70
1/140 PWM DC-AC Inverters Power Electronic Systems & Chips Lab., NCTU, Taiwan 電力電子系統與晶片實驗室 Power Electronic Systems & Chips Lab. 交通大學 電機控制工程研究所 台灣新竹交通大學電機與控制工程研究所電力電子實驗室~鄒應嶼 教授 鄒應嶼 教授 國立交通大學 電機控制工程研究所 2/140 PWM DC-AC Inverters Introduction Inverter Topologies PWM Techniques for Single-Phase Inverters PWM Techniques for Three-Phase Inverters Dead-Time Protection and Distortion Filter Design Modeling in dq-Frame Closed-Loop Control Techniques

Power Electronic Systems & Chips Lab., NCTU, Taiwanpemclab.cn.nctu.edu.tw/W3news/實驗室課程網頁/電力電子/講義/2018/【PE-08... · Power Electronic Systems & Chips Lab.,

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • 1/140

    PWM DC-AC Inverters

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    台灣新竹‧交通大學‧電機與控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    鄒 應 嶼 教 授

    國立交通大學 電機控制工程研究所

    2/140

    PWM DC-AC Inverters

    Introduction Inverter Topologies

    PWM Techniques for Single-Phase Inverters PWM Techniques for Three-Phase Inverters Dead-Time Protection and Distortion Filter Design Modeling in dq-Frame Closed-Loop Control Techniques

  • 3/140

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Introduction

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    Chapter 8 Switch-Mode DC-AC Inverters: DC Sinusoidal ACPower Electronics: Converters, Applications and Design, N. Mohan, T. M. Undeland, and W. P. Robbins, John Wiley & Sons, 3rd Ed., 2002.

    4/140

    Introduction

    What is an Inverter? AC/DC: Rectifier DC/DC: Chopper DC/AC: Inverter AC/AC: Cycloconverter

    InverterAC OUTPUTDC INPUT

    ReferenceCommands

    Applications Topologies Characteristics & Dynamics Pulse-width Modulation (PWM) Control Techniques Implementation Issues

    An inherent bi-directional DC/AC converter!

  • 5/140

    Applications of DC/AC Inverters

    PWM Inverters for AC Motor Drives PWM Inverters for AC Power Source Ballast Fluorescent Lamps UPS & AVR Induction Heating Atmospheric Pressure Plasma PV Inverters, Grid Converters Distributed Generators

    Single-Channel 150W, PhilipsIEEE Spectrum 2003.

    Applications of Inverters

    1S 3S 5S

    2S 4S 6SdcV

    ab

    c

    3Q

    4Q

    R

    1Q

    2QS

    VDC = 300~380~420 VDC

    P

    N

    DC/AC Filter Grid

    batV

    sin(2 )

    220 2 1 10% sin(2 60 )g g gv V f t

    t

    oL

    Battery

    Grid Inverter: Battery-Based Energy Storage System

    Regenerative Motor Drive

  • 7/140

    Application in a Grid-Connected PV System

    Full-Bridge Inverter

    Microcontroller

    InverterGate Drive

    Meter

    DC Side isolation switch

    To high efficiency AC

    appliances

    inverter

    PV Array(usually building mounted)

    AC mains supply

    Main fuse box

    PV Panel

    DC ACACDC

    PV Inverter

    ElectricalDistribution

    System

    FeedbackSensing Circuit

    RelayGate Drive

    8/140

    Applications of Inverters in AC Motor Drives

    Single-Phase (One Winding)

    Three-Phase (Three Windings)

    N

    S

    SN

    (a) Single-phase bipolar

    (b) Three-phase bipolar

    T4T2

    T3T1

    T4T2

    T3T1

    T6

    T5

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    dcV

    dcV

    a

    a

    b c

    abvai

  • 9/140

    Single-Phase Half-Bridge Inverter

    Sinusoidal modulation to produce ac output:

    For the linear RLC load, the resulting inductor current variation is also sinusoidal.

    Hence, current-bidirectional two-quadrant switches are required.

    1D1Q

    2Q

    LAv

    Li

    Ai

    Bi0vC R2D

    12 dc

    V

    12 dc

    V Bv

    0v12 dc

    V

    12 dc

    V

    D15.00

    01( ) 2 12 dc

    v t D V

    ( ) 0.5 sin( )mD t D t

    ( ) 1( ) (2 1)2

    o dcL

    v t Vi t DR R

    gv

    When the converter is connected with grid and the current is controlled to be linear proportional to the grid voltage, the load is equivalent to a resistor R and the inductor current is:

    10/140

    Single-Phase Half-Bridge Inverter

    Gat

    e D

    river

    Q1

    Q2

    Amp

    Carrier

    refv

    D

    D

    ov 0.15.0

    oV

    12 dc

    V

    12 dc

    V

    12 dc

    V

    12 dc

    V

    01( ) 2 12 dc

    v t D V

    The simplest single-phase inverter topology. The half-bridge inverter is a buck-derived bidirectional converter with a

    differential output relative to the neutral point of the source. Output voltage is limited with 0.5Vdc. Unbalance issues of the upper and lower voltage sources under fast and large

    external disturbances.

    ( ) 0.5 sin( )mD t D t

  • 11/140

    Single-Phase Half-Bridge Inverter: Current Paths

    1dcV1S

    2S

    a

    2dcV

    odcV Load

    1dcV 1Q

    2Q

    a

    2dcV

    oLoad

    1D

    2D

    1dcV 1Q

    2Q

    a

    2dcV

    oLoad

    1D

    2D

    1dcV 1Q

    2Q

    a

    2dcV

    oLoad

    1D

    2D

    Q1 ON, Q2 OFF Q1 OFF, Q2 OFF, D2 ON Q1 OFF, Q2 ON

    MOSFET is a bi-directional switch

    v

    i1

    0

    C

    N-channel MOSFET

    Instantaneous i-v characteristicSymbol

    i

    v

    on

    off

    on(reverse conduction)

    12/140

    Single-Phase Half-Bridge Inverter: Load Characteristics

    1dcV 1Q

    2Q

    a

    2dcV

    o

    1D

    2D

    (a) Grid Inverter

    1dcV 1Q

    2Q

    a

    2dcV

    o

    1D

    2D

    (c) motor

    1dcV 1Q

    2Q

    a

    2dcV

    o

    1D

    2D

    (b) AC power supply

    Grid inverter: an inductor is used as a current filter and is connected with the utility. AC power supply: An LC filter is used as a voltage filter to generate a regulated ac

    voltage source. The motor load can be a PM dc motor or a single-phase ac motor. c

    motor

  • 13/140

    Characteristics & Dynamics of a Buck Converter

    LTVI sdL 4(max)

    D0 0.5 1.0

    LI

    12

    3 4

    Output voltage and current waveformsOne-quadrant operation.

