12
1 反応理論化学(その3) 分子間相互作用とフロンティア軌道 2つの分子が近づくと分子軌道の間でいろいろな組合せの相互作用が起きる 系全体としてエネルギーが安定化するかどうか 反応性 分子軌道を電子占有数で分類 1つの軌道は最大で反対スピンの電子2個までが占有可能 被占軌道:2電子が占有 半占軌道:1電子が占有(不対電子が占有しているラジカル軌道) 空軌道 :0電子が占有(電子が占有していない軌道) 電子配置 閉殻電子配置:半占軌道(不対電子)がない 開殻電子配置:半占軌道(不対電子)がある 3.1 電子配置と軌道相互作用による安定化 (a)被占軌道と被占軌道の相互作用 (b)被占軌道と半占軌道の相互作用 2電子× 1 ε 2電子× 2 ε 2電子× 1 ε 1電子× 2 ε 不安定化に寄与 安定化に寄与 (c)被占軌道と半軌道の相互作用 (d)被占軌道と空占軌道の相互作用 2電子× 1 ε 1電子× ε 1電子× 2 ε 2電子× 1 ε 0電子× 2 ε 安定化に寄与 安定化に寄与 分子 A 相互作用系 AB 分子 B 分子 A 相互作用系 AB 分子 B 分子 A 相互作用系 AB 分子 B 分子 A 相互作用系 AB 分子 B 分子 A 分子 B

反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

1

反応理論化学(その3) 3 分子間相互作用とフロンティア軌道 2つの分子が近づくと分子軌道の間でいろいろな組合せの相互作用が起きる 系全体としてエネルギーが安定化するかどうか ⇔ 反応性 分子軌道を電子占有数で分類 1つの軌道は最大で反対スピンの電子2個までが占有可能 被占軌道:2電子が占有 半占軌道:1電子が占有(不対電子が占有しているラジカル軌道) 空軌道 :0電子が占有(電子が占有していない軌道) 電子配置 閉殻電子配置:半占軌道(不対電子)がない 開殻電子配置:半占軌道(不対電子)がある 3.1 電子配置と軌道相互作用による安定化 (a)被占軌道と被占軌道の相互作用 (b)被占軌道と半占軌道の相互作用

2電子× 1ε∆ < 2電子× 2ε∆ 2電子× 1ε∆ > 1電子× 2ε∆ 不安定化に寄与 安定化に寄与

(c)被占軌道と半軌道の相互作用 (d)被占軌道と空占軌道の相互作用

2電子× 1ε∆ + 1電子× ε∆ > 1電子× 2ε∆ 2電子× 1ε∆ > 0電子× 2ε∆ 安定化に寄与 安定化に寄与

分子 A 相互作用系 AB 分子 B

分子 A 相互作用系 AB 分子 B

分子 A 相互作用系 AB 分子 B

分子 A 相互作用系 AB 分子 B

分子 A 分子 B

Page 2: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

2

(e)半占軌道と半占軌道の相互作用 (f)半占軌道と空軌道の相互作用

2電子× 1ε∆ + 1電子× ε∆ > 0電子× 2ε∆ 1電子× 1ε∆ > 0電子× 2ε∆ 安定化に寄与 安定化に寄与

(g)空軌道と空軌道の相互作用:電子が占有していないので安定化および不安定化とは無関係 安定化の程度 (e)化学結合(共有結合)に相当 > (d)電荷移動(配位結合)に相当 > (c) > (f) ~ (b) 閉殻分子同士の分子間相互作用では被占軌道と空軌道の相互作用が安定化に寄与する 開殻分子が関与する分子間相互作用では半占軌道が関係する相互作用が安定化に寄与する ※イオン結合 イオン結合は(e)で ε∆ が大きく 1 2 0ε ε∆ ≈ ∆ ≈ の場合に相当する 原子軌道間のエネルギー差が大きいため原子軌道間の重なりが非常に小さい 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい 軌道エネルギーの高い原子から軌道エネルギーの低い原子へ電子移動が起こり静電引力で結合する 3.2 フロンティア軌道 閉殻分子の分子軌道

最低空軌道(LUMO) :最も電子を受け取りやすい軌道 (軌道エネルギーが低いほど電子を受け取りやすい) 最高被占軌道(HOMO):最も電子を取り出しやすい軌道 (軌道エネルギーが高いほど電子を取り出しやすい)

