Pinnau (1)

Embed Size (px)

Citation preview

  • 8/3/2019 Pinnau (1)

    1/30

    Advanced Membrane TechnologiesStanford University, May 07, 2008Advanced Membrane TechnologiesStanford University, May 07, 2008

    Ingo Pinnau, Ph.D.

    Mem branes for Wat er Treat m ent :

    Proper t ies and Charac t er izat ion

  • 8/3/2019 Pinnau (1)

    2/30

    Membrane SeparationProcesses and CharacteristicsMembrane SeparationProcesses and Characteristics

    Molecular(Nonporous)< 10Solution/DiffusionReverseOsmosis (RO)

    Mesopores20 - 500Size ExclusionUltrafiltration(UF)

    Macropores500 - 50,000Size ExclusionMicrofiltration(MF)

    Macropores> 50,000Size ExclusionParticleFiltration

    TransportRegimePore Size()SeparationMechanismProcess

  • 8/3/2019 Pinnau (1)

    3/30

    Membrane SeparationProcesses and CharacteristicsMembrane SeparationProcesses and Characteristics

    0.001 0.01 0.1 1.0 10 100 1,000

    Beach sand

    Granular

    activatedcarbon

    Human hair

    Yeast cells

    Bacteria

    Paint pigment

    Oil emulsion

    Albuminprotein

    Endotoxin/Pyrogen

    Colloidalsilica

    Asbestos

    Pesticides/Herbicides

    Aqueoussalts

    Viruses

    Metal

    ions

    0.0001(m)

    Sugars

    Reverse Osmosis

    Nanofiltration

    Ultrafiltration

    Microfiltration

    Particle Filtration

  • 8/3/2019 Pinnau (1)

    4/30

    Membrane Characteristics:Porous MembranesMembrane Characteristics:Porous Membranes

    MonovalentMonovalentionsions MultivalentMultivalentionsions SuspendedSuspendedsolidssolidsWaterWater VirusesViruses BacteriaBacteria

    MicrofiltrationMicrofiltration

    MonovalentMonovalentionsions

    MultivalentMultivalentionsions

    SuspendedSuspendedsolidssolidsWaterWater VirusesViruses BacteriaBacteria

    UltrafiltrationUltrafiltration

  • 8/3/2019 Pinnau (1)

    5/30

    Membrane Characteristics:Non-Porous MembranesMembrane Characteristics:Non-Porous Membranes

    MonovalentMonovalent

    ionsions MultivalentMultivalentionsions SuspendedSuspendedsolidssolidsWaterWater VirusesViruses BacteriaBacteria

    NanofiltrationNanofiltration

    MonovalentMonovalentionsions

    MultivalentMultivalentionsions

    SuspendedSuspendedsolidssolidsWaterWater VirusesViruses BacteriaBacteria

    ReverseReverseOsmosisOsmosis

  • 8/3/2019 Pinnau (1)

    6/30

    Ideal Membranes for UF, NF andRO ApplicationsIdeal Membranes for UF, NF andRO Applications

    High water flux (low capital cost) High solute rejection (high water purity) Long-term stability of water flux and rejection

    (Membrane fouling)

    Mechanical, chemical and thermal stability Minimum pre-treatment (backflushing and chemicaltreatment)

    Can be processed into large-scale membranes and

    modules Inexpensive!

  • 8/3/2019 Pinnau (1)

    7/30

    Problems of Current MembranesUsed in UF and RO ApplicationsProblems of Current MembranesUsed in UF and RO Applications

    Poor long-term stability of water flux(Membrane Fouling)

    Backflushing and chemical treatment

    High membrane replacement cost

    Poor resistance to chlorine

    Membrane system size

  • 8/3/2019 Pinnau (1)

    8/30

    Major Foulant Types in Natural andIndustrial WastewaterMajor Foulant Types in Natural andIndustrial Wastewater

    ScalingScaling

    ColloidalColloidalFoulingFouling

    BiofoulingBiofouling

    OrganicOrganicFoulingFouling

  • 8/3/2019 Pinnau (1)

    9/30

    Surface Structure of a TypicalUF MembraneSurface Structure of a TypicalSurface Structure of a TypicalUF MembraneUF Membrane

  • 8/3/2019 Pinnau (1)

    10/30

    Membrane SeparationProcesses and CharacteristicsMembrane SeparationProcesses and Characteristics

    Porous SurfacePorous Surface

    UnfouledUnfouled MembraneMembrane Fouled Membrane

    Surface Fouling

    Internal Fouling

  • 8/3/2019 Pinnau (1)