    0

    M=0.50 M=0.75

    t

    L

    Rov

    oi

    dcV

    ovoi

    dcV

    ov

    oi

    C

    14/140

    Characteristics & Dynamics

    12

    3 4

    One-quadrant operation.

    ov

    oi

    CCM

    ov

    oi

    L

    Rov

    oi

    dcV C

    1.0D

    0.9

    0.7

    0.5

    0.3

    0.1

  • AC Source Voltage Regulation Problems

    Nonlinearity due to switchingDead-time of the gate drive circuitNon-ideal switching characteristicsNonlinearity due to DCM/CCM

    CurrentController

    PWMController

    L

    Li

    ov

    1S

    2S

    3S

    4S

    A

    BdcC

    invidci

    ci

    Li

    *ov

    ov

    dcvdcV

    Load

    Variations in dc-linkRegenerative loadsVoltage drop of batteryUtility RMS variations

    C

    0 2 4 6 8 10 12 14 16-200

    -150

    -100

    -50

    0

    50

    100

    150

    200Rectifier load

    Vo(

    V)

    t,(ms)-50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    Io(A

    ), IL

    (A)

    (b) Output voltage and current

    (a) Testing Load

    Load uncertainties Parameter variationsLoad variationsNonlinear load Permissible load power factorRegenerative load

    16/140

    Techniques in Closed-Loop Control of DC/AC Power Converter

    ~=Inverter

    Control

    ProcessorSignal

    Conditioning

    Filter

    Sensors

    Loadcommand

    Controller

    feedback

    output

    Topology Power Devices and Gate Drives Protection and Compensation Power Devices and Gate Drives Snubber Circuit Design Grounding and Noise Reduction

    Filter Design Harmonic Analysis HF Magnetic Components

    Nonlinear Power Load Regenerative Motor Load Load Characteristics Load Dynamics

    Current Sensor Voltage Sensors Placement of Sensors

    Control Loop Design Simulation Implementation Issues Controller Implementation

    Sampling Techniques Signal Filtering Signal ConditioningA/D & D/A Converters Analog Circuit Design

    dcV

    GateDriver

    PWMModulator

    PWM Modulation Strategy Harmonic and THD Analysis Dead-Time Protection Dead-Time Compensation Over-modulation Control Loss Analysis Implementation of PWM modulator

  • 17/140

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Inverter Topologies

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    02【硬體設計】02:Power Converters for Motor Drives.ppt

    18/140

    Basic Inverter Topologies

    1dcV1S

    2S

    a

    2dcV

    o

    (a) Half-bridge (b) Full-bridge (c) Three-phase

    dcV

    1S

    2S

    3S

    4S

    a

    b

    ab

    cdcV

    5S

    6S

    3S

    4S

    1S

    2S

    The DC source can be a voltage source or a current source. Most inverters are voltage source inverters (VSI). Inverters are inherent bi-directional DC-AC converters. Half-bridge inverter compared with the full-bridge inverter with a same dc-link

    voltage will produce only one-half output voltage.

    dcV

  • 19/140

    Classifications of Inverters

    Voltage Source Inverter (VCI)

    Current Source Inverter (CCI)Square Wave CSI

    PWM CSI

    PWM Inverter (VVVF Inverter)Single-Phase/Three-Phase

    Current-Controlled PWM Inverter

    Variable Voltage Inverter

    Processed Energy Source and Load (Voltage Source, Current Source) Topology (Single-Phase, Three-Phase, etc.) PWM Strategy (Square, PWM, Sine PWM, Regular PWM, Space Vector PWM, etc.) Switching Devices (SCR, Power Transistor, Power MOSFET, IGBT, etc.) Switching Schemes (PWM, Resonant, Quasi-Resonant, Soft PWM, etc) Control Schemes (Hysteresis, PID, Dead-beat, Variable Structure, Fuzzy, etc.) Controller Implementation (Analog, Microprocessor, DSP, etc.)

    20/140

    Voltage Source Inverter & Current Source Inverter

    Most conventional inverters are voltage source inverters (VSI). The output of a VSI must be connected with an inductor! The output of a CSI must be connected with a capacitor! CSI with a quasi-Z network (ZCSI) are getting interest in recnt years.

    2005.Comparison of Three Phase CSI and VSI Linked with DC to DC Boost Converters for Fuel Cell Generation Systems (epe).pdf【投影片】Inverter Using Current Source Topology (ape2010).pdf

    1S

    2S

    3S

    4S

    5S

    6S

    VSI: Voltage Source Inverter CSI: Current Source Inverter

    1S

    2S

    3S

    4S

    5S

    6S

    dcV dcI

  • 21/140

    Three-Phase Inverter Motor Drives

    3-PhasePowerSupply

    Voltage (Line to Neutral)

    Current (Line)

    VSI: Voltage Source Inverter

    Voltage (Line to Neutral)

    Current (Line)

    CSI: Current Source Inverter

    3-PhasePowerSupply

    N

    S

    SN

    N

    S

    SN

    1S

    2S

    3S

    4S

    5S

    6S

    1S

    2S

    3S

    4S

    5S

    6S

    A DC-link capacitor provides a voltage source!

    A DC-link indutor provides a voltage source!

    22/140

    Inverter Topologies

    Single-Phase Half-Bridge

    Single-Phase Full-Bridge

    2dcV

    2dcV ANv

    n

    1D

    2D

    1S

    2S

    dcVoi a

    o

    Load

    p

    ANv

    3D

    4D

    3S

    4S

    dcVoi BLoad1D

    2D

    1S

    2S

    A

    ai Load1D

    2D

    1S

    2S

    b

    1D

    2D

    1S

    2S

    c

    bi

    ci

    Three-Phase Half-Bridge

    Three-Phase Full-Bridge

    dcVai Load1

    D

    2D

    1S

    2S

    a3D

    4D

    3S

    4S

    b

    5D

    6D

    5S

    6S

    c

    bi

    ci

    2dcV

    2dcV

    o

    a

    n

    p

    n

    p

    n

    p

  • 23/140

    Derivation of Full-Bridge Converter

    Differential connection of load to obtain bipolar output voltage

    Differential load voltage is:

    The outputs V1 and V2 may both be positive, but the differential output voltage V can be positive or negative.

    DC source

    load

    D

    D’

    21 VVV

    2 ( ') dcV M D V

    converter 2

    1 ( ) dcV M D V

    converter 1

    V

    dcV

    1V

    2V

    24/140

    Differential Connection Using Two Buck Converters

    Converter #1 transistor driven with duty cycle D

    Converter #2 transistor driven with duty cycle complement D’

    Differential load voltage is

    'dc dcV DV DV (2 1) dcV D V

    )(DM

    1

    D10

    1

    5.0

    Buck converter 1

    Buck converter 2

    1

    1

    2

    2

    V

    dcV

    1V

    2V

  • 25/140

    Simplification of filter circuit, differentially-connected buck converters

    1

    1

    2

    2

    Bypass load directly with capacitorBuck converter 1

    Buck converter 2

    1

    1

    2

    2

    Original circuit

    V

    dcV

    1V

    2V

    V

    dcV

    26/140

    Simplification of filter circuit, differentially-connected buck converters

    Combine series-connected inductors

    Re-draw for clarity

    H-bridge, or bridge inverter

    Commonly used in single-phase

    Inverter applications and in servo

    Amplifier applications

    1

    2 1

    2

    1

    1

    2

    2

    VdcV

    1V

    2V

    dcVLi

    LC

    R

  • Derivation of Full-Bridge DC-DC Converter

    2

    3 4

    0

    oi

    ov

    1

    (a) (b)

    (c)(d)

    2

    3 40

    oi

    ov

    1

    2

    3 40

    oi

    ov

    1 2

    3 40

    oi

    ov

    1

    28/140

    Characteristics of a Full-Bridge Converter

    Lr

    dcV

    1S

    2S

    3S

    4S

    LA

    Bgv

    2

    3 4

    0

    oi

    ov

    1

    An inverter is a differential mode 4-quadrant DC-DC converter.

