ocularnoveldrugdelivery:impactsofmembranesandbarriers.ExpertOpinDrugDeliv.20085(5):56781.doi:10.1517/17425247.5.5.567.[PubMed][CrossRef]7.SunkaraGKU.Membranetransportprocessesintheeye.In:MitraAK,editor.Ophthalmicdrugdeliverysystems.NewYork:MarcelDekker,Inc2003.pp.1358.8.SahaP,KimKJ,LeeVH.Aprimaryculturemodelofrabbitconjunctivalepithelialcellsexhibitingtightbarrierproperties.CurrEyeRes.199615(12):11639.doi:10.3109/02713689608995151.[PubMed][CrossRef]9.GeroskiDH,EdelhauserHF.Transscleraldrugdeliveryforposteriorsegmentdisease.AdvDrugDelivRev.200152(1):3748.doi:10.1016/S0169409X(01)001934.[PubMed][CrossRef]10.KimSH,LutzRJ,WangNS,RobinsonMR.Transportbarriersintransscleraldrugdeliveryforretinaldiseases.OphthalmicRes.200739(5):24454.doi:10.1159/000108117.[PubMed][CrossRef]11.PitkanenL,RantaVP,MoilanenH,UrttiA.Permeabilityofretinalpigmentepithelium:effectsofpermeantmolecularweightandlipophilicity.InvestOphthalmolVisSci.200546(2):6416.doi:10.1167/iovs.041051.[PubMed][CrossRef]12.UrttiA.Challengesandobstaclesofocularpharmacokineticsanddrugdelivery.AdvDrugDelivRev.200658(11):11315.doi:10.1016/j.addr.2006.07.027.[PubMed][CrossRef]13.KimJH,KimKW,KimMH,YuYS.Intravenouslyadministeredgoldnanoparticlespassthroughthebloodretinalbarrierdependingontheparticlesize,andinducenoretinaltoxicity.Nanotechnology.200920(50):505101.doi:10.1088/09574484/20/50/505101.[PubMed][CrossRef]14.ZhuC,ZhangY,PardridgeWM.Widespreadexpressionofanexogenousgeneintheeyeafterintravenousadministration.InvestOphthalmolVisSci.200243(9):307580.[PubMed]15.SinghSR,GrossniklausHE,KangSJ,EdelhauserHF,AmbatiBK,KompellaUB.Intravenoustransferrin,RGDpeptideanddualtargetednanoparticlesenhanceantiVEGFintraceptorgenedeliverytolaserinducedCNV.GeneTher.200916(5):64559.doi:10.1038/gt.2008.185.[PMCfreearticle][PubMed][CrossRef]16.SuzukiT,UnoT,ChenG,OhashiY.Oculardistributionofintravenouslyadministeredmicafungininrabbits.JInfectChemother.200814(3):2047.doi:10.1007/s1015600806125.[PubMed][CrossRef]17.RegnierA,SchneiderM,ConcordetD,ToutainPL.Intraocularpharmacokineticsofintravenouslyadministeredmarbofloxacininrabbitswithexperimentallyinducedacuteendophthalmitis.AmJVetRes.200869(3):4105.doi:10.2460/ajvr.69.3.410.[PubMed][CrossRef]18.GoldblumD,RohrerK,FruehBE,TheurillatR,ThormannW,ZimmerliS.OculardistributionofintravenouslyadministeredlipidformulationsofamphotericinBinarabbit

    http://www.ncbi.nlm.nih.gov/pubmed/9018430http://dx.doi.org/10.1016%2FS0169-409X(01)00193-4http://dx.doi.org/10.1088%2F0957-4484%2F20%2F50%2F505101http://www.ncbi.nlm.nih.gov/pubmed/19194480http://dx.doi.org/10.2460%2Fajvr.69.3.410http://www.ncbi.nlm.nih.gov/pubmed/11672874http://www.ncbi.nlm.nih.gov/pubmed/19923650http://dx.doi.org/10.1159%2F000108117http://dx.doi.org/10.3109%2F02713689608995151http://dx.doi.org/10.1016%2Fj.addr.2006.07.027http://dx.doi.org/10.3109%2F02713688509025145http://www.ncbi.nlm.nih.gov/pubmed/4064735http://dx.doi.org/10.1016%2FS0074-7696(03)31001-0http://www.ncbi.nlm.nih.gov/pubmed/15671294http://www.ncbi.nlm.nih.gov/pubmed/17851264http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993697/http://www.ncbi.nlm.nih.gov/pubmed/18312141http://dx.doi.org/10.1517%2F17425247.5.5.567http://dx.doi.org/10.1038%2Fgt.2008.185http://dx.doi.org/10.1167%2Fiovs.04-1051http://dx.doi.org/10.1007%2Fs10156-008-0612-5http://dx.doi.org/10.3109%2F02713689509000002http://www.ncbi.nlm.nih.gov/pubmed/12202532http://www.ncbi.nlm.nih.gov/pubmed/18574655http://www.ncbi.nlm.nih.gov/pubmed/18491982http://www.ncbi.nlm.nih.gov/pubmed/17097758http://www.ncbi.nlm.nih.gov/pubmed/3893897http://www.ncbi.nlm.nih.gov/pubmed/14713002