分子 A 相互作用系 AB 分子 B

分子 A 相互作用系 AB 分子 B

空軌道

被占軌道

LUMO (Lowest Unoccupied Molecular Orbital)

HOMO (Highest Occupied Molecular Orbital)

フロンティア軌道

Page 3: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

3

開殻分子の分子軌道

化学反応には電子の授受が伴い、フロンティア軌道は反応性が高い

↓ フロンティア軌道の広がりが大きい原子位置で反応しやすい

閉殻分子間の相互作用:被占軌道と空軌道の相互作用により安定化 エネルギー差が小さい軌道間の相互作用が強い → HOMO-LUMO 相互作用の寄与が大きい

A と B の HOMO-LUMO 相互作用でエネルギー差の小さい方が最も重要 HOMO のエネルギーが高い分子:電子供与の性質が強い LUMO のエネルギーが低い分子:電子受容の性質が強い

空軌道

被占軌道

LUMO (Lowest Unoccupied Molecular Orbital)

HOMO (Highest Occupied Molecular Orbital)

フロンティア軌道 SOMO (Singly Occupied Molecular Orbital) 半占軌道

分子 A 分子 B

HOMO HOMO

LUMO LUMO

エネルギー差:大

エネルギー差:小

AのHOMO-BのLUMO AのLUMO-BのHOMO

Page 4: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

4

閉殻分子と開殻分子の相互作用:被占軌道と半占軌道および空軌道と半占軌道の相互作用により安定化 通常、SOMO のエネルギー準位は HOMO, LUMO のエネルギー準位の近くにある エネルギー差が小さい軌道間の相互作用が強い → HOMO-SOMO および LUMO-SOMO 相互作用の寄与が大きい

A と B の HOMO-SOMO および LUMO-SOMO 相互作用でエネルギー差の小さい方が最も重要 閉殻分子と励起分子の相互作用:被占軌道と半占軌道および空軌道と半占軌道の相互作用により安定化 分子は光エネルギーを吸収して基底状態から励起状態へ励起される エネルギー差が小さい軌道間の相互作用が強い → HOMO-SOMO1 および LUMO-SOMO2 相互作用の寄与が大きい

A と B の HOMO-SOMO1 および LUMO-SOMO2 相互作用でエネルギー差の小さい方が最も重要 4 反応性指数 分子間の相互作用による反応系のエネルギー変化 → 反応性を予測(フロンティア電子論) ①求電子反応 ②求核反応 ③ラジカル反応 結論:試薬はフロンティア電子密度が最も大きい原子位置で反応する

分子 A 分子 B

SOMO

HOMO

LUMO

エネルギー差:大

エネルギー差:小

AのHOMO-BのSOMO A の LUMO-B の SOMO

分子 A 分子 B (基底状態)

SOMO2

HOMO

LUMO AのHOMO-Bの SOMO1 A の LUMO-B の SOMO2

分子 B (1重項励起状態)

SOMO1

Page 5: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

5

①求電子反応 ②求核反応 ③ラジカル反応 (+電荷の試薬と反応) (-電荷の試薬と反応) (ラジカル試薬と反応)

攻撃される分子の HOMO LUMO HOMO, LUMO が重要 4.1 分子軌道間の軌道相互作用 分子軌道間の軌道相互作用も(2-1)~(2-62)と同様に考えることができる 2つの分子軌道が相互作用していないとき Aψ (分子軌道), Aε (エネルギー)

Bψ (分子軌道) , Bε (エネルギー) 2つの分子軌道の軌道相互作用 AB A A B Bφ ψ ψ= +C C (4-1)

A A B B 1ψ ψ ψ ψ= = ( Aψ および Bψ の規格化) (4-2)

A B B A ABψ ψ ψ ψ= = S ( Aψ と Bψ の重なり積分) (4-3)

A A AA Aˆψ ψ ε= =H H (4-4)

B B BB Bˆψ ψ ε= =H H (4-5)

A B B A ABˆ ˆ 0ψ ψ ψ ψ= = <H H H (4-6)

(i)2つの分子軌道が縮重している場合: A B 0ε ε ε= =

AB 0 ABAB 0 AB

1 0 0 0 1AB AB1 1

εεε ε ε ε ε+−

= + = − = −∆+ +

H SH SS S

(4-7)

AB 0 ABAB 0 AB

2 0 0 0 2AB AB1 1

εεε ε ε ε ε+−

= − = + = + ∆− −

H SH SS S

(4-8)