    Power can be transferred back and forth between source and load.

    Its output can be DC or AC, depend on the selected PWM strategy.

    A buck type converter. Input and output voltage do not have a

    common ground. A lot of inverter topologies have been

    developed. PWM modulation strategy is required to reduce

    harmonic distortion as well as switching loss reduction.

    Control is required to maintain stable, robust, and fast response.

    4Q Operation!

    ov

    oi

  • 29/140

    Dynamics of a Full-Bridge Inverter with Unipolar PWM

    ov

    oi

    1.0D0.9

    0.7

    0.5

    0.3

    0.1

    1,ov1,oi

    1,ov1,oi

    1 3

    1 32 4

    Small signal perturbation at operating point OPx

    xOP

    30/140

    From Single-Phase Inverter to Three-Phase Inverter

    Lr

    dcV

    1S

    2S

    3S

    4S

    La

    bgvLi

    The basic inverter cell for bi-directional three-phase AC/DC converters! Singe-Phase Three-Phase Two-Level Switching Three-Level Switching

    The basis for the understanding of major control issues and performance indices for the grid converters.

    The basis for learning and developing more sophisticated control schemes.

    1S

    2S

    3S

    4S

    a

    b

    5S

    6S

    c

    aR

    cecR cL

    nbe

    bR bLdcV

    aeaL

  • 31/140

    From Single-Phase Inverter to Three-Phase Inverter

    Lr

    dcV

    1S

    2S

    3S

    4S

    La

    bgvLi

    ab

    c

    aR

    cecR cL

    nbe

    bR bL

    aeaL

    dcV

    5S

    6S

    3S

    4S

    1S

    2S

    Lr1dcV1S

    2S

    La

    gvLi

    2dcV

    o

    32/140

    Full-Bridge Converter: Load Characteristics

    Lr

    dcV

    1S

    2S

    3S

    4S

    La

    bgv

    Li

    dcV

    1S

    2S

    3S

    4S

    L

    ovLi C

    av

    ai

    emfv

    aRaL

    av

    ai

    emfv

    aRaL

    (a) A grid inverter

    (b) An ac voltage regulator.

    (c) A dc servo motor drive

    (d) A single-phase BLDC motor drive

    dcV

    1S

    2S

    3S

    4S

    dcV

    1S

    2S

    3S

    4S

    a

    b

    a

    b

    a

    b

  • Split Phase 6-Switch Inverter with Battery Bank at HV DC-Link

    Jin Wang, F.Z. Peng, J. Anderson, A. Joseph, and R. Buffenbarger, “Low cost fuel cell converter system for residential power generation,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1315-1322, Sept. 2004.

    5 kW solid oxide fuel cell (SOFC) Vin: 22~41 VDC DC-link Voltage = 400 VDC 5 kW Battery Bank at HV DC-Link Peak Output Power = 10 kW Load: Two split-phase 60 Hz, 120-VAC

    Development of Single-Phase Non-Isolated Grid Inverters

    【投影片】Latest in PV Inverter & Trends (2012)T. Hauser et. al, Sunways, EUPVConf Valencia 2008, 4DO.8.2

    PV Array Filter Basic FB inverter PV Array Filter FB inverter PV Array Filter HERIC FB inverter Grid PV Array Filter FB inverter

    1L

    2L

    2S

    1S3S

    4S

    1D

    2D4D

    3D

    rvC

    rvV

    vV

    5S

    5D

    rsV

    L

    N

    1L

    2L

    2S

    1S 3S

    4S

    1D

    2D 4D

    3D

    rvCrvV vVL

    N

    D

    S

    S

    D

    rsV

    DC Bypass

    1L

    2L

    2S

    1S 3S

    4S

    1D

    2D4D

    3D

    1rvCrvV

    vV

    5S

    5D

    rsV

    L

    N2rvC

    D

    D

    A

    B

    6S

    6D

    Full-bridge(Bipolar/ Unipolar/ Hybrid)

    H5 Topology (SMA) HERIC Topology (Sunway) H6Topology (FBDC Bypass)

    1L

    2L0ABV

    2S

    1S 3S

    4S

    1D

    2D 4D

    3D

    rvC

    rvV

    vVL

    N

    rsV

    PV Array

    Filter NPC inverter Filter Grid

    rvV

    1rvC

    2rvC

    / 2rvV

    / 2rvV

    rsV

    1S1D

    2S 2D

    3S3D

    4S4D

    vV

    0ABV

    1LA

    D

    D

    B

    PV Array Filter HB inverter Filter Gri

    dClamping SwitchPV ArrayDC Link L

    BoostDC Link H HB GridBoost Bypass

    AC Bypass Filter

    REFU UltraEta NPC (Danfoss) Conergy Topology

    rsV

    rvV

    1rvC

    2rvC

    rsV

    1LD

    D

    / 2rvV

    / 2rvV

    / 2AB rvV V1S 1D

    2S 2D

    Filter GridFilterGridFilterGridFilter

    vV

  • 35/140

    Selection of Single-phase Three-wire Transformerless Inverter Topologies

    (a) Single DC Bus with Split Capacitor

    (b) Single-phase three-wire inverter (c) Dual DC bus with central tap ground

    [1] T. A. Nergaard, J. F. Ferrell, L. G. Leslie, and J. S. Lai, “Design considerations for a 48 V fuel cell to split single phase inverter system with ultracapacitor energy storage,” Proc. IEEE Power Electronics Specialist Conference, 2002.

    [2] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Electric Power Applications, vol. 141, pp. 197-205, July 1994.[3] M. Martino, C. Citro, K.Rouzbehi, P. Rodriguez, “Efficiency analysis of single-phase photovoltaic transformer-less inverters,” International Conference on Renewable

    Energies and Power Quality (ICREPQ) Santiago de Compostela (Spain), 28th to 30th March, 2012.

    1dcC

    2dcC

    1S

    2S

    3S

    4S1oL

    2oL

    2oC

    1oC1acV

    2acV

    120V

    120V

    dcC

    3S

    4S

    5S

    6S

    1S

    2S

    1oL

    2oL

    2oC

    1oC1acV

    120V

    2acV120V

    240acV

    1dcC

    2dcC

    1S

    2S

    3dcC

    4dcC

    3S

    4S

    1oL

    2oL

    1oC

    2oC

    1acV

    2acV

    120V

    120V

    36/140

    Interleaved Bi-Directional DC-DC Charger/Discharger with Single-Phase Three-Wire Inverter

    P

    N

    DC/DC DC/ACDC-LinkBattery Filter Grid

    3S

    4S

    5S

    6S

    1S

    2S

    1oL

    2oL

    2oC

    1oC 1acV120V

    2acV120V

    240acV

  • 37/140

    Three-Phase Four-Wire Inverter with a Split DC Bus

    Min Dai, Mohammad Nanda Marwali, Jin-Woo Jung, and Ali Keyhani, “A three-phase four-wire inverter control technique for a single distributed generation unit in island mode,” IEEE Trans. on Power Electronics, vol. 23, no. 1, pp. 322-332, Jan. 2008.