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 15/23

    model.AntimicrobAgentsChemother.200246(12):371923.doi:10.1128/AAC.46.12.37193723.2002.[PMCfreearticle][PubMed][CrossRef]19.SantulliRJ,KinneyWA,GhoshS,etal.StudieswithanorallybioavailablealphaVintegrinantagonistinanimalmodelsofocularvasculopathy:retinalneovascularizationinmiceandretinalvascularpermeabilityindiabeticrats.JPharmacolExpTher.2008324(3):894901.doi:10.1124/jpet.107.131656.[PubMed][CrossRef]20.ShirasakiY,MiyashitaH,YamaguchiM.Explorationoforallyavailablecalpaininhibitors.Part3:Dipeptidylalphaketoamidederivativescontainingpyridinemoiety.BioorgMedChem.200614(16):56918.doi:10.1016/j.bmc.2006.04.013.[PubMed][CrossRef]21.KampougerisG,AntoniadouA,KavouklisE,ChryssouliZ,GiamarellouH.Penetrationofmoxifloxacinintothehumanaqueoushumourafteroraladministration.BrJOphthalmol.200589(5):62831.doi:10.1136/bjo.2004.050054.[PMCfreearticle][PubMed][CrossRef]22.SakamotoH,SakamotoM,HataY,KubotaT,IshibashiT.Aqueousandvitreouspenetrationoflevofloxacinaftertopicaland/ororaladministration.EurJOphthalmol.200717(3):3726.[PubMed]23.ShirasakiY.Moleculardesignforenhancementofocularpenetration.JPharmSci.200897(7):246296.doi:10.1002/jps.21200.[PubMed][CrossRef]24.KaurIP,SmithaR,AggarwalD,KapilM.Acetazolamide:futureperspectiveintopicalglaucomatherapeutics.IntJPharm.2002248(12):114.doi:10.1016/S03785173(02)004386.[PubMed][CrossRef]25.CoppensM,VersichelenL,MortierE.Treatmentofpostoperativepainafterophthalmicsurgery.BullSocBelgeOphtalmol.2002285:2732.[PubMed]26.SamtaniS,AmaralJ,CamposMM,FarissRN,BecerraSP.Doxycyclinemediatedinhibitionofchoroidalneovascularization.InvestOphthalmolVisSci.200950(11):5098106.doi:10.1167/iovs.083174.[PMCfreearticle][PubMed][CrossRef]27.Rajpal,SrinivasA,AzadRV,etal.Evaluationofvitreouslevelsofgatifloxacinaftersystemicadministrationininflamedandnoninflamedeyes.ActaOphthalmol.200987(6):64852.doi:10.1111/j.17553768.2008.01323.x.[PubMed][CrossRef]28.SmithVA,KhanLimD,AndersonL,CookSD,DickAD.Doesorallyadministereddoxycyclinereachthetearfilm?BrJOphthalmol.200892(6):8569.doi:10.1136/bjo.2007.125989.[PubMed][CrossRef]29.ChongDY,JohnsonMW,HuynhTH,HallEF,ComerGM,FishDN.Vitreouspenetrationoforallyadministeredfamciclovir.AmJOphthalmol.2009148(1):3842e1.doi:10.1016/j.ajo.2009.02.010.[PubMed][CrossRef]30.TakahashiK,SaishinY,KingAG,LevinR,CampochiaroPA.Suppressionandregressionofchoroidalneovascularizationbythemultitargetedkinaseinhibitorpazopanib.ArchOphthalmol.2009127(4):4949.doi:10.1001/archophthalmol.2009.27.[PMCfreearticle][PubMed][CrossRef]31.KokkeKH,MorrisJA,LawrensonJG.Oralomega6essentialfattyacidtreatmentincontactlensassociateddryeye.ContLensAnteriorEye.200831(3):1416.doi:10.1016/j.clae.2007.12.001.[PubMed][CrossRef]32.GhateD,EdelhauserHF.Oculardrugdelivery.ExpertOpinDrugDeliv.20063(2):27587.doi:10.1517/17425247.3.2.275.[PubMed][CrossRef]33.HosseiniK,MatsushimaD,JohnsonJ,etal.Pharmacokineticstudyofdexamethasonedisodiumphosphateusingintravitreal,subconjunctival,andintravenousdeliveryroutesinrabbits.JOculPharmacolTher.200824(3):3018.doi:10.1089/jop.2007.0117.[PubMed][CrossRef]

    http://www.ncbi.nlm.nih.gov/pubmed/17918725http://dx.doi.org/10.1136%2Fbjo.2004.050054http://dx.doi.org/10.1016%2Fj.clae.2007.12.001http://www.ncbi.nlm.nih.gov/pubmed/18460541http://dx.doi.org/10.1016%2Fj.bmc.2006.04.013http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836119/http://dx.doi.org/10.1002%2Fjps.21200http://www.ncbi.nlm.nih.gov/pubmed/19375688http://www.ncbi.nlm.nih.gov/pubmed/12429455http://www.ncbi.nlm.nih.gov/pubmed/12442340http://www.ncbi.nlm.nih.gov/pubmed/19508273http://dx.doi.org/10.1111%2Fj.1755-3768.2008.01323.xhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987590/http://dx.doi.org/10.1016%2Fj.ajo.2009.02.010http://dx.doi.org/10.1517%2F17425247.3.2.275http://www.ncbi.nlm.nih.gov/pubmed/15834098http://www.ncbi.nlm.nih.gov/pubmed/16506953http://www.ncbi.nlm.nih.gov/pubmed/12435667http://www.ncbi.nlm.nih.gov/pmc/articles/PMC132741/http://www.ncbi.nlm.nih.gov/pubmed/18083913http://www.ncbi.nlm.nih.gov/pubmed/17534819http://www.ncbi.nlm.nih.gov/pubmed/18313350http://dx.doi.org/10.1136%2Fbjo.2007.125989http://dx.doi.org/10.1016%2FS0378-5173(02)00438-6http://dx.doi.org/10.1128%2FAAC.46.12.3719-3723.2002http://www.ncbi.nlm.nih.gov/pubmed/16651001http://www.ncbi.nlm.nih.gov/pubmed/19516001http://dx.doi.org/10.1089%2Fjop.2007.0117http://dx.doi.org/10.1124%2Fjpet.107.131656http://www.ncbi.nlm.nih.gov/pubmed/19365030http://www.ncbi.nlm.nih.gov/pubmed/18476800http://dx.doi.org/10.1167%2Fiovs.08-3174http://dx.doi.org/10.1001%2Farchophthalmol.2009.27http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1772646/

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 16/23

    34.WeijtensO,FeronEJ,SchoemakerRC,etal.Highconcentrationofdexamethasoneinaqueousandvitreousaftersubconjunctivalinjection.AmJOphthalmol.1999128(2):1927.doi:10.1016/S00029394(99)001294.[PubMed][CrossRef]35.KimSH,CsakyKG,WangNS,LutzRJ.Drugeliminationkineticsfollowingsubconjunctivalinjectionusingdynamiccontrastenhancedmagneticresonanceimaging.PharmRes.200825(3):51220.doi:10.1007/s110950079408z.[PubMed][CrossRef]36.PrausnitzMR,NoonanJS.Permeabilityofcornea,sclera,andconjunctiva:aliteratureanalysisfordrugdeliverytotheeye.JPharmSci.199887(12):147988.doi:10.1021/js9802594.[PubMed][CrossRef]37.MitraAK,AnandBS,DuvvuriS.Drugdeliverytotheeye.In:FischbargJ,editor.Thebiologyofeye.NewYork:AcademicPress2006.pp.30751.38.PitkanenL,RuponenM,NieminenJ,UrttiA.Vitreousisabarrierinnonviralgenetransferbycationiclipidsandpolymers.PharmRes.200320(4):57683.doi:10.1023/A:1023238530504.[PubMed][CrossRef]39.PeetersL,SandersNN,BraeckmansK,etal.Vitreous:abarriertononviraloculargenetherapy.InvestOphthalmolVisSci.200546(10):355361.doi:10.1167/iovs.050165.[PubMed][CrossRef]40.KimH,RobinsonSB,CsakyKG.Investigatingthemovementofintravitrealhumanserumalbuminnanoparticlesinthevitreousandretina.PharmRes.200926(2):32937.doi:10.1007/s1109500897456.[PubMed][CrossRef]41.DalkaraD,KolstadKD,CaporaleN,etal.InnerlimitingmembranebarrierstoAAVmediatedretinaltransductionfromthevitreous.MolTher.200917(12):2096102.doi:10.1038/mt.2009.181.[PMCfreearticle][PubMed][CrossRef]42.SchoenwaldRD,TandonV,WursterDE,BarfknechtCF.Significanceofmelaninbindingandmetabolismintheactivityof5acetoxyacetylimino4methyldelta21,3,4,thiadiazoline2sulfonamide.EurJPharmBiopharm.199846(1):3950.doi:10.1016/S09396411(97)001665.[PubMed][CrossRef]43.LarssonBS.Interactionbetweenchemicalsandmelanin.PigmentCellRes.19936(3):12733.doi:10.1111/j.16000749.1993.tb00591.x.[PubMed][CrossRef]44.LeblancB,JezequelS,DaviesT,HantonG,TaradachC.Bindingofdrugstoeyemelaninisnotpredictiveofoculartoxicity.RegulToxicolPharmacol.199828(2):12432.doi:10.1006/rtph.1998.1243.[PubMed][CrossRef]45.PitkanenL,RantaVP,MoilanenH,UrttiA.Bindingofbetaxolol,metoprololandoligonucleotidestosyntheticandbovineocularmelanin,andpredictionofdrugbindingtomelanininhumanchoroidretinalpigmentepithelium.PharmRes.200724(11):206370.doi:10.1007/s1109500793420.[PubMed][CrossRef]46.SalminenL,ImreG,HuupponenR.Theeffectofocularpigmentationonintraocularpressureresponsetotimolol.ActaOphthalmolSuppl.1985173:158.doi:10.1111/j.17553768.1985.tb06829.x.[PubMed][CrossRef]47.CheruvuNP,KompellaUB.Bovineandporcinetransscleralsolutetransport:influenceoflipophilicityandtheChoroidBruch'slayer.InvestOphthalmolVisSci.200647(10):451322.doi:10.1167/iovs.060404.[PMCfreearticle][PubMed][CrossRef]48.GaudanaR,JwalaJ,BodduSH,MitraAK.Recentperspectivesinoculardrugdelivery.PharmRes.200926(5):1197216.doi:10.1007/s1109500896940.[PubMed][CrossRef]49.MannermaaE,VellonenKS,UrttiA.Drugtransportincornealepitheliumandbloodretinabarrier:emergingroleoftransportersinocularpharmacokinetics.AdvDrugDelivRev.200658(11):113663.doi:10.1016/j.addr.2006.07.024.[PubMed][CrossRef]50.DeyS,AnandBS,PatelJ,MitraAK.Transporters/receptorsintheanteriorchamber:

    http://www.ncbi.nlm.nih.gov/pubmed/17674155http://www.ncbi.nlm.nih.gov/pubmed/17081648http://dx.doi.org/10.1167%2Fiovs.06-0404http://www.ncbi.nlm.nih.gov/pubmed/9700021http://dx.doi.org/10.1007%2Fs11095-008-9694-0http://www.ncbi.nlm.nih.gov/pubmed/9927562http://www.ncbi.nlm.nih.gov/pubmed/16186333http://dx.doi.org/10.1006%2Frtph.1998.1243http://dx.doi.org/10.1111%2Fj.1600-0749.1993.tb00591.xhttp://dx.doi.org/10.1007%2Fs11095-007-9408-zhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324974/http://www.ncbi.nlm.nih.gov/pubmed/8234197http://dx.doi.org/10.1016%2FS0939-6411(97)00166-5http://www.ncbi.nlm.nih.gov/pubmed/17003447http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814392/http://dx.doi.org/10.1016%2Fj.addr.2006.07.024http://dx.doi.org/10.1111%2Fj.1755-3768.1985.tb06829.xhttp://www.ncbi.nlm.nih.gov/pubmed/10458175http://dx.doi.org/10.1007%2Fs11095-008-9745-6http://www.ncbi.nlm.nih.gov/pubmed/18958405http://www.ncbi.nlm.nih.gov/pubmed/10189253http://www.ncbi.nlm.nih.gov/pubmed/18758924http://www.ncbi.nlm.nih.gov/pubmed/17546409http://dx.doi.org/10.1007%2Fs11095-007-9342-0http://www.ncbi.nlm.nih.gov/pubmed/12739764http://dx.doi.org/10.1167%2Fiovs.05-0165http://dx.doi.org/10.1016%2FS0002-9394(99)00129-4http://dx.doi.org/10.1038%2Fmt.2009.181http://dx.doi.org/10.1023%2FA%3A1023238530504http://www.ncbi.nlm.nih.gov/pubmed/19672248http://dx.doi.org/10.1021%2Fjs9802594http://www.ncbi.nlm.nih.gov/pubmed/3002092

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 17/23

    pathwaystoexploreoculardrugdeliverystrategies.ExpertOpinBiolTher.20033(1):2344.doi:10.1517/14712598.3.1.23.[PubMed][CrossRef]51.KawazuK,YamadaK,NakamuraM,OtaA.CharacterizationofcyclosporinAtransportinculturedrabbitcornealepithelialcells:Pglycoproteintransportactivityandbindingtocyclophilin.InvestOphthalmolVisSci.199940(8):173844.[PubMed]52.DeyS,PatelJ,AnandBS,etal.MolecularevidenceandfunctionalexpressionofPglycoprotein(MDR1)inhumanandrabbitcorneaandcornealepithelialcelllines.InvestOphthalmolVisSci.200344(7):290918.doi:10.1167/iovs.021142.[PubMed][CrossRef]53.DeyS,GundaS,MitraAK.Pharmacokineticsoferythromycininrabbitcorneasaftersingledoseinfusion:roleofPglycoproteinasabarriertoinvivooculardrugabsorption.JPharmacolExpTher.2004311(1):24655.doi:10.1124/jpet.104.069583.[PubMed][CrossRef]54.SahaP,YangJJ,LeeVH.Existenceofapglycoproteindrugeffluxpumpinculturedrabbitconjunctivalepithelialcells.InvestOphthalmolVisSci.199839(7):12216.[PubMed]55.YangJJ,KimKJ,LeeVH.RoleofPglycoproteininrestrictingpropranololtransportinculturedrabbitconjunctivalepithelialcelllayers.PharmRes.200017(5):5338.doi:10.1023/A:1007508714259.[PubMed][CrossRef]56.KennedyBG,ManginiNJ.Pglycoproteinexpressioninhumanretinalpigmentepithelium.MolVis.20028:42230.[PubMed]57.DuvvuriS,GandhiMD,MitraAK.EffectofPglycoproteinontheoculardispositionofamodelsubstrate,quinidine.CurrEyeRes.200327(6):34553.doi:10.1076/ceyr.27.6.345.18187.[PubMed][CrossRef]58.ConstablePA,LawrensonJG,DolmanDE,ArdenGB,AbbottNJ.PGlycoproteinexpressioninhumanretinalpigmentepitheliumcelllines.ExpEyeRes.200683(1):2430.doi:10.1016/j.exer.2005.10.029.[PubMed][CrossRef]59.VellonenKS,MannermaaE,TurnerH,etal.EffluxingABCtransportersinhumancornealepithelium.JPharmSci.201099(2):108798.[PMCfreearticle][PubMed]60.ZhangT,XiangCD,GaleD,CarreiroS,WuEY,ZhangEY.DrugtransporterandcytochromeP450mRNAexpressioninhumanocularbarriers:implicationsforoculardrugdisposition.DrugMetabDispos.200836(7):13007.doi:10.1124/dmd.108.021121.[PubMed][CrossRef]61.KarlaPK,QuinnTL,HerndonBL,ThomasP,PalD,MitraA.Expressionofmultidrugresistanceassociatedprotein5(MRP5)oncorneaanditsroleindrugefflux.JOculPharmacolTher.200925(2):12132.doi:10.1089/jop.2008.0084.[PMCfreearticle][PubMed][CrossRef]62.KarlaPK,PalD,QuinnT,MitraAK.Molecularevidenceandfunctionalexpressionofanoveldrugeffluxpump(ABCC2)inhumancornealepitheliumandrabbitcorneaanditsroleinoculardrugefflux.IntJPharm.2007336(1):1221.doi:10.1016/j.ijpharm.2006.11.031.[PMCfreearticle][PubMed][CrossRef]63.YangJJ,AnnDK,KannanR,LeeVH.Multidrugresistanceprotein1(MRP1)inrabbitconjunctivalepithelialcells:itseffectondrugeffluxanditsregulationbyadenoviralinfection.PharmRes.200724(8):1490500.doi:10.1007/s1109500792677.[PubMed][CrossRef]64.AukunuruJV,SunkaraG,BandiN,ThoresonWB,KompellaUB.Expressionofmultidrugresistanceassociatedprotein(MRP)inhumanretinalpigmentepithelialcellsanditsinteractionwithBAPSG,anovelaldosereductaseinhibitor.PharmRes.200118(5):56572.doi:10.1023/A:1011060705599.[PubMed][CrossRef]65.KarlaPK,EarlaR,BodduSH,JohnstonTP,PalD,MitraA.Molecularexpressionand