AB 0 AB

1AB

01

εε

+∆ = >

+H S

S (4-9)

AB 0 AB

2AB

01

εε

+∆ = >

−H S

S (4-10)

1ε は 0ε から 1ε∆ だけ安定化し、 2ε は 0ε から 2ε∆ だけ不安定化する

LUMO

HOMO

空軌道

被占軌道

LUMO

HOMO

LUMO

HOMO

Page 6: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

6

縮重している2つの分子軌道の軌道相互作用

(ii)2つの分子軌道が縮重していない場合: A Bε ε<

( )( )( )

( )( )( )

22AB A ABAB A AB

1 A A A 12 2B A AB B A AB1 1

εεε ε ε ε ε

ε ε ε ε

+−= − = − = −∆

− − − −

H SH SS S

(4-11)

( )( )( )

( )( )( )

22AB B ABAB B AB

2 B B B 22 2B A AB B A AB1 1

εεε ε ε ε ε

ε ε ε ε

+−= + = + = + ∆

− − − −

H SH SS S

(4-12)

( )( )( )

2AB A AB

1 2B A AB

01ε

εε ε

+∆ = >

− −

H SS

(4-13)

( )( )( )

2AB B AB

2 2B A AB

01ε

εε ε

+∆ = >

− −

H SS

(4-14)

1ε は Aε から 1ε∆ だけ安定化し、 2ε は Bε から 2ε∆ だけ不安定化する

縮重していない2つの分子軌道の軌道相互作用

4.2 フロンティア電子論 相互作用によるエネルギー変化(重なり積分を無視する → AB 0=S ) (i)2つの分子軌道が縮重している場合: A B 0ε ε ε= = (4-7)より

AB 0 AB

1 0 0 ABAB1ε

ε ε ε+

= − ≈ −+

H SH

S(安定化) (4-15)

Page 7: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

7

(4-8)より

AB 0 AB

2 0 0 ABAB1ε

ε ε ε+

= + ≈ +−

H SH

S(不安定化) (4-16)

(ii)2つの分子軌道が縮重していない場合: A Bε ε< (4-11)より

( )( )( )

2 2AB A AB AB

1 A A2B AB A AB1

εε ε ε

ε εε ε

+= − ≈ −

−− −

H S HS

(安定化) (4-17)

(4-12)より

( )( )( )

2 2AB B AB AB

2 B B2B AB A AB1

εε ε ε

ε εε ε

+= + ≈ +

−− −

H S HS

(不安定化) (4-18)

分子 A と試薬 X の反応を考える

分子 A と試薬 X の分子軌道は相互作用により変化する 試薬 X の分子軌道は反応に最も関与する軌道のみを考える

分子 A と試薬 X が相互作用する前 分子 A と試薬 X が相互作用した後 分子 A: ( )0ψ i (分子軌道), ( )0ε i (エネルギー) → ε i

試薬 X: ( )0xψ (分子軌道), ( )0

xε (エネルギー) → xε 相互作用によるエネルギー変化 分子 A の被占軌道は(4-17)より

( )

( ) ( )

20 x

0 0x

ε εε ε

≈ −−i

i ii

H(安定化) (4-19)

NO2+

+ NO2+

芳香族炭化水素の置換反応 試薬 X の原子 x が分子 A の原子 a を攻撃する

分子 A 試薬 X

相互作用 a x

相互作用系 分子 A 試薬 X

被占軌道

空軌道

反応に最も関与する分子軌道

Page 8: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

8

分子 A の空軌道は(4-18)より

( )

( ) ( )

20 x

0 0x

ε εε ε

≈ +−i

i ii

H(不安定化) (4-20)

試薬 X の軌道は(4-17)と(4-18)より

2 2occ vacx x(0)

x x (0) (0) (0) (0)x x

ε εε ε ε ε

≈ + −− −∑ ∑i i

i ii i

H H(安定化と不安定化)

(第2項:分子 A の被占軌道との相互作用, 第3項:分子 A の空軌道との相互作用)

2 2 2occ vac all

x x x(0) (0)x x(0) (0) (0) (0) (0) (0)

x x x

ε εε ε ε ε ε ε

= − − = −− − −∑ ∑ ∑i i i

i i ii i i

H H H (4-21)