    38/140

    Three-Phase Four-Wire Inverter: Control Block Diagram

  • 39/140

    Three-Phase Four-Leg Inverter

    Gyeong-Hun Kim, Chulsang Hwang, Jin-Hong Jeon, Jong-Bo Ahn, and Eung-Sang Kim, "A novel three-phase four-leg inverter based load unbalance compensator for stand-alone microgrid," Electrical Power and Energy Systems, vol. 65, pp. 70–75, 2015.

    40/140

    Topology and Control of a Three-phase Four-wire Grid Inverter

  • 41/140

    Pioneer on NPC PWM InverterNeutral-Point-Clamped (NPC) 3-Phase PWM Inverter

    A. Nabae, I. Takahashi, and H. Akagi, “A new neutral-point-clamped PWM inverter,” IEEE Trans. Ind. Appl., vol. IA-17, pp. 518-523, 1981.

    Neutral Point Clamped PWM Inverter PWM Gating Waveforms for the NPC-PWM Inverter

    DCL S11 S21 S31

    S12 S22 S32

    S13 S23 S33

    S14 S24 S34

    D11

    D12

    EdU

    V

    D21

    D22

    D31

    D32

    C2

    C1

    A. Nabae, T. Takahashi, and H. Akagi, “A new neutral-point-clamped PWM inverter,” IEEE IAS Annu. Meeting, Cincinnati, OH, Sep. 28–Oct. 3 1980, pp. 761–776.

    ib(S11)

    ib(S13)

    ib(S14)

    ib(S12)

    42/140

    The Multilevel Converter Concept

    Converter output voltage waveform: a) two level, b) three level, c) nine level.

    Vdc

    a

    vaNN

    Vdc

    Vdc

    Vdc

    NvaN

    a

    Vdc

    Vdc

    N

    Vdc a

    vaN

    mvaNvaNvaNVdc

    -Vdc

    Vdc

    -Vdc

    4Vdc

    -4Vdc

    0 0 0

    0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.005 0.01 0.015 0.02 0.025 0.03Time [s] Time [s] Time [s]

    (a) (b) (c)

  • 43/140

    Comparison of phase voltage of 2- and 3-level-inverters

    S+

    S-

    S+

    S-

    t t

    Sn/ 2dcV

    dcV

    / 2dcV

    / 2dcV

    / 2dcVov ov

    ovov/ 2dcV

    / 2dcV

    Passive NPC inverter

    Neutral-Point-Clamped (NPC) Converter

    1dcV 1Q

    2Q

    a

    2dcV

    o

    1D

    2D

    1dcV 1Q

    2Q

    a

    2dcV

    o

    1D

    2D

    [1] A. Nabae, T. Takahashi, and H. Akagi, “A new neutral-point-clamped PWM inverter,” IEEE IAS Annu. Meeting, Cincinnati, OH, Sep. 28–Oct. 3 1980, pp. 761–776. [A. Nabae, I. Takahashi, and H. Akagi, “A new neutral-point-clamped PWM inverter,” IEEE Trans. Ind. Appl., vol. IA-17, pp. 518-523, 1981.]

    [2] J. Rodriguez, S. Bernet, P. K. Steimer, and I. E. Lizama, “A survey on neutral-point-clamped inverters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2219-2230, July 2010.

    Three Ways to Realize a Four-Quadrant Switch

    v

    i

    1

    0

    1i

    v

    0

    v

    1i

    0

    1i

    0

    v

  • Different Types of Switching Devices

    Lr

    dcV

    1S

    2S

    3S

    4S

    La

    bgv

    giFilter

    IGBT MOSFET SiC MOSFET GaN

    Si FRDSi IGBT Si FRDSiMOSFET

    SiC SBDSiIGBT

    SiC SBDSiCMOSFET

    SBD: Schottky Barrier DiodeFRD: Fast Recovery Diode

    GaN HEMT

    46/140

    Neutral-Point-Clamped (NPC) Grid Inverter

    1dcV 1Q

    2Q

    a

    2dcV

    o

    1D

    2D

    (a) Half-bridge grid inverter

    1dcV 1Q

    2Q

    a

    2dcV

    o

    1D

    2D

    (b) Three-level NPC grid inverter

    1dcV 1Q

    2Q

    a

    2dcV

    o

    1D

    2D

    1dcV 1Q

    2Q

    a

    2dcV

    o

    1D

    2D

    NPC inverter module

  • 2-Level vs. 3-Level InvertersC

    ircui

    tPh

    ase

    Volta

    geLi

    neVo

    ltage

    (b) 3-Level PWM(a) 2-Level PWM

    ABv

    ANv

    0

    PNV

    PNV

    P

    NA B C

    AOv

    ABv

    0

    PNV

    0

    PNV

    PNV

    0

    PNV

    PNV

    12 PN

    V

    adcV b

    c

    P

    N

    dcV

    Development of Multi-Level Inverter Topologies

    (a) 3-level NPC VSC

    (c) T-type 3-level NPC VSC with RB-IGBT (Fuji) (d) 5L-MLC2 Converter

    (b) T-type 3-level VSC with BB-IGBT

    1dC

    2dC

    abc

    1dC

    2dC

    a

    bc

    1T V1T U 1T W

    2T V2T U 2T W

    3T U

    4T U3T V

    4T V3T W

    4T W

    a

    o

    1dC

    2dC

    b

    c

  • H5 & H10 Converter

    50/140

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

    PWM Techniques for Single-Phase Inverters

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

  • Single-Phase (One-Leg) Switch-Mode Inverter

    2dV

    2dV

    ANv

    N

    AD

    AD

    AT

    AT

    dcVoi

    Ao

    LOAD

    Middle point of the DC-link source

    The middle point is important for both definition and thinking!

    Aov

    P

    vAo is the inverter output voltage!

    Incandescent light bulb

    Filter

    Speaker

    av

    ai

    emfv

    aRaL

    DC Motor

    Resistive Load

    LCR Load

    Regenerative Load

    52/140

    A Simple First-Quadrant Chopper

    12

    3 4

    Input-Output Relationships:

    Output voltage and current waveformsOne-quadrant operation.

    dco MVV

    dcsw

    RMSac VLfMM

    I32

    )1()(,0

    0

    M=0.50 M=0.75

    t

    E

    L

    R

    ov

    oi

    dcV

    ov

    oi

    dcV

    sT

    os

    o dttvTV

    0)(1

    M is the modulation index and assume the chopper is operating in CCM.

    ov

    oi

    LRfs

    ss T

    f 1

  • 53/140

    Pulse-Width Modulator

    Amp comparator

    repetitive waveform

    switch control signal

    (desired)

    (actual)

    ton toffTs

    on on

    off off

    switch control signal

    stV̂

    saw-tooth voltage (amplified error)

    (switch frequency fs = 1/Ts)

    sts Vv

    TtD ˆ

    controlon

    The carrier signal may be a nonlinear function to produce nonlinear PWM control signal.