    http://www.ncbi.nlm.nih.gov/pubmed/10393043http://www.ncbi.nlm.nih.gov/pubmed/17156953http://dx.doi.org/10.1016%2Fj.exer.2005.10.029http://dx.doi.org/10.1023%2FA%3A1007508714259http://www.ncbi.nlm.nih.gov/pubmed/12718729http://dx.doi.org/10.1023%2FA%3A1011060705599http://dx.doi.org/10.1016%2Fj.ijpharm.2006.11.031http://www.ncbi.nlm.nih.gov/pubmed/12824231http://dx.doi.org/10.1089%2Fjop.2008.0084http://dx.doi.org/10.1124%2Fjpet.104.069583http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906233/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963904/http://dx.doi.org/10.1076%2Fceyr.27.6.345.18187http://www.ncbi.nlm.nih.gov/pubmed/11465409http://www.ncbi.nlm.nih.gov/pubmed/19623615http://www.ncbi.nlm.nih.gov/pubmed/15175422http://www.ncbi.nlm.nih.gov/pubmed/12432340http://dx.doi.org/10.1007%2Fs11095-007-9267-7http://dx.doi.org/10.1517%2F14712598.3.1.23http://www.ncbi.nlm.nih.gov/pubmed/18411399http://www.ncbi.nlm.nih.gov/pubmed/16530756http://dx.doi.org/10.1167%2Fiovs.02-1142http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1995119/http://dx.doi.org/10.1124%2Fdmd.108.021121http://www.ncbi.nlm.nih.gov/pubmed/14704918http://www.ncbi.nlm.nih.gov/pubmed/17404811http://www.ncbi.nlm.nih.gov/pubmed/10888304http://www.ncbi.nlm.nih.gov/pubmed/9620082http://www.ncbi.nlm.nih.gov/pubmed/19323627

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 18/23

    functionalevidenceofadrugeffluxpump(BCRP)inhumancornealepithelialcells.CurrEyeRes.200934(1):19.doi:10.1080/02713680802518251.[PubMed][CrossRef]66.BeckerU,EhrhardtC,DaumN,etal.ExpressionofABCtransportersinhumancornealtissueandthetransformedcellline,HCET.JOculPharmacolTher.200723(2):17281.doi:10.1089/jop.2006.0095.[PubMed][CrossRef]67.KatragaddaS,TalluriRS,PalD,MitraAK.IdentificationandcharacterizationofaNa+dependentneutralaminoacidtransporter,ASCT1,inrabbitcornealepithelialcellcultureandrabbitcornea.CurrEyeRes.200530(11):9891002.doi:10.1080/02713680500306439.[PubMed][CrossRef]68.DunY,MysonaB,ItagakiS,MartinStuddardA,GanapathyV,SmithSB.FunctionalandmolecularanalysisofDserinetransportinretinalMullercells.ExpEyeRes.200784(1):1919.doi:10.1016/j.exer.2006.09.015.[PMCfreearticle][PubMed][CrossRef]69.JainVakkalagaddaB,PalD,GundaS,NashedY,GanapathyV,MitraAK.IdentificationofaNa+dependentcationicandneutralaminoacidtransporter,B(0,+),inhumanandrabbitcornea.MolPharm.20041(5):33846.doi:10.1021/mp0499499.[PubMed][CrossRef]70.HosoyaK,HoribeY,KimKJ,LeeVH.Na(+)dependentLargininetransportinthepigmentedrabbitconjunctiva.ExpEyeRes.199765(4):54753.doi:10.1006/exer.1997.0354.[PubMed][CrossRef]71.JainVakkalagaddaB,DeyS,PalD,MitraAK.IdentificationandfunctionalcharacterizationofaNa+independentlargeneutralaminoacidtransporter,LAT1,inhumanandrabbitcornea.InvestOphthalmolVisSci.200344(7):291927.doi:10.1167/iovs.020907.[PubMed][CrossRef]72.NakauchiT,AndoA,UedaYamadaM,etal.Preventionofornithinecytotoxicitybynonpolarsidechainaminoacidsinretinalpigmentepithelialcells.InvestOphthalmolVisSci.200344(11):50238.doi:10.1167/iovs.030403.[PubMed][CrossRef]73.GandhiMD,PalD,MitraAK.IdentificationandfunctionalcharacterizationofaNa(+)independentlargeneutralaminoacidtransporter(LAT2)onARPE19cells.IntJPharm.2004275(12):189200.doi:10.1016/j.ijpharm.2004.01.035.[PubMed][CrossRef]74.AnandBS,MitraAK.MechanismofcornealpermeationofLvalylesterofacyclovir:targetingtheoligopeptidetransporterontherabbitcornea.PharmRes.200219(8):1194202.doi:10.1023/A:1019806411610.[PubMed][CrossRef]75.XiangCD,BatugoM,GaleDC,etal.Characterizationofhumancornealepithelialcellmodelasasurrogateforcornealpermeabilityassessment:metabolismandtransport.DrugMetabDispos.200937(5):9928.doi:10.1124/dmd.108.026286.[PubMed][CrossRef]76.BasuSK,HaworthIS,BolgerMB,LeeVH.Protondrivendipeptideuptakeinprimaryculturedrabbitconjunctivalepithelialcells.InvestOphthalmolVisSci.199839(12):236573.[PubMed]77.BergerUV,HedigerMA.DistributionofpeptidetransporterPEPT2mRNAintheratnervoussystem.AnatEmbryol(Berl)1999199(5):43949.doi:10.1007/s004290050242.[PubMed][CrossRef]78.MachaS,MitraAK.Ocularpharmacokineticsofcephalosporinsusingmicrodialysis.JOculPharmacolTher.200117(5):48598.doi:10.1089/108076801753266866.[PubMed][CrossRef]79.TalluriRS,KatragaddaS,PalD,MitraAK.MechanismofLascorbicaciduptakebyrabbitcornealepithelialcells:evidencefortheinvolvementofsodiumdependentvitaminCtransporter2.CurrEyeRes.200631(6):4819.doi:10.1080/02713680600693629.[PubMed][CrossRef]