(occ:被占軌道, vac:空軌道, all:被占軌道+空軌道) 相互作用の評価に Hückel 近似を用いる

( ) ( )0 0x x

ˆψ ψ=i iH H (4-22)

分子 A の分子軌道と軌道エネルギー ( )0 A

µ µµ

ψ χ=∑i iC (LCAO 近似:原子軌道の線形結合) (4-23)

(0)ε α λ β= +i i (λi は i 番目の分子軌道に対する固有値) (4-24) 試薬 X の分子軌道 ( )0 X

x xψ χ≈ (特定の原子 x に局在化) (4-25)

A X A Xx x x

ˆ ˆµ µ µ µ

µ µ

χ χ χ χ

≈ = ∑ ∑i i iH C H C H (4-26)

直接相互作用している分子 A の原子 a と試薬 X の原子 x の間にのみ共鳴積分をもつ

axA X

x x a

( a)ˆ 0 ( a)µ µ µ

β µχ χ β δ

µ=

= = ≠H (4-27)

x x a a ax a axµ µ µ

µ

β δ β β≈ = =∑i i i iH C C C l ( 0< ) (4-28)

分子 A と試薬 X の軌道相互作用による相互作用系の安定化を考える ①求電子反応 → 試薬 X の軌道は空軌道 ②求核反応 → 試薬 X の軌道は被占軌道 ③ラジカル反応 → 試薬 X の軌道は半占軌道 ①求電子反応(試薬 X の軌道は空軌道) 相互作用による安定化エネルギーは(4-19)より

( ) ( )

2occ occx(0)

0 0x

2 ( ) 2ε εε ε

∆ = − = −−

∑ ∑ ii i

i i i

HE (4-29)

(4-29)において (0)xε に最も近いエネルギーをもつ HOMO が安定化エネルギーに大きく寄与する

分子 A 試薬 X

a x

βax

βµx = 0

Page 9: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

9

(i) (0)xε α= の場合

(4-29)の分母は (0) (0)

x ( )ε ε α α λ β λ β− = − + = −i i i (4-30) (4-28)と(4-30)を(4-29)に代入

( )

2 2 2 2occ occ occ occa ax a ax a ax 2a

ax2 2 2 2β β β

βλ β λ β λ β λ

∆ = − = − = − = −− −∑ ∑ ∑ ∑i i i i

i i i ii i i i

C l C l C l CE l (4-31)

ここで、Superdelocalizability を定義すると

2occ

(E) aa 2

λ= ∑ i

i i

CS (4-32)

(E) 2a ax β∆ = −E S l (4-33)

すなわち、 2axl が一定の場合(多くの場合に成立)は、∆E は (E)

aS に比例する

したがって、 (E)aS が大きい原子位置ほど相互作用による安定化が大きく反応性に富んでいる

また、(4-31)において HOMO の寄与が最も大きいので i = HOMO の項のみ考慮すると

2

2aHOMOax

HOMO

2 βλ

∆ ≈ −CE l (4-34)

ここで、フロンティア電子密度を定義すると (E) 2

a aHOMO2=f C (4-35)

(E)

2aax

HOMO

βλ

∆ ≈ −fE l (4-36)

同じ分子内で反応性を比較する場合には HOMOλ は共通であるので、フロンティア電子密度 (E)af の

大きい原子位置ほど反応が起こりやすい (ii) (0) (0)

x HOMOε ε= の場合(分子 A の HOMO と試薬 X の軌道が縮重) 安定化に最も寄与するのは分子 A の HOMO と試薬 X の相互作用で(4-15)と(4-28)より

(E)

HOMOx aHOMO ax a ax2 2 2β β∆ ≈ − = − = −E H C l f l (4-37)

すなわち、フロンティア電子密度 (E)af の大きい原子位置ほど反応が起こりやすい

②求核反応(試薬 X の軌道は被占軌道) 相互作用による安定化エネルギーは(4-19)と(4-21)より

( ) ( )

2 2occ occ allx x(0) (0)

x x (0) (0)0 0xx

2 2 2 2occ occ vac vacx x x x

(0) (0) (0) (0) (0) (0) (0) (0)x x x x

2 ( ) 2( ) 2 2

2 2 2 2

ε ε ε εε εε ε

ε ε ε ε ε ε ε ε

∆ = − + − = − −−−

= − − = −− − − −

∑ ∑ ∑

∑ ∑ ∑ ∑

i ii i

i i i ii

i i i i

i i i ii i i i

H HE

H H H H (4-38)