    Modulating signal

    Carrier signal

    controlv

    controlv

    stvv control

    stvv control

    stv

    *ov

    ov

    Concept of Sinusoidal PWM Modulation

    )(tc

    )(tmmodulatingsignal

    carriersignal

    PWMModulator

    1S

    2S

    3S

    4S

    L

    RC

    virc

    v c

    vo

    ic

    i o

    i L

    rL

    1S

    Vdc2S

    3S

    4S

    0 t

    carrierv

    controlv

    controlv

    carrierv

    Trailing-Edge PWM

    Leading-Edge PWM

    Double-Edge PWM (Central PWM, usually used in sine-wave inverters )

    A sinusoidal reference results a sinusoidal output!

    Switching Logic modulatingsignal

    Sinusoidal modulation

    Trapezoidal modulation1 4,S S

    2 3,S S

    Bipolar PWM

    dead-time not shown

    ab

    carriersignal

  • Trailing-Edge PWM

    Three Types of PWM Modulation Schemes

    Leading-Edge PWM

    Double-Edge PWM (Central PWM, usually used in sine-wave inverters )

    Usually used in DC-DC & PFC Boost Converters

    Analog PWM Implementation Trailing-edge modulation is most common in DC–DC converters. Double-edge modulation eliminates certain harmonics when the reference is a sine

    wave, and is a preferred method for AC–DC and DC–AC converters where the PWM reference contains a sinusoidal component.

    A combination of synchronized leading-edge and trailing-edge modulation has also been used to control a boost single-phase power factor correction (PFC) converter and a buck DC–DC converter to reduce ripple in the intermediate DC bus capacitor [1].

    Analog PWM is also called natural-sampling PWM in contrast to the regular-sampling PWM fir its digital implementation.

    [1] UCC38501 BiCMOS PFC/PWM Combination Controller datasheet. Texas Instruments, Dallas, Texas, USA (1999)

    2dcV

    2dcV

    1 lfundamenta , )( AoAo vv uAo

    controlv carrierv

    ( )1f s

    0t

    t0

    0 t

    carrierv

    controlv

    controlv

    carrierv

    comparator

  • 57/140

    Operation states of three modulation schemes in the full-bridge topology

    Woo-Jun Cha, Kyu-Tae Kim, Yong-Won Cho, Sung-Ho Lee, and Bong-Hwan Kwon, “Evaluation and analysis of transformerless photovoltaic inverter topology for efficiency improvement and reduction of leakage current,” IET Power Electronics, vol. 8, no. 2, pp. 255-267, Feb. 2015.

    (a) Bipolar PMW (c) Hybrid PWM (current circulates alternatively)

    (b) Unipolar PMW

    switching

    switchingMode 1

    Mode 2

    Mode 3

    Mode 4

    58/140

    Pulsewidth Modulator for a Half-Bridge Converter

    Switching States

  • Conduction Modes and PWM Strategies

    IGBT + DIODE FQICEI

    FQV

    Loss LossRDIrI

    rVFDV

    FQ FQ FD RDLoss=V I +V IC EV

    IGBT DIODE

    MOSFET + DIODE

    FIDSI

    FV

    Loss LossRDIrI

    rVFDV2F ON FD RDLoss=I R +V I

    D SV

    ONRMOSFET DIODE

    2dcV

    2dcV ANv

    N

    1D

    2D

    1S

    2S

    dcVoi

    Ao

    Load

    emfv

    The inductor current must keep its continuity!

    The current path defines its conduction mode.

    IGBT is a 1Q switch. MOSFET is a 2Q switch. MOSFET converter can

    provide extra conduction paths and its PWM strategy can be more complicated.

    The converter is a 4Q bi-directional converter.

    DC/DC, DC/AC, AC/DC, AC/AC are all possible!

    For a regenerative load, such as a motor, the power flow can flow back to the source.

    Current loop area must be kept in minimum for practical implementation to reduce EMI.

    FQFQ FQ CE Q FQV I =(V +I r )I

    60/140

    Conduction Modes

    2dcV

    2dcV ANv

    N

    1D

    2D

    1S

    2S

    dcVoi

    Ao

    Load

    emfv

    2dcV

    2dcV ANv

    N

    1D

    2D

    1S

    2S

    dcVoi

    Ao

    Load

    emfv

    S1 ON & S2 OFF

    S1 OFF & S2 OFF, D2 ON

    The inductor current must keep its continuity!

    Current path during these time periods.

    Current path during these time periods.

  • 61/140

    Conduction Modes

    2dcV

    2dcV ANv

    N

    1D

    2D

    1S

    2S

    dcVoi

    Ao

    Load

    emfv

    2dcV

    2dcV ANv

    N

    1D

    2D

    1S

    2S

    dcVoi

    Ao

    Load

    emfv

    S1 OFF & S2 ON

    S1 OFF & S2 OFF, D1 ON

    The inductor current must keep its continuity!

    Current path during these time periods.

    Current path during these time periods.

    PWM Waveforms and Inductor Current

    2kt

    sT sT

    t

    t

    ( )fU t

    3kt

    2dcV

    2dcV

    ANv

    N

    1D

    2D

    1S

    2S

    dcVoi

    Ao

    Loademfv

    Average output voltage

  • 63/140

    Double edged PWM strategy with half-bridge converterThe Voltage Reference Command

    The modulation signal can be updated in every half-cycle of the switching period, and achieve a double switching effect as compared with the single-edge PWM strategy.

    64/140

    Single-Phase (One-Leg) Switch-Mode Inverter

    )2

    (273.12

    4)ˆ( 1 dcdcAoVVV

    nVV AonAo 1

    )ˆ()ˆ(

    1.41.21.00.80.60.40.2

    00 1 3 5 7 9 11 13 15

    )2

    /()ˆ( 1 dcAoVV

    N-th: harmonics of VAo

    2dcV

    2dcV

    vAo

    11f

    0

    Spectrum of Square-Wave Inverter

    2dcV

    2dcV ANv

    N

    AD

    AD

    AT

    AT

    dcVoi

    Ao

    P

    t

    4 1.273( )2 2dc dcV V

    No dc component and even harmonics, if output waveform is symmetric!

  • 65/140

    Half-Bridge Singe-Phase PWM Inverter

    2dcV

    2dcV ANv

    N

    AD

    AD

    AT

    AT

    dcVoi

    Ao

    P2dcV

    2dcV

    vAo

    11f

    0t

    sf

    1.41.21.00.80.60.40.2

    00 1 3 5 7 9 11 13 15

    )2

    /()ˆ( 1 dcAoVV

    N-th: harmonics of VAo

    14ˆ( ) 1.273( )

    2 2dc dc

    AoV VV D

    Dn

    VV AonAo 1)ˆ()ˆ(

    Spectrum of PWM InverterD

    sf

    1ffs In general,

    1ffs

    4 1.273( )2 2dc dcV V

    66/140

    Half-Bridge Singe-Phase Sine Wave PWM Inverter

    2dcV

    2dcV ANv

    N

    1D

    2D

    1S

    2S

    dcVoi a

    o

    Load

    o: middle point of the DC sourceP: DC source positiveN: DC source negativevao: voltage applied to the load

    0 t

    1s

    2s

    controlvcarrierv

    controlv

    carrierv

    P

    Natural-Sampling Sinusoidal PWM

    Comparator

  • Half-Bridge Inverter

    0 t

    vcontrol

    vcarriervcontrolvcarrier

    0 t

    0 t

    t = 0

    controlV triV

    ( )1f s

    1)( lfundamenta , AovAov uAo

    V d2

    V d2

    off : ,on :tricontrol

    AA TTvv

    off : ,n :tricontrol

    AA ToTvv

    Harmonics distribution

    同一種電路拓撲,其表現行為主要決定於PWM的控制方式!