    11/30

    Schematic Structures of Porousand Non-Porous UF MembranesSchematic Structures of PorousSchematic Structures of Porousand Nonand Non--Porous UF MembranesPorous UF Membranes

    Microporous Ultrafiltration Membrane

    Selective skin layerSelective skin layer

    Porous substratePorous substrate

    Non-Porous Ultrafiltration Membrane

    NonNon--porous hydrophilicporous hydrophilicSurface coating (0.1Surface coating (0.1--0.50.5 m)m)

    Porous substratePorous substrate

  • 8/3/2019 Pinnau (1)

    12/30

    Cross-Section of a Non-PorousUF MembraneCross-Section of a Non-PorousUF Membrane

    Nonporous PolymerNonporous PolymerCoating LayerCoating Layer(~ 0.3(~ 0.3 m)m)

    MicroporousMicroporousSupport MembraneSupport Membrane

  • 8/3/2019 Pinnau (1)

    13/30

    Long-Term Water Flux of Porous andNon-Porous Ultrafiltration MembranesLong-Term Water Flux of Porous andNon-Porous Ultrafiltration Membranes

    10

    100

    1,000

    0 5 10 15 20 25 30 35

    Water flux(L/m2h)

    Permeation Time (Days)

    MicroporousPVDF module

    Non-porousPebax 1074/PVDF

    module

    water flushwater flush

    pure waterFeed: 1% motor oil in waterFeed pressure: 150 psigFeed temperature: 23C

  • 8/3/2019 Pinnau (1)

    14/30

    Fouling Index of Porous and Non-

    Porous Ultrafiltration Membranes forSeparation of Oil/Water Emulsions

    Fouling Index of Porous and Non-

    Porous Ultrafiltration Membranes forSeparation of Oil/Water Emulsions

    0.01

    0.1

    1

    0 5 10 15 20 25 30 35

    ouling IndexH2O(t)/JH2O(0)

    Permeation Time (Days)

    MicroporousPVDF module

    Pebax 1074 module

    pure water

    water flushwater flush

  • 8/3/2019 Pinnau (1)

    15/30

    Long-Term Permeation Properties of

    Porous Ceramic and Ceramic/PolymerComposite Membranes

    Long-Term Permeation Properties of

    Porous Ceramic and Ceramic/PolymerComposite Membranes

    0

    0.5

    1

    1.5

    2

    2.5

    0 20 40 60 80 100 120

    PermeationResistance

    (psi/gfd)

    Time (hours)

    Backflush

    CeramicModule

    Ceramic/Pebax 1074Module

    Feed: Bilge water ; permeate flux: 40 gfd

  • 8/3/2019 Pinnau (1)

    16/30

    Membrane Types Used in

    Ultrafiltration, Nanofiltration andReverse Osmosis

    Membrane Types Used in

    Ultrafiltration, Nanofiltration andReverse Osmosis

    Integral asymmetric membrane (Cellulose acetate)Integral asymmetric membrane (Cellulose acetate)Selective layer (Material A)

    Microporous substrate(Material A)

    ThinThin--film composite membrane (Polyamide)film composite membrane (Polyamide)

    Selective layer (Material A)

    Microporous substrate(Material B)

  • 8/3/2019 Pinnau (1)

    17/30

    2003 RO/NF Membrane Sales2003 RO/NF Membrane Sales

    44

    4

    58

    11

    30

    34Share (%)

    15Others12TriSep

    15Toyobo

    18Koch/Fluid Systems

    27GE Osmonics

    36Toray

    99Nitto Denko/Hydranautics

    115Dow/FilmtechSales ($ MM)Company

    R. Truby, Water Executive, September/October 2004, p.11(Supplement of Ultrapure Water 21, 2004)

  • 8/3/2019 Pinnau (1)

    18/30

    4Plate-and-frame

    5Cellulose acetate hollow fiber

    module

    91Polyamide spiral-wound(8x40)

    Market Share (%)Module Type

    Expected RO/NF membrane lifetime ~ 3Expected RO/NF membrane lifetime ~ 3--5 years.5 years. Actual RO/NF membrane lifetime ~ 7Actual RO/NF membrane lifetime ~ 7--12 years.12 years. Membrane replacement makes up for ~ 60% of annual sales.Membrane replacement makes up for ~ 60% of annual sales.

