28
Potentielle forklarende variabler for udbytte i forskellige miljøer Hans Pinnschmidt Danmarks JorgbrugsForskning Afdeling for Plantebeskyttelse Forskning Center Flakkebjerg 4200 Slagelse [email protected]

Potentielle forklarende variabler for udbytte i forskellige miljøer Hans Pinnschmidt

  • Upload
    rossa

  • View
    20

  • Download
    0

Embed Size (px)

DESCRIPTION

Potentielle forklarende variabler for udbytte i forskellige miljøer Hans Pinnschmidt Danmarks JorgbrugsForskning Afdeling for Plantebeskyttelse Forskning Center Flakkebjerg 4200 Slagelse. [email protected]. Background - PowerPoint PPT Presentation

Citation preview

  • Potentielle forklarende variabler for udbytte i forskellige miljer

    Hans PinnschmidtDanmarks JorgbrugsForskningAfdeling for PlantebeskyttelseForskning Center Flakkebjerg4200 [email protected]

  • Background

    BAROF WP1 data: multivariate measurements on 86 spring barley genotypes in 10 environments (2 years: 2002 & 2003, 3 sites: Flakkebjerg, Foulum, Jyndevad, 2 production systems: ecological & conventional)[email protected]

  • variables: yield 1000 grain weight grain protein contents culm length date of emergence growth duration mildew severity rust severity scald severity net blotch severity disease diversity weed cover broken panicles & culms lodgingparameters: raw data mean/median/max./min. rank/relative values main effects interaction slopes raw data adjusted for E/G main effects/slopes (residuals) IPCA scoresSD/variance}derive information on general properties, specificity, stability/variability [email protected]

  • Objectives

    Multivariate characterisation of genotypes with emphasis on yield-related [email protected]

  • Statistical methods

    Non-linear Canonical Correlation Analysis (NCCA): an optimal scaling procedure suited for handling multivariate data of any kind of scaling (numerical/quantitative, ordinal, nominal).

    Multiple Regression Analysis (MRA)[email protected]

  • Non-linear Canonical Correlation Analysis (NCCA)

    data treatment: quantitative variables (vm) were converted into ordinal variables with n categories (v11 ... v1n, ..., vm1 ... vmn)[email protected]

  • Characterisation of environments

    based on data adjusted for G main effects (= residuals)[email protected]

  • Flakkebjerg 2003:high yield, net blotch & panicle breakage;low mildew & lodging

    Flakkebjerg 2002: high rust & 1000 grain weight; late sowingFoulum 2002 conventional & Jyndevad 2003 ecological:high mildew & lodging; low yield % net blotchJyndevad 2002 ecological:low yield, 1000 grain weight,weed infestation, protein [email protected]

  • Characterisation of genotypes

    based on data adjusted for E main effects (= residuals)

    [email protected]

  • [email protected]

  • Characterisation of genotypes in individual environments based on:

    actual yield datadisease main effects (ME) of Gs environmental disease variability (SD) of Gs (= standard deviation of E adjusted data)[email protected]

  • Flakkebjerg 2003:high yield, net blotch & panicle breakage;low mildew & [email protected]

  • [email protected] 4 (sq. root)dimension 6 (sq. root)high yield; low net blotch ME & SDshort strawhigh rust ME & SDlong strawlow yield; high net blotch ME & SD

    Flakkebjerg 2003: high yield, net blotch & panicle breakage; low mildew & lodging

  • Foulum 2002 conventional & Jyndevad 2003 ecological:high mildew & lodging; low yield & net [email protected]

  • [email protected] 1 (sq. root)dimension 5 (sq. root)low yield;high mildew & net blotch ME & SD low mildew ME & SDhigh yield

    Jyndevad 2003 ecological: high mildew & lodging; low yield & net blotch

  • Multiple Regression Analysis (MRA)

    dependent variables: yield (actual, E-adj. G mean & SD)independent variables: E-adj. G mean & SD of disease severity, weed infestation, growth duration, culm lengthcriteria: Pin/out = 0.05/0.10; Fin/out = 3,84/2.71; tolerance = [email protected]

  • Variables must pass both tolerance and minimum tolerance tests in order to enter and remain in a regression equation. Tolerance is the proportion of the variance of a variable in the equation that is not accounted for by other independent variables in the equation. The minimum tolerance of a variable not in the equation is the smallest tolerance any variable already in the equation would have if the variable being considered were included in the analysis. If a variable passes the tolerance criteria, it is eligible for inclusion based on the method in effect.