    This is what we need!

    PWM Techniques

    Gat

    e D

    river

    Q1

    Q2Carrier

    12 dc

    VrefV

    D

    ov

    ( )1f s

    ( )mv t

    1,ABvABv

    0

    0

    t

    t

    )(tvc

    avgLi ,Li

    0t

    Harmonic Spectrum of Output Voltage

    THD of Output Current

    x

    x

    x x

    x

    x x

    x xx x

    xx xxx x

    x

    x

    Modulation index

    THD (%)

    1.0

    12 dc

    V

    12 dc

    V

    12 dc

    V

    12 dc

    V

    12 dc

    V

  • 69/140

    Natural Sampling Sinusoidal PWM for Half-Bridge Inverter

    off : ,on :tricontro

    AA

    l

    TTvv

    off : ,on :tricontrol

    AA TTvv

    2dcV

    2dcV

    1 lfundamenta , )( AoAo vv uAo

    controlV triV

    ( )1f s

    0t

    t0

    t = 0

    tri

    controlˆ

    ˆ

    VVma

    1ffm sf

    Amplitude Modulation Ratio

    Frequency Modulation Ratio

    dcAoA VvTvv 21 on, istricontrol

    dcAoA VvTvv 21 on, istricontrol

    dcAonNAoAN Vvvvv 21

    hAohAN VV )ˆ()ˆ(

    2dcV

    2dcV

    ANv

    Ai

    dcV

    N

    AD

    AD

    AT

    AT

    Ao

    70/140

    Single-Phase PWM Inverter: Waveform and Spectrum

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    x

    x

    x x

    x

    x x

    x xx x

    xx xxx xx

    x1

    0 t

    0 t

    t = 0

    controlV triV

    ( )1f s

    1, ( ) fundamental aoao vv uAo

    2dcV

    2dcV

    off : ,on :tricontrol

    AA TTvv

    off n tricontrol

    :,: AA ToTvv

    ( )mf 2mf

    ˆ( )/ 2

    ao h

    dc

    VV

    ( )2 1mf 2mf 3mf

    ( )3 2mf

    m ma f 0 8 15. ,

    1 of Harmonics f

    Harmonics distribution

    One-leg switch-mode PWM inverter

    DA+TA+

    TA- DA-

    2dcV

    2dcV

    dcVai

    aNv

    N

    ao

  • 71/140

    Natural Sampling PWM

    Simple Easy to be implemented by analog circuit

    Beat effect phenomenon Not easy to be implemented with MCU-based software Asynchronous (modulating and carrier signal) Limited linear voltage control range

    Advantages:

    Disadvantages:

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    72/140

    Waveforms under Overmodulation

    Vd2

    Vd2

    , 1( ) fundamental ao aov vaov

    controlVtriV

    ( )1f s

    0 t

    t0

    0

    1ˆ( ) / ( )

    2dc

    aoVV

    1.0

    0 1.0 3.24

    Linear modulation range

    over-modulation

    Square-wave

    273.14

    am

  • 73/140

    Bipolar and Unipolar PWM

    Bipolar PWM

    Unipolar PWM

    1Q

    3Q

    74/140

    Current Ripple Analysis of Bipolar PWM

    ,1 (2 1)ab dcV D V )(DM

    1

    D10

    1

    5.0

    0

    abv

    Bipolar PWM (a) voltage and (b) current.

    1Q

    2Q

    3Q

    4Q

    Vdcabv

    a babi

    abi

    abv

    abI

    (max)12

    dc sab

    V TIL

    ( )dc emf sab

    V V DTI

    L

    If the IR drop is neglected,

    dcemf VDV )12( 2(1 )dc s

    abV D DTI

    L

    (1 )2

    ab dc sI V T D DL

    abi

    ABv

    dcV

    dcV

    abi

  • 75/140

    Current Ripple Analysis of Unipolar PWM

    ,1ab dcV DV

    )(DM

    D10

    1

    0

    Bipolar PWM (a) voltage and (b) current.

    1Q

    2Q

    3Q

    4Q

    Vdc

    (max)14

    dc sab

    V TIL

    ( )dc emf sab

    V V DTI

    L

    If the IR drop is neglected,

    dcemf DVV (1 )dc s

    abV D DTI

    L

    The negative voltage is controlled by another control signal DIR.

    (1 )2 2

    ab dc sI V T D DL

    abIabi

    abv

    dcV

    dcV

    abv

    a babi

    abv

    abi

    ABv

    abi

    76/140

    Voltage Ripple Analysis: Bipolar and Unipolar PWM

    Vr,rms in a full-bridge converter using PWM: (a) with bipolar voltage switching; (b) with unipolar voltage switching.

    -1.0 0 1.0-0.5 0.5

    (a) bipolar

    (b) unipolar

    rm s

    13 rr , r

    d d M AX

    VV IV V I

    d

    o

    VV

    0.25

    0.50

    0.75

    1.0

    bipolarD0 1.00.5

    bipolarD1.00

    For a same output voltage, the PWM duty ratios are different using different PWM control schemes. For a 50% VDC output,

    5.075.0

    unipolar

    bipolar

    DD

    The current ripple ratio is:

    162)1(

    22 LTVDD

    LTVI sdcsdcAB

    163)1(

    2 LTVDD

    LTVI sdcsdcAB

    2

    3

    Bipolar PWM

    Unipolar PWM

    For DC-DC converter, the current ripple profile can be plotted as a function of the modulation index. While for DC-AC inverter, the current ripple profile can be plotted as a function electrical angle and modulation index.

  • Hybrid PWM

    S11 ON / S12 OFFS11 OFF / S12 ON

    PWMcarrier, c

    Modulation waveform, m =de

    Effective duty ratio de(t)

    S11 OFF / S12 ONS11 ON / S12 OFF

    S21 OFF / S22 ON S21 ON / S22 OFF

    1 / of0

    Modulation waveform Carrier waveform

    (a)

    (b)

    0

    0

    gV

    gVABv

    1/ of

    1/ sf

    11S

    12S

    21S

    22S

    gV C RL

    ov tABv

    A

    B

    Li t oi t

    sino m ov t V t

    S11 and S12: High Frequency Switching Leg S21 and S22: Line Frequency Switching Leg

    [1] R. S. Lai and K. D. T. Ngo, “A PWM method for reduction of switching loss in a full-bridge inverter,” IEEE APEC Conf. Proc., 1994.