    http://dx.doi.org/10.1124%2Fdmd.108.026286http://www.ncbi.nlm.nih.gov/pubmed/16026003http://dx.doi.org/10.1021%2Fmp0499499http://dx.doi.org/10.1016%2Fj.ijpharm.2004.01.035http://dx.doi.org/10.1080%2F02713680500306439http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773703/http://www.ncbi.nlm.nih.gov/pubmed/12240946http://dx.doi.org/10.1023%2FA%3A1019806411610http://www.ncbi.nlm.nih.gov/pubmed/10221455http://www.ncbi.nlm.nih.gov/pubmed/12824232http://www.ncbi.nlm.nih.gov/pubmed/15081149http://www.ncbi.nlm.nih.gov/pubmed/16282133http://www.ncbi.nlm.nih.gov/pubmed/19172464http://www.ncbi.nlm.nih.gov/pubmed/11765153http://dx.doi.org/10.1089%2Fjop.2006.0095http://dx.doi.org/10.1007%2Fs004290050242http://dx.doi.org/10.1167%2Fiovs.03-0403http://dx.doi.org/10.1089%2F108076801753266866http://www.ncbi.nlm.nih.gov/pubmed/9464187http://www.ncbi.nlm.nih.gov/pubmed/9804145http://dx.doi.org/10.1167%2Fiovs.02-0907http://dx.doi.org/10.1080%2F02713680600693629http://dx.doi.org/10.1016%2Fj.exer.2006.09.015http://www.ncbi.nlm.nih.gov/pubmed/14578430http://dx.doi.org/10.1080%2F02713680802518251http://www.ncbi.nlm.nih.gov/pubmed/17094966http://www.ncbi.nlm.nih.gov/pubmed/16769607http://www.ncbi.nlm.nih.gov/pubmed/19220984http://dx.doi.org/10.1006%2Fexer.1997.0354http://www.ncbi.nlm.nih.gov/pubmed/17444805

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 19/23

    80.JanoriaKG,HariharanS,PaturiD,PalD,MitraAK.Biotinuptakebyrabbitcornealepithelialcells:roleofsodiumdependentmultivitamintransporter(SMVT)CurrEyeRes.200631(10):797809.doi:10.1080/02713680600900206.[PubMed][CrossRef]81.HariharanS,JanoriaKG,GundaS,ZhuX,PalD,MitraAK.Identificationandfunctionalexpressionofacarriermediatedriboflavintransportsystemonrabbitcornealepithelium.CurrEyeRes.200631(10):81124.doi:10.1080/02713680600899655.[PubMed][CrossRef]82.HosoyaK,FujitaK,TachikawaM.Involvementofreducedfolatecarrier1intheinnerbloodretinalbarriertransportofmethyltetrahydrofolate.DrugMetabPharmacokinet.200823(4):28592.doi:10.2133/dmpk.23.285.[PubMed][CrossRef]83.MainardesRM,UrbanMC,CintoPO,etal.Colloidalcarriersforophthalmicdrugdelivery.CurrDrugTargets.20056(3):36371.doi:10.2174/1389450053765914.[PubMed][CrossRef]84.RabinovichGuilattL,CouvreurP,LambertG,DubernetC.Cationicvectorsinoculardrugdelivery.JDrugTarget.200412(910):62333.doi:10.1080/10611860400015910.[PubMed][CrossRef]85.SchaefferHE,KrohnDL.Liposomesintopicaldrugdelivery.InvestOphthalmolVisSci.198222(2):2207.[PubMed]86.NagarsenkerMS,LondheVY,NadkarniGD.Preparationandevaluationofliposomalformulationsoftropicamideforoculardelivery.IntJPharm.1999190(1):6371.doi:10.1016/S03785173(99)002653.[PubMed][CrossRef]87.HathoutRM,MansourS,MortadaND,GuinediAS.Liposomesasanoculardeliverysystemforacetazolamide:invitroandinvivostudies.AAPSPharmSciTech.20078(1):1.doi:10.1208/pt0801001.[PMCfreearticle][PubMed][CrossRef]88.AmriteAC,KompellaUB.Sizedependentdispositionofnanoparticlesandmicroparticlesfollowingsubconjunctivaladministration.JPharmPharmacol.200557(12):155563.doi:10.1211/jpp.57.12.0005.[PubMed][CrossRef]89.AmriteAC,EdelhauserHF,SinghSR,KompellaUB.Effectofcirculationonthedispositionandoculartissuedistributionof20nmnanoparticlesafterperiocularadministration.MolVis.200814:15060.[PMCfreearticle][PubMed]90.CheruvuNP,AmriteAC,KompellaUB.Effectofeyepigmentationontransscleraldrugdelivery.InvestOphthalmolVisSci.200849(1):33341.doi:10.1167/iovs.070214.[PMCfreearticle][PubMed][CrossRef]91.KompellaUB,SundaramS,RaghavaS,EscobarER.Luteinizinghormonereleasinghormoneagonistandtransferrinfunctionalizationsenhancenanoparticledeliveryinanovelbovineexvivoeyemodel.MolVis.200612:118598.[PubMed]92.CheruvuNP,AmriteAC,KompellaUB.Effectofdiabetesontransscleraldeliveryofcelecoxib.PharmRes.200926(2):40414.doi:10.1007/s1109500897572.[PubMed][CrossRef]93.PeetersL,LentackerI,VandenbrouckeRE,etal.Canultrasoundsolvethetransportbarrieroftheneuralretina?PharmRes.200825(11):265765.doi:10.1007/s1109500896842.[PubMed][CrossRef]94.MartinNE,KimJW,AbramsonDH.Fibrinsealantforretinoblastoma:wherearewe?JOculPharmacolTher.200824(5):4338.doi:10.1089/jop.2007.0110.[PubMed][CrossRef]95.JiangJ,GillHS,GhateD,etal.Coatedmicroneedlesfordrugdeliverytotheeye.InvestOphthalmolVisSci.200748(9):403843.doi:10.1167/iovs.070066.[PubMed][CrossRef]96.JiangJ,MooreJS,EdelhauserHF,PrausnitzMR.Intrascleraldrugdeliverytotheeye