(4-38)において (0)xε に最も近いエネルギーをもつ LUMO が安定化エネルギーに大きく寄与する

(i) (0)

xε α= の場合 (4-38)の分母は (0) (0)

x ( )ε ε α λ β α λ β− = + − =i i i (4-39) (4-28)と(4-39)を(4-38)に代入

( )( ) ( ) ( )

2 2 2 2vac vac vac vaca ax a ax a ax 2a

ax2 2 2 2β β β

βλ β λ β λ β λ

∆ = − = − = − = −− − − −∑ ∑ ∑ ∑i i i i

i i i ii i i i

C l C l C l CE l (4-40)

Page 10: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

10

ここで、Superdelocalizability を定義すると

( )

2vac(N) aa 2

λ=

−∑ i

i i

CS (4-41)

(N) 2a ax β∆ = −E S l (4-42)

すなわち、 2axl が一定の場合(多くの場合に成立)は、∆E は (N)

aS に比例する

したがって、 (N)aS が大きい原子位置ほど相互作用による安定化が大きく反応性に富んでいる

また、(4-40)において LUMO の寄与が最も大きいので i = LUMO の項のみ考慮すると

( )

22aLUMOax

LUMO

2 βλ

∆ ≈ −−CE l (4-43)

ここで、フロンティア電子密度を定義すると (N) 2

a aLUMO2=f C (4-44)

( )

(N)2aax

LUMO

βλ

∆ ≈ −−

fE l (4-45)

同じ分子内で反応性を比較する場合には LUMOλ− は共通であるので、フロンティア電子密度 (N)af の

大きい原子位置ほど反応が起こりやすい (ii) (0) (0)

x LUMOε ε= の場合(分子 A の LUMO と試薬 X の軌道が縮重) 安定化に最も寄与するのは分子 A の LUMO と試薬 X の相互作用で(4-15)と(4-28)より

(N)

LUMOx aLUMO ax a ax2 2 2β β∆ ≈ − = − = −E H C l f l (4-46)

すなわち、フロンティア電子密度 (N)af の大きい原子位置ほど反応が起こりやすい

③ラジカル反応(試薬 X の軌道は半占軌道) 相互作用による安定化エネルギーは(4-19)と(4-21)より

( ) ( )

( ) ( )

( ) ( )

2 2occ occ allx x(0) (0)

x x (0) (0)0 0xx

2 2 2occ occ vacx x x

(0) (0) (0) (0)0 0x xx

2 2 2occ occ vax x x

(0) (0) (0) (0)0 0x xx

2 ( ) ( ) 2

2

2

ε ε ε εε εε ε

ε ε ε εε ε

ε ε ε εε ε

∆ = − + − = − −−−

= − − −− −−

= − + −− −−

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

i ii i

i i i ii

i i i

i i ii ii

i i i

i i ii ii

H HE

H H H

H H H

( ) ( )

c

2 2occ vacx x

(0) (0)0 0xx

ε εε ε

= − −−−

∑ ∑i i

i i ii

H H

(4-47)

(4-47)において (0)xε にもっとも近いエネルギーをもつ HOMO および LUMO が安定化エネルギーに

大きく寄与する

(0)xε α= とすると

(4-28)(4-30)(4-39)より

( ) ( )( )

( ) ( )

( )

2 2 2 2occ vac occ vaca ax a ax a ax a ax

2 2 2 2occ vac occ vaca ax a ax 2 2a a

ax ax

2 2occ vac2a aax

β β β βλ β λ β λ β λ β

β ββ β

λ β λ β λ λ

βλ λ

∆ = − − = − −− − − −

= − − = − −− −

= − + −

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

i i i i

i i i ii i i i

i i i i

i i i ii i i i

i i

i ii i

C l C l C l C lE

C l C l C Cl l

C C l

(4-48)

Page 11: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

11

ここで、Superdelocalizability を定義すると

( ) { }

2 2occ vac(R ) (E) (N)a aa a a

12λ λ

= + = +−∑ ∑i i

i ii i

C CS S S (4-49)

{ }(R ) 2 (E) (N) 2a ax a a ax

12

β β∆ = − = − +E S l S S l (4-50)