  • Mean versus standard deviation of environment-adjusted yield of spring barley genotypes; BAROF [email protected]

  • [email protected]

    G mean E-adj. yield

    Results of regressing mean environment-adjusted yield of spring barley genotypes on variables representing E-adjusted mean & standard deviation of genotype properties.

    variableBSE of Bbetasig. tsig. F

    constant0.2730.2220.223

  • Observed versus estimated mean environment-adjusted yield of spring barley genotypes; BAROF [email protected]

  • [email protected]

    G mean E-adj. yield

    Results of regressing mean environment-adjusted yield of spring barley genotypes on variables representing E-adjusted mean & standard deviation of genotype properties.

    variableBSE of Bbetasig. tsig. F

    constant0.2730.2220.223

  • Observed versus estimated standard deviation of environment-adjusted yield of spring barley genotypes; BAROF [email protected]

  • Yield of spring barley genotypes versus main effect yield of the environment; BAROF [email protected]

  • [email protected]

    yield across E summary

    Results of regressing yield of spring barley genotypes on yield main effect of the environment and on variables representing E-adjusted mean & standard deviation of genotype properties.

    variableBSE of Bbetasig. tsig. F

    constant5.2770.0980.000

    E main0.9950.0190.8060.0000.649

  • Yield of spring barley genotypes estimated based on yield main effect of environment and E-adjusted mean & standard deviation of genotype property variables (disease severity, weed infestation, culm length, growth duration); analysis across environments; BAROF [email protected]

  • [email protected]

    yield by E summary

    Results of regressing yield of spring barley genotypes on variables representing E-adjusted mean & standard deviation of genotype properties.

    environmentvariableconventionalecological

    BSE of Bbetasig. tsig. FBSE of Bbetasig. tsig. F

    Flakkebjerg 2002constant5.5430.0420.0005.0250.0460.000

    mildew severity, mean-0.0700.021-0.3370.0010.1030.001-0.1110.027-0.4740.0000.059

    net blotch severity, mean-0.1540.042-0.4340.0000.127

    rust severity, mean-0.2110.083-0.2890.0140.1800.000

    Flakkebjerg 2003constant6.0750.3310.0005.2990.3020.000

    mildew severity, mean-0.2460.056-0.6710.0000.088-0.2390.050-0.7280.0000.116

    net blotch severity, mean-0.2170.063-0.3920.0010.154-0.1650.058-0.3320.0060.169

    culm length, mean-0.0340.013-0.2480.0100.211

    rust severity, SD-0.9150.248-0.3500.0000.258-0.7570.226-0.3230.0010.220

    mildew severity, SD0.6790.2720.3640.0150.3030.0000.4970.2470.2970.0480.251

    growth duration, mean-0.2110.095-0.2140.0300.2780.000

    Foulum 2002constant5.2640.2460.0005.7550.2690.000

    mildew severity, mean-0.2550.031-0.9920.0000.312-0.1690.036-0.7180.0000.129

    net blotch severity, mean-0.1280.036-0.3300.0010.437-0.1430.040-0.4020.0010.195

    rust severity, mean-0.2330.083-0.2940.0060.475

    rust severity, SD-0.5260.161-0.2870.0020.511-0.6280.157-0.3730.0000.241

    mildew severity, SD0.4570.1470.3500.0030.5360.4320.1710.3600.0130.291

    growth duration, mean-0.1170.058-0.1520.0460.573

    culm length, SD-0.0710.033-0.1610.0370.5910.000-0.0760.037-0.1880.0450.3180.000

    Foulum 2003constant5.7310.1480.0005.1830.2400.000

    mildew severity, mean-0.2590.030-0.7800.0000.274-0.2650.040-0.8910.0000.223

    net blotch severity, mean-0.2010.043-0.4000.0000.378-0.2450.046-0.5450.0000.333

    rust severity, SD-0.5610.189-0.2370.0040.422-0.6630.181-0.3120.0000.396

    growth duration, mean-0.2650.082-0.2670.0020.462

    scald severity, mean-0.1290.061-0.1780.0360.4850.000

    mildew severity, SD0.4990.1960.3290.0130.4340.000

    Jyndevad 2002aconstant3.3840.0770.000

    mildew severity, mean-0.0740.015-0.4970.0000.080

    net blotch severity, mean-0.1030.022-0.4590.0000.240

    rust severity, SD-0.2090.098-0.1980.0360.272

    growth duration, mean-0.0920.042-0.2080.0310.3030.000

    Jyndevad 2002bconstant4.3670.0340.000

    mildew severity, mean-0.1090.020-0.5870.0000.130

    net blotch severity, mean-0.1270.031-0.4530.0000.214

    rust severity, mean-0.1590.062-0.2760.0130.2620.000

    Jyndevad 2003constant5.0060.0350.000

    mildew severity, mean-0.2100.019-0.8160.0000.562

    net blotch severity, mean-0.0760.028-0.1950.0090.5910.000

  • Yield of spring barley genotypes estimated based on E-adjusted mean & standard deviation of genotype property variables (disease severity, weed infestation, culm length, growth duration); analysis by environment; BAROF [email protected]

  • Conclusions & outlook

    NCCA: intuitive method good for visualising the main features in multivariate data of various scales useful for obtaining an overall synoptic orientation of G properties and E characteristics soft systems approach

    MRA: hard systems approach synoptic view neglected

    Mildew & net blotch had highest yield-related effect, although not always functional (especially in MRA!)[email protected]