    Unipolar PWM: Current Ripple Profile

    max 8dc sV TIL

    0 0.002 0.004 0.006 0.008Time (s)

    0

    0.2

    0.4

    0.6

    0.8

    1

    Vr1 Vr2 Vr3 Vr4 Vr5 Vr6

    0.7am

    0.8am

    0.9am

    1.0am

    / 2

    0.5am

    0.6am

    1.0

    0.8

    0.6

    0.4

    0.2

    04

    When ma = 0.707, the maximum ripple occurs at max=45º.

    ( ) (1 sin ) sin2dc s

    a aV TI m m

    L

    Lr

    dcV

    1S

    2S

    3S

    4S

    LA

    BgvLi

    Calculate the RMS value of ripple current with a specified modulation index?

    [1] P.A. Dahono, A. Purwadi, and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” International Conference onPower Electronics and Drive Systems (PEDS), pp. 571-576, 21-24 Feb 1995.

    [2] Hyosung Kim and Kyoung-Hwan Kim, “Filter design for grid connected PV inverters,” IEEE International Conference on Sustainable EnergyTechnologies (ICSET). pp. 1070-1075, 24-27 Nov. 2008.

  • 79/140

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

    PWM Techniques for Three-Phase Inverters

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    80/140

    PWM Strategies for Motor Drives & Grid Converters

    The main purpose of the modulation techniques is to attain the maximum voltage with the lowest Total Harmonic Distortion (THD) in the output voltages.

    PWM strategy plays a most important role for the improvement of voltage control range and linearity and reduction of current harmonics, leakage current, and switching loss for a motor drive.

    Digital link

    Controller Converter

    Powersource

    PWMModulator

    Motor Load

    SpeedTorque

    Sensor signals

  • 81/140

    PWM Strategies for Power Converters

    D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, M. E. El-Hawary, Ed. New Jersey: IEEE Press, Wiley-Interscience, 2003.

    82/140

    Classification of PWM Techniques

    PWM Techniques Two-Level Inverter

    Multilevel Inverter

    Continuous PWM SPWM Regular-Sampled SPWM SVPWM Trapezoidal PWM Harmonic Injection …

    Discontinuous PWM DPWMMIN DPWMMAX ….

    Programmed PWM SHE Optimal PWM

  • 83/140

    Two-Level Natural Sampling Sine PWM

    a

    c

    bdcV o

    asi

    bsi

    csi

    anv

    bnv

    cnv

    1S

    2S

    3S

    4S

    5S

    6S

    dcV21

    dcV21

    ar

    cecr cL

    nbe

    br bL

    aL ae

    carrier wave

    sinewave Modulation signal

    n

    upper transistor on

    lower diode onper phase output voltage (with respect to dc center tap)

    dcV21

    dcV21

    dcV21

    dcV21

    Commut int.

    Switchingpattern

    volt. vector

    10000

    carrier int.21004

    31015

    41117

    51015

    61004

    70000

    J J + 1

    Pole Commutation Sequence Rule

    bov

    aov

    cov

    a

    c

    b

    84/140

    Three-Phase Inverter for AC Power Source

    3-phaseload

    3-PhaseMotor

    3-PhasePowerSupply

    SVPWM Generator

    dcV

  • 85/140

    Representation of Stator Voltage Vector

    2 2, exp( )3s a b c

    v v v j v

    v V ta m sin ,

    v V tb m sin( ) , 120

    v V tc m sin( ) , 120

    The motor stator voltage vector (or current vector) can be expressed as a combination of theinverter output phase voltage va , vb and vc which can be expressed in the vector form as

    where

    and Vm is the amplitude of the fundamental component.

    86/140

    Space Vector Representation of 3-Phase Systems

    Space vector based analysis method can also used for the analysis if three-phase inverter.The inverter output voltage vector (or current vector) can be expressed as a combination ofthe inverter output phase voltage va , vb and vc which can be expressed in the vector form as

    2 2, exp( )3s a b c

    j v v v vsin ,a mV tvsin( 120 ) ,b mV t v

    sin( 120 ) ,c mV t v

    where

    and Vm is the amplitude of the fundamental component. Note: The va is sometimes denoted as vaswith a subscript s meaning to apply to the stator.

    (a)t

    v tas( ) v tbs( ) v tcs( )

    (b)

    output voltage vectorbs

    cs

    asv tas( )

    )(tvbs v tcs( )

    ( )sqs tv

    )(tv sds

    ( )s tv

    ( )s tv

    mV

  • 87/140

    Vector Representation of 3-Phase Quantities

    22 ( )3

    j js as bs cs

    s sds qs

    v v e v e

    v jv

    v

    stator voltage vector

    23

    bs

    cs

    asv tas( )

    v tbs( )v tcs( )

    v tqss ( )

    v ts( )

    v tdss ( )

    (b)(a)

    t

    v tas( ) v tbs( ) v tcs( )

    88/140

    Space Vector Representation of 3-Phase Inverter

    70 , vv : zero voltage vector

    I

    II

    III

    IV

    V

    VI

    v2

    v1

    v3 v4

    v5

    v6

    V7 (1 1 1)

    (a) (b)

    4 6 2 3 1 5S1

    S2

    S3 S5

    S6

    o nVdc

    A

    C

    BS4

    asi

    csi

    bsibsv

    asv

    csv

    V4 (1 0 0) V6 (1 1 0) V2 (0 1 0)

    V3 (0 1 1) V1 (0 0 1) V5 (1 0 1) V0 (0 0 0)

  • 89/140

    Vector Decomposition Using Basic Switching Vectors

    Fig. (a) The switching configurations of a 3-phase PWM inverter, (b) the correspondingvectors, and (c) the decomposition of the voltage vector.

    (a) (b) (c)

    44 v

    TT

    s

    66 v

    TT

    s

    vref

    6v

    4v

    v V j nn d

    23

    13

    exp ( )where n = 1, 2, .., 6, and v0 = v7 = 0.

    The 8 basic switching vectors:

    : zero voltage vector

    III

    III

    IV

    V

    VI

    v2

    v1

    v3 v4

    v5

    v6

    70 , vv

    V7 (1 1 1) V4 (1 0 0) V6 (1 1 0) V2 (0 1 0)

    V3 (0 1 1) V1 (0 0 1) V5 (1 0 1) V0 (0 0 0)

    90/140

    Representation of 8 Basic PWM Switching Vectors

    The stator voltage vector can be decomposed to two orthogonal components in a two-axiscoordinate or as a combination of the two basic vectors of Fig. 2(b). An example of thevoltage vector decomposition is shown in Fig. 2(c). The SVPWM strategy aims tominimize the voltage/current harmonic distortion by proper selection of the switchingvectors and determination of their corresponding dwelling widths.

    v V jn

    n d

    23

    13

    exp( )

    where n = 1, 2, .., 6, and v0 = v7 = 0.