    http://www.ncbi.nlm.nih.gov/pubmed/17102798http://dx.doi.org/10.2133%2Fdmpk.23.285http://www.ncbi.nlm.nih.gov/pubmed/18334929http://dx.doi.org/10.1089%2Fjop.2007.0110http://www.ncbi.nlm.nih.gov/pubmed/18649123http://dx.doi.org/10.1080%2F10611860400015910http://www.ncbi.nlm.nih.gov/pubmed/17408209http://dx.doi.org/10.1080%2F02713680600900206http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324932/http://dx.doi.org/10.1211%2Fjpp.57.12.0005http://www.ncbi.nlm.nih.gov/pubmed/7056633http://www.ncbi.nlm.nih.gov/pubmed/17724185http://www.ncbi.nlm.nih.gov/pubmed/18987961http://www.ncbi.nlm.nih.gov/pubmed/15621688http://dx.doi.org/10.1007%2Fs11095-008-9757-2http://www.ncbi.nlm.nih.gov/pubmed/18172110http://www.ncbi.nlm.nih.gov/pubmed/15857294http://www.ncbi.nlm.nih.gov/pubmed/18788992http://dx.doi.org/10.1016%2FS0378-5173(99)00265-3http://dx.doi.org/10.1080%2F02713680600899655http://dx.doi.org/10.2174%2F1389450053765914http://www.ncbi.nlm.nih.gov/pubmed/10528098http://dx.doi.org/10.1167%2Fiovs.07-0066http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254958/http://www.ncbi.nlm.nih.gov/pubmed/16354399http://dx.doi.org/10.1007%2Fs11095-008-9684-2http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750666/http://dx.doi.org/10.1208%2Fpt0801001http://www.ncbi.nlm.nih.gov/pubmed/18762716http://dx.doi.org/10.1167%2Fiovs.07-0214http://www.ncbi.nlm.nih.gov/pubmed/17038304http://www.ncbi.nlm.nih.gov/pubmed/17050273

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 20/23

    usinghollowmicroneedles.PharmRes.200926(2):395403.doi:10.1007/s1109500897563.[PMCfreearticle][PubMed][CrossRef]97.ZdericV,ClarkJI,MartinRW,VaezyS.Ultrasoundenhancedtranscornealdrugdelivery.Cornea.200423(8):80411.doi:10.1097/01.ico.0000134189.33549.cc.[PubMed][CrossRef]98.VakaSR,SammetaSM,DayLB,MurthySN.Transcornealiontophoresisfordeliveryofciprofloxacinhydrochloride.CurrEyeRes.200833(8):6617.doi:10.1080/02713680802270945.[PubMed][CrossRef]99.FruchtPeryJ,RaiskupF,MechoulamH,ShapiroM,EljarratBinstockE,DombA.Iontophoretictreatmentofexperimentalpseudomonaskeratitisinrabbiteyesusinggentamicinloadedhydrogels.Cornea.200625(10):11826.doi:10.1097/01.ico.0000243959.14651.18.[PubMed][CrossRef]100.VoigtM,deKozakY,HalhalM,CourtoisY,BeharCohenF.DownregulationofNOSIIgeneexpressionbyiontophoresisofantisenseoligonucleotideinendotoxininduceduveitis.BiochemBiophysResCommun.2002295(2):33641.doi:10.1016/S0006291X(02)006563.[PubMed][CrossRef]101.RaiskupWolfF,EljarratBinstockE,RehakM,DombA,FruchtPeryJ.Transcornealandtransscleraliontophoresisofthedexamethasonephosphateintotherabbiteye.CeskSlovOftalmol.200763(5):3608.[PubMed]102.EljarratBinstockE,OrucovF,FruchtPeryJ,Pe'erJ,DombAJ.Methylprednisolonedeliverytothebackoftheeyeusinghydrogeliontophoresis.JOculPharmacolTher.200824(3):34450.doi:10.1089/jop.2007.0097.[PubMed][CrossRef]103.EljarratBinstockE,DombAJ,OrucovF,DaganA,FruchtPeryJ,Pe'erJ.Invitroandinvivoevaluationofcarboplatindeliverytotheeyeusinghydrogeliontophoresis.CurrEyeRes.200833(3):26975.doi:10.1080/02713680701871140.[PubMed][CrossRef]104.EljarratBinstockE,DombAJ,OrucovF,FruchtPeryJ,Pe'erJ.Methotrexatedeliverytotheeyeusingtransscleralhydrogeliontophoresis.CurrEyeRes.200732(78):63946.doi:10.1080/02713680701528674.[PubMed][CrossRef]105.HolloG,WhitsonJT,FaulknerR,etal.Concentrationsofbetaxololinoculartissuesofpatientswithglaucomaandnormalmonkeysafter1monthoftopicalocularadministration.InvestOphthalmolVisSci.200647(1):23540.doi:10.1167/iovs.050945.[PubMed][CrossRef]106.AcheampongAA,ShackletonM,JohnB,BurkeJ,WheelerL,TangLiuD.Distributionofbrimonidineintoanteriorandposteriortissuesofmonkey,rabbit,andrateyes.DrugMetabDispos.200230(4):4219.doi:10.1124/dmd.30.4.421.[PubMed][CrossRef]107.KoevarySB.Pharmacokineticsoftopicaloculardrugdelivery:potentialusesforthetreatmentofdiseasesoftheposteriorsegmentandbeyond.CurrDrugMetab.20034(3):21322.doi:10.2174/1389200033489488.[PubMed][CrossRef]108.KoeberleMJ,HughesPM,SkellernGG,WilsonCG.Pharmacokineticsanddispositionofmemantineinthearteriallyperfusedbovineeye.PharmRes.200623(12):278198.doi:10.1007/s1109500691062.[PubMed][CrossRef]109.MajumdarS,HingoraniT,SrirangamR,GadepalliRS,RimoldiJM,RepkaMA.TranscornealpermeationofLandDaspartateesterprodrugsofacyclovir:delineationofpassivediffusionversustransporterinvolvement.PharmRes.200926(5):12619.doi:10.1007/s1109500897300.[PMCfreearticle][PubMed][CrossRef]110.AnandBS,KatragaddaS,NashedYE,MitraAK.AminoacidprodrugsofacycloviraspossibleantiviralagentsagainstocularHSV1infections:interactionswiththeneutralandcationicaminoacidtransporteronthecornealepithelium.CurrEyeRes.200429(23):153

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664401/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900774/http://dx.doi.org/10.1080%2F02713680701528674http://www.ncbi.nlm.nih.gov/pubmed/18476804http://www.ncbi.nlm.nih.gov/pubmed/17915587http://dx.doi.org/10.1080%2F02713680701871140http://www.ncbi.nlm.nih.gov/pubmed/18839288http://dx.doi.org/10.1007%2Fs11095-006-9106-2http://dx.doi.org/10.1007%2Fs11095-008-9730-0http://www.ncbi.nlm.nih.gov/pubmed/17103338http://www.ncbi.nlm.nih.gov/pubmed/15502482http://dx.doi.org/10.1007%2Fs11095-008-9756-3http://dx.doi.org/10.1097%2F01.ico.0000134189.33549.cchttp://www.ncbi.nlm.nih.gov/pubmed/12150953http://dx.doi.org/10.1124%2Fdmd.30.4.421http://www.ncbi.nlm.nih.gov/pubmed/11901096http://dx.doi.org/10.1167%2Fiovs.05-0945http://dx.doi.org/10.1089%2Fjop.2007.0097http://dx.doi.org/10.2174%2F1389200033489488http://www.ncbi.nlm.nih.gov/pubmed/18350438http://www.ncbi.nlm.nih.gov/pubmed/18979189http://www.ncbi.nlm.nih.gov/pubmed/16384968http://dx.doi.org/10.1016%2FS0006-291X(02)00656-3http://www.ncbi.nlm.nih.gov/pubmed/18696341http://dx.doi.org/10.1080%2F02713680802270945http://www.ncbi.nlm.nih.gov/pubmed/17852187http://dx.doi.org/10.1097%2F01.ico.0000243959.14651.18http://www.ncbi.nlm.nih.gov/pubmed/12769666http://www.ncbi.nlm.nih.gov/pubmed/17172895