すなわち、 2axl が一定の場合(多くの場合に成立)は、∆E は (R )

aS に比例する

したがって、 (R )aS が大きい原子位置ほど相互作用による安定化が大きく反応性に富んでいる

ラジカル反応は (0)xε のエネルギー準位によって(4-50)右辺の第1項(求電子)あるいは第2項(求核)の

寄与が大きくなる また、(4-48)において HOMO および LUMO の寄与が最も大きいので i = HOMO および i = LUMO の 項のみ考慮すると

( )

2 22aHOMO aLUMOax

HOMO LUMO

βλ λ

∆ ≈ − + −

C CE l (4-51)

ここで、フロンティア電子密度を定義すると (R ) 2 2

a aHOMO aLUMO= +f C C (4-52)

同じ分子内で反応性を比較する場合には HOMOλ および LUMOλ− は共通であるので、フロンティア電子

密度 (R )af の大きい原子位置ほど反応が起こりやすい

結論 分子内で反応性を比較する場合は、フロンティア電子密度の最も大きい原子位置で反応が起こると 考えられる 求電子反応: (E) 2

a aHOMO2=f C

求核反応: (N) 2a aLUMO2=f C

ラジカル反応: (R ) 2 2a aHOMO aLUMO= +f C C

aHOMOC は分子 A の HOMO における a 番目の原子に対する LCAO 係数

aLUMOC は分子 A の LUMO における a 番目の原子に対する LCAO 係数

分子間で反応性を比較する場合は、Superdelocalizability の最も大きい原子位置で反応が起こると 考えられる

求電子反応: 2occ

(E) aa 2

λ= ∑ i

i i

CS

求核反応: ( )

2vac(N) aa 2

λ=

−∑ i

i i

CS

ラジカル反応:( )

2 2occ vac(R ) a aa λ λ

= +−∑ ∑i i

i ii i

C CS

試薬の攻撃を受ける分子の各原子について、フロンティア電子密度や Superdelocalizability の値を求め 大小関係を比較することにより、分子内で反応性が高い原子位置を定性的に予測できる ※近年、より精密な種々の反応性指数が提案されている

Page 12: 反応理論化学(その3) - cc.chem.mie-u.ac.jp応理論化学3.pdf · 1つの軌道は最大で反対スピンの電子2個までが占有可能 ... 原子軌道間でほとんど軌道相互作用せず原子軌道が混合した分子軌道が形成されにくい

12

ブタジエンの反応性指数 4 1.618ε α β= − 3 0.618ε α β= − (LUMO) 2 0.618ε α β= + (HOMO) 1 1.618ε α β= +

1χ 2χ 3χ 4χ ε α λ β= +i i

図.Hückel 計算によるブタジエンのπ 分子軌道の軌道エネルギー

表.Hückel 計算によるブタジエンのπ 分子軌道の LCAO 係数(

4

1µ µ

µ

ψ χ=

=∑i iC )

分子軌道 電子占有 1χ 2χ 3χ 4χ

4ψ 0.3717 –0.6015 0.6015 –0.3717

3ψ (LUMO) 0.6015 –0.3717 –0.3717 0.6015

2ψ (HOMO) ↑↓ 0.6015 0.3717 –0.3717 –0.6015

1ψ ↑↓ 0.3717 0.6015 0.6015 0.3717 フロンティア電子密度

( ) ( ) ( ) ( ) ( )2 2 2E N1 1HOMO 1 1LUMO2 2 0.6015 0.7236 2 = = = = = f C f C

( ) ( ) ( ) ( ) ( )2 2 2E N2 2HOMO 2 2LUMO2 2 0.3717 0.2763 2 = = = = = f C f C

( ) ( ) ( ) ( ) ( ) ( )E N R E N R1 1 1 2 2 2= = > = =f f f f f f 両端の炭素原子は中央の炭素原子より反応性が高い

Superdelocalizability

( ) ( ) ( ) ( )

occ vacE N2 2 2 2

1 1 1 12 2 0.3717 1.618 0.6015 0.618 1.3413 2λ λ = = + = = = − ∑ ∑i i i i

i iS C S C

( ) ( ) ( ) ( )

occ vacE N2 2 2 2

2 2 2 22 2 0.6015 1.618 0.3717 0.618 0.8943 2λ λ = = + = = = − ∑ ∑i i i i

i iS C S C

( ) ( ) ( ) ( ) ( ) ( )E N R E N R1 1 1 2 2 2= = > = =S S S S S S 両端の炭素原子は中央の炭素原子より反応性が高い