    R. Truby, Water Executive, September/October 2004, p.9(Supplement of Ultrapure Water 21, 2004)

    2003 RO/NF Module Sales Distribution

  • 8/3/2019 Pinnau (1)

    19/30

    Incremental Changes in Spiral-Wound RO Module PerformanceIncremental Changes in Spiral-Wound RO Module Performance

    Dave Furukawa (1999)

    99.37.041.940.141999

    30.83.521.660.191995

    7.92.011.320.341990

    2.61.561.100.651985

    1.01.001.001.001980

    Figure ofMerit

    Reciprocal Salt Passage(Normalized to 1980)

    Productivity(Normalized to 1980)

    Cost (Normalized to 1980U.S.$)

    Year

    Figure of Merit = (Productivity) x (1/Salt Passage)Cost

  • 8/3/2019 Pinnau (1)

    20/30

    Interfacial Polymerization for Preparationof Thin-Film Composite RO Membranes

    Interfacial Polymerization for Preparation

    of Thin-Film Composite RO Membranes

    Hydrocarbon/acid chloridesolution

    Polyamide layer

    ~ 0.1-0.2 m

    Aqueousaminesolution

    Porous

    support

    Heat cure

  • 8/3/2019 Pinnau (1)

    21/30

    Formation of FT 30 Thin-FilmComposite MembraneFormation of FT 30 Thin-FilmComposite Membrane

    NH2

    NH2

    ClOC

    COCl

    COCl

    NH NHCO CO

    CO

    HN NHCO CO

    COOH

    n 1- n

  • 8/3/2019 Pinnau (1)

    22/30

    Formation of PEC 1000 Thin-FilmComposite MembraneFormation of PEC 1000 Thin-FilmComposite Membrane

    N N

    NO

    O

    O

    HOH2CH2C

    CH2CH2OH

    CH2CH2OHO

    CH2OHH2SO4

    OCH2CH2

    N N

    NO

    O

    O

    CH2CH2

    CH2CH2OCH2CH2CH2

    N

    N NCH2

    O

    HO3S

    CH2 CH2CH2O

    O

    O

    O

  • 8/3/2019 Pinnau (1)

    23/30

    Rejection and Water Flux of ROSeawater Desalination MembranesRejection and Water Flux of ROSeawater Desalination Membranes

  • 8/3/2019 Pinnau (1)

    24/30

    Organic Solute Rejection ofCommercial RO MembranesOrganic Solute Rejection ofCommercial RO Membranes

  • 8/3/2019 Pinnau (1)

    25/30

    Surface Structures of Interfacial

    Aromatic Polyamide CompositeMembranes

    Surface Structures of Interfacial

    Aromatic Polyamide CompositeMembranes

    28 gfd 28 gfd

    37 gfd 45 gfd

    S.-Y. Kwak, D.W. Ihm, J. Membrane Sci. 158 (1999) 143-153

  • 8/3/2019 Pinnau (1)

    26/30

    Cross-Section of Interfacial PolyamideComposite Membranes (BW 30)

    Cross-Section of Interfacial Polyamide

    Composite Membranes (BW 30)

    Ridge and valleyRidge and valleystructurestructure~ 0.2~ 0.2 -- 0.50.5 mm

    Selective layerSelective layer~ 500~ 500 -- 1,0001,000

  • 8/3/2019 Pinnau (1)

    27/30

    Surface Structure of Uncoated andCoated RO MembranesSurface Structure of Uncoated andCoated RO Membranes

    Uncoated Coated

  • 8/3/2019 Pinnau (1)

    28/30

    Surface Structure of Uncoated andCoated RO Membranes (AFM)Surface Structure of Uncoated andCoated RO Membranes (AFM)

    ESPA-3

    ESPA-3 - coated

    AFM pictures courtesy of Jennifer Louie, Stanford University

  • 8/3/2019 Pinnau (1)

    29/30

    Performance of Commercial and

    Modified RO Membranes forWastewater Treatment

    Performance of Commercial and

    Modified RO Membranes forWastewater Treatment

    0

    10

    20

    30

    40

    50

    0 5 10 15 20 25 30

    Water Flux(L/m2h)

    Permeation Time (Days)

    SWC-2

    SWC-2/Pebax 4011

    Feed: 900 ppm mineral oil; 100 surfactant DC 193Pressure: 500 psigTemperature: 25C

  • 8/3/2019 Pinnau (1)

    30/30

    AcknowledgementsAcknoAcknowledgements

    Financial support was provided byOffice of Naval Research and SERDP

    Special thanks to my colleagues Isabelle Ciobanu, Sylvie Thomasand Alvin Ng.