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 21/23

    66.doi:10.1080/02713680490504614.[PubMed][CrossRef]111.GundaS,HariharanS,MitraAK.Cornealabsorptionandanteriorchamberpharmacokineticsofdipeptidemonoesterprodrugsofganciclovir(GCV):invivocomparativeevaluationoftheseprodrugswithValGCVandGCVinrabbits.JOculPharmacolTher.200622(6):46576.doi:10.1089/jop.2006.22.465.[PubMed][CrossRef]112.MajumdarS,NashedYE,PatelK,etal.DipeptidemonoesterganciclovirprodrugsfortreatingHSV1inducedcornealepithelialandstromalkeratitis:invitroandinvivoevaluations.JOculPharmacolTher.200521(6):46374.doi:10.1089/jop.2005.21.463.[PubMed][CrossRef]113.KatragaddaS,TalluriRS,MitraAK.ModulationofPglycoproteinmediatedeffluxbyprodrugderivatization:anapproachinvolvingpeptidetransportermediatedinfluxacrossrabbitcornea.JOculPharmacolTher.200622(2):11020.doi:10.1089/jop.2006.22.110.[PubMed][CrossRef]114.KansaraV,HaoY,MitraAK.Dipeptidemonoesterganciclovirprodrugsfortransscleraldrugdelivery:targetingtheoligopeptidetransporteronrabbitretina.JOculPharmacolTher.200723(4):32134.doi:10.1089/jop.2006.0150.[PubMed][CrossRef]115.JanoriaKG,BodduSH,WangZ,etal.Vitrealpharmacokineticsofbiotinylatedganciclovir:roleofsodiumdependentmultivitamintransporterexpressedonretina.JOculPharmacolTher.200925(1):3949.doi:10.1089/jop.2008.0040.[PMCfreearticle][PubMed][CrossRef]116.DalpiazA,FilosaR,deCaprariisP,etal.Molecularmechanisminvolvedinthetransportofaprodrugdopamineglycosylconjugate.IntJPharm.2007336(1):1339.doi:10.1016/j.ijpharm.2006.11.051.[PubMed][CrossRef]117.LiN,ZhuangC,WangM,SunX,NieS,PanW.Liposomecoatedwithlowmolecularweightchitosananditspotentialuseinoculardrugdelivery.IntJPharm.2009379(1):1318.doi:10.1016/j.ijpharm.2009.06.020.[PubMed][CrossRef]118.HosnyKM.Optimizationofgatifloxacinliposomalhydrogelforenhancedtranscornealpermeation.JLiposomeRes.201020(1):317.doi:10.3109/08982100903030255.[PubMed][CrossRef]119.LiuLP,LiYM,YangL.Preparationofliposomalsparfloxcainlactateanditscornealpenetrationandantibacterialactivityinvitro.ZhongguoYiXueKeXueYuanXueBao.200830(5):58994.[PubMed]120.ShenY,TuJ.Preparationandocularpharmacokineticsofganciclovirliposomes.AAPSJ.20079(3):E3717.doi:10.1208/aapsj0903044.[PMCfreearticle][PubMed][CrossRef]121.AfounaMI,KhattabIS,ReddyIK.Preparationandcharacterizationofdemeclocyclineliposomalformulationsandassessmentoftheirintraocularpressureloweringeffects.CutanOculToxicol.200524(2):11124.doi:10.1081/CUS200059582.[PubMed][CrossRef]122.VallsR,VegaE,GarciaML,EgeaMA,VallsJO.Transcornealpermeationinacornealdeviceofnonsteroidalantiinflammatorydrugsindrugdeliverysystems.OpenMedChemJ.20082:6671.doi:10.2174/1874104500802010066.[PMCfreearticle][PubMed][CrossRef]123.KimES,DurairajC,KadamRS,etal.Humanscleraldiffusionofanticancerdrugsfromsolutionandnanoparticleformulation.PharmRes.200926(5):115561.doi:10.1007/s1109500998350.[PubMed][CrossRef]124.AyalasomayajulaSP,KompellaUB.SubconjunctivallyadministeredcelecoxibPLGAmicroparticlessustainretinaldruglevelsandalleviatediabetesinducedoxidativestressinaratmodel.EurJPharmacol.2005511(23):1918.doi:10.1016/j.ejphar.2005.02.019.[PubMed][CrossRef]

    http://www.ncbi.nlm.nih.gov/pubmed/18170984http://www.ncbi.nlm.nih.gov/pubmed/16722797http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751489/http://www.ncbi.nlm.nih.gov/pubmed/15792788http://www.ncbi.nlm.nih.gov/pubmed/19024392http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709474/http://dx.doi.org/10.1089%2Fjop.2005.21.463http://www.ncbi.nlm.nih.gov/pubmed/17803430http://dx.doi.org/10.1089%2Fjop.2008.0040http://dx.doi.org/10.1089%2Fjop.2006.0150http://www.ncbi.nlm.nih.gov/pubmed/17184941http://www.ncbi.nlm.nih.gov/pubmed/19194787http://www.ncbi.nlm.nih.gov/pubmed/17238815http://dx.doi.org/10.1208%2Faapsj0903044http://dx.doi.org/10.1016%2Fj.ijpharm.2009.06.020http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958449/http://www.ncbi.nlm.nih.gov/pubmed/17040889http://www.ncbi.nlm.nih.gov/pubmed/19559775http://dx.doi.org/10.1016%2Fj.ejphar.2005.02.019http://www.ncbi.nlm.nih.gov/pubmed/15512962http://www.ncbi.nlm.nih.gov/pubmed/19232011http://www.ncbi.nlm.nih.gov/pubmed/16386088http://www.ncbi.nlm.nih.gov/pubmed/19545203http://dx.doi.org/10.1089%2Fjop.2006.22.110http://www.ncbi.nlm.nih.gov/pubmed/19662145http://dx.doi.org/10.1080%2F02713680490504614http://dx.doi.org/10.1016%2Fj.ijpharm.2006.11.051http://dx.doi.org/10.3109%2F08982100903030255http://dx.doi.org/10.2174%2F1874104500802010066http://dx.doi.org/10.1081%2FCUS-200059582http://dx.doi.org/10.1089%2Fjop.2006.22.465http://dx.doi.org/10.1007%2Fs11095-009-9835-0