    There are eight basic switching configurations of the 3-phase PWM inverter as shown inFig. 2(a) and their corresponding voltage vectors are shown in Fig. 2(b) which can beexpressed as

  • 91/140

    Flux Trajectories

    V4T2

    V3T1

    V3T1

    V4T2

    R

    R

    V3T1

    V4T2

    120 *

    : zero voltage vector

    I

    II

    III

    IV

    V

    VI

    v3tv4t

    v3t

    trajector of the flux linkage

    v2

    v1

    v3 v4

    v5

    v6

    v v7 8,

    Vector Decomposition

    92/140

    Synthesis of Flux Trajectory by Integration of Voltage Vectors

    The flux produced by the reference voltage vector in a PWM switching period is acombination of each individual flux resulted by its corresponding voltage vector. Theirrelationships can be expressed as

    0 0 1 1 2 71 01

    0

    2

    0

    7Tref

    TTT

    TT

    TTs v dt v dt v dt v dt v dt.

    Because the voltage vector v1 and v2 are constant vector, and v0 and v7 are zero vector,we can obtain

    v vTT

    vTTref s s

    11

    22

    where Ts is the switching period, T1 and T2 are the dwelling time for v1 and v2 ,respectively.

    Note: The voltage vectors v1 and v2 are used for illustration purpose only.

  • 93/140

    Decomposition of a Voltage Vector

    11

    s

    T vT

    22

    s

    T vT

    refv

    2v

    1v

    The voltage space vector can be described in rectangular coordinates as follows

    T V T V T V ad d s d1 223

    10

    23

    6060 2

    23

    cossin

    cossin

    where , , and Vd is the dc-link voltage.a v Vref d 2 3 0 60

    T T as1 260

    60

    sin( )sin

    T T as2 2 60

    sinsin

    T T T T Ts7 0 2 12

    The equivalent PWM waveforms, which produce same average flux, may havevarious combinations of the basic vectors.

    94/140

    Possible Voltage Compositions of a Stator Voltage Vector

    (a)

    1

    -11

    -11

    -1

    vVda

    0.5

    vVdb

    0.5

    vVdc

    0.5

    t

    t

    t

    (b)

    Ts

    1

    -1

    1

    -11

    -1

    vVda

    0.5

    vVdb

    0.5

    vVdc

    0.5

    T02

    Ts2

    t

    t

    t

    T12

    T22

    T72

    T0 T7T2 T1

    (c) (d)

    1

    -11

    -11

    -1

    vVda

    0.5

    vVdb

    0.5

    vVdc

    0.5

    t

    t

    t

    1

    -11

    -11

    -1

    vVda

    0.5

    vVdb

    0.5

    vVdc

    0.5

    t

    t

    t

    T2T1T02

    T02

    Ts

    T2 T1T02

    T02

    Ts

  • 95/140

    Symmetric vs. Asymmetric SVPWM

    1

    -11

    -11

    -1T02

    Ts2

    T12

    T22

    T72

    (a)

    vVda

    0.5

    vVdb

    0.5

    vVdc

    0.5

    t

    t

    t

    1

    -11

    -11

    -1

    T0

    Ts2

    T1 T2T7

    (b)

    vVda

    0.5

    vVdb

    0.5

    vVdc

    0.5

    t

    t

    t

    T0 T2 T1 T7

    96/140

    Generation of Optimum PWM Patterns for SVPWM

    (a)

    1

    -11

    -11

    -1

    Ts

    T0 T7T2 T1

    1

    -11

    -11

    -1T02

    Ts2

    T12

    T22

    T72

    (b)

    1

    -11

    -11

    -1

    Ts2

    T12

    T22

    (c)

    vVda

    0.5t

    t

    t

    vVdb

    0.5

    vVdc

    0.5

    vVda

    0.5

    vVdb

    0.5

    vVdc

    0.5

    vVda

    0.5

    vVdb

    0.5

    vVdc

    0.5

    t

    t

    t

    t

    t

    t

  • 97/140

    PWM Gating Signals of SVPWM at Each Operation Section

    I II III IV VVISASASBSBSCSC

    I II III IV VVISASASBSBSCSC

    98/140

    Flux TrajectoriesOutput Frequency from 0,094 Hz to 1500 Hz

    (b) 5Hz (c) 60Hz(a) 94mHz

    (e) 1000Hz(d) 300Hz (f) 1.5kHz

    -150 -100 -50 0 50 100 150-150

    -100

    -50

    0

    50

    100

    150

    -15 -10 -5 0 5 10 15-15

    -10

    -5

    0

    5

    10

    15

    -3 -2 -1 0 1 2 3-3

    -2

    -1

    0

    1

    2

    3

  • General Form of Harmonic Injection Scheme

    Switchinglogic

    Dead time protection

    Dead-time compensation

    Protection latch

    Gate Driver

    *am

    *bm

    *cm

    dcadcnom

    adc

    aa kvVVv

    Vvm

    ***

    11

    ZeroSequenceSignalCalculator

    0e

    bm

    cm

    am

    1999.Simple analytical and graphical methods for carrier-based PWM-VSI drives (pe).pdf

    100/140

    Power Electronics Systems & Chips Lab., NCTU, Taiwan

    Dead-Time Protection and Distortion

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

  • 101/140

    Dead-Time Protection & Distortion

    Top transistor

    Bottom transistor

    ONON ON

    ONON

    Dead-Time

    2dcV

    2dcV

    ANv

    ai

    dcV

    N

    Ao

    To prevent shoot-through!

    AT

    AT

    AD

    AD

    The turn off of one transistor trig the delay (dead time) of its complementary turn on.

    Example of output current due to dead-time distortion.

    Current with Correction Disabled

    PWM Dead-Time Distortion Caused by Inductive Loads

    12 DC

    V

    DCV21

    Causes poor low-speed motor performance

    Torque ripple Distorts current Produces noise in audible

    region

  • 103/140

    Analysis of Dead-time Effect

    Dead-times effect: when a positive current IO flows through the load, the actual on time for switch S1 is shorter than the desired one. Consequently, the average voltage across the load is different from the desired one.

    Output voltage error due to the dead-time:

    Logi

    c ga

    te s

    igna

    lsA

    pplie

    d ga

    te s

    igna

    lsLo

    ad V

    olta

    ge

    ( )2DC dead

    ao oS

    V tv sign iT

    DCV21

    DCV21

    o a

    1D

    1D

    1G

    2G

    1S

    2S

    1E

    2E

    ai

    sRsLse

    Lv

    *1GEv

    *2GEv

    1GEv

    2GEv

    aov

    1ONt

    2ONt

    deadt

    ST t

    DCV21

    12 DC

    V

    Effect of Blanking Time t

    t

    t

    t

    t

    t

    t

    t

    0

    0

    0

    0

    0

    0

    0

    t

    t

    lossideal

    actual

    actual

    gain

    (c)

    (d)

    (f)

    (e)

    vcontrolvtri

    0Ai

    0Ai ideal

    aov

    (a)

    DCV21

    DCV21

    oa

    1D

    2D

    1G

    2G

    1S

    2S

    1E

    2E

    ai se

    sRsL

    Lv

    aov

    0ai 0ai

    refvV

    V

    (b)

    1GEv

    2GEv

    Ideal condition (no dead time)

    Ideal condition (no dead time)1GEv

    2GEv

    sT

  • 105/140

    Outputs Distortion Due to Dead-time Effect

    aov

    0ai 0ai

    refvV

    V(b)

    ,1aoV t

    ,1aI t

    t

    t

    with dead time

    