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 22/23

    125.KompellaUB,BandiN,AyalasomayajulaSP.Subconjunctivalnanoandmicroparticlessustainretinaldeliveryofbudesonide,acorticosteroidcapableofinhibitingVEGFexpression.InvestOphthalmolVisSci.200344(3):1192201.doi:10.1167/iovs.020791.[PubMed][CrossRef]126.GilbertJA,SimpsonAE,RudnickDE,GeroskiDH,AabergTM,Jr,EdelhauserHF.Transscleralpermeabilityandintraocularconcentrationsofcisplatinfromacollagenmatrix.JControlRelease.200389(3):40917.doi:10.1016/S01683659(03)001512.[PubMed][CrossRef]127.EljarratBinstockE,OrucovF,AldoubyY,FruchtPeryJ,DombAJ.Chargednanoparticlesdeliverytotheeyeusinghydrogeliontophoresis.JControlRelease.2008126(2):15661.doi:10.1016/j.jconrel.2007.11.016.[PubMed][CrossRef]128.FruchtPerryJ,AssilKK,ZieglerE,etal.Fibrinenmeshedtobramycinliposomes:singleapplicationtopicaltherapyofPseudomonaskeratitis.Cornea.199211(5):3937.doi:10.1097/0000322619920900000006.[PubMed][CrossRef]129.SimpsonAE,GilbertJA,RudnickDE,GeroskiDH,AabergTM,Jr,EdelhauserHF.Transscleraldiffusionofcarboplatin:aninvitroandinvivostudy.ArchOphthalmol.2002120(8):106974.[PubMed]130.VanQuillKR,DioguardiPK,TongCT,etal.Subconjunctivalcarboplatininfibrinsealantinthetreatmentoftransgenicmurineretinoblastoma.Ophthalmology.2005112(6):11518.doi:10.1016/j.ophtha.2004.11.060.[PubMed][CrossRef]131.CruysbergLP,NuijtsRM,GilbertJA,GeroskiDH,HendrikseF,EdelhauserHF.Invitrosustainedhumantransscleraldrugdeliveryoffluoresceinlabeleddexamethasoneandmethotrexatewithfibrinsealant.CurrEyeRes.200530(8):65360.doi:10.1080/02713680590968600.[PubMed][CrossRef]132.TsuiJY,DalgardC,VanQuillKR,etal.Subconjunctivaltopotecaninfibrinsealantinthetreatmentoftransgenicmurineretinoblastoma.InvestOphthalmolVisSci.200849(2):4906.doi:10.1167/iovs.070653.[PubMed][CrossRef]133.MisraGP,SinghRS,AlemanTS,JacobsonSG,GardnerTW,LoweTL.Subconjunctivallyimplantablehydrogelswithdegradableandthermoresponsivepropertiesforsustainedreleaseofinsulintotheretina.Biomaterials.200930(33):65417.doi:10.1016/j.biomaterials.2009.08.025.[PMCfreearticle][PubMed][CrossRef]134.HuangX,LoweTL.Biodegradablethermoresponsivehydrogelsforaqueousencapsulationandcontrolledreleaseofhydrophilicmodeldrugs.Biomacromolecules.20056(4):21319.doi:10.1021/bm050116t.[PubMed][CrossRef]135.KangDerwentJJ,MielerWF.Thermoresponsivehydrogelsasanewoculardrugdeliveryplatformtotheposteriorsegmentoftheeye.TransAmOphthalmolSoc.2008106:20613.[PMCfreearticle][PubMed]136.FurrerE,BerdugoM,StellaC,etal.PharmacokineticsandposteriorsegmentbiodistributionofESBA105,anantiTNFalphasinglechainantibody,upontopicaladministrationtotherabbiteye.InvestOphthalmolVisSci.200950(2):7718.doi:10.1167/iovs.082370.[PubMed][CrossRef]137.SigurdssonHH,KonraethsdottirF,LoftssonT,StefanssonE.Topicalandsystemicabsorptionindeliveryofdexamethasonetotheanteriorandposteriorsegmentsoftheeye.ActaOphthalmolScand.200785(6):598602.doi:10.1111/j.16000420.2007.00885.x.[PubMed][CrossRef]138.LoftssonT,HreinsdottirD,StefanssonE.Cyclodextrinmicroparticlesfordrugdeliverytotheposteriorsegmentoftheeye:aqueousdexamethasoneeyedrops.JPharmPharmacol.200759(5):62935.doi:10.1211/jpp.59.5.0002.[PubMed][CrossRef]

    http://dx.doi.org/10.1211%2Fjpp.59.5.0002http://dx.doi.org/10.1021%2Fbm050116thttp://dx.doi.org/10.1016%2FS0168-3659(03)00151-2http://dx.doi.org/10.1097%2F00003226-199209000-00006http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753764/http://dx.doi.org/10.1167%2Fiovs.02-0791http://www.ncbi.nlm.nih.gov/pubmed/1424666http://dx.doi.org/10.1016%2Fj.jconrel.2007.11.016http://www.ncbi.nlm.nih.gov/pubmed/18234990http://www.ncbi.nlm.nih.gov/pubmed/19277236http://dx.doi.org/10.1080%2F02713680590968600http://www.ncbi.nlm.nih.gov/pubmed/15885791http://www.ncbi.nlm.nih.gov/pubmed/12149061http://dx.doi.org/10.1111%2Fj.1600-0420.2007.00885.xhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646442/http://www.ncbi.nlm.nih.gov/pubmed/12601049http://dx.doi.org/10.1167%2Fiovs.07-0653http://www.ncbi.nlm.nih.gov/pubmed/16004455http://www.ncbi.nlm.nih.gov/pubmed/17645424http://dx.doi.org/10.1167%2Fiovs.08-2370http://www.ncbi.nlm.nih.gov/pubmed/12737843http://dx.doi.org/10.1016%2Fj.ophtha.2004.11.060http://www.ncbi.nlm.nih.gov/pubmed/18757508http://www.ncbi.nlm.nih.gov/pubmed/16109645http://www.ncbi.nlm.nih.gov/pubmed/18201790http://dx.doi.org/10.1016%2Fj.biomaterials.2009.08.025http://www.ncbi.nlm.nih.gov/pubmed/17524227http://www.ncbi.nlm.nih.gov/pubmed/19709741

  • 2/19/2015 OcularDrugDelivery

    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895432/ 23/23

    139.InoueJ,OkaM,AoyamaY,etal.Effectsofdorzolamidehydrochlorideonoculartissues.JOculPharmacolTher.200420(1):113.doi:10.1089/108076804772745419.[PubMed][CrossRef]

    ArticlesfromTheAAPSJournalareprovidedherecourtesyofAmericanAssociationofPharmaceuticalScientists

    Youarehere:NCBI>Literature>PubMedCentral(PMC)

    http://www.ncbi.nlm.nih.gov/pubmed/15006154http://www.ncbi.nlm.nih.gov/pmc/http://dx.doi.org/10.1089%2F108076804772745419http://www.ncbi.nlm.nih.gov/guide/literature/http://www.ncbi.nlm.nih.gov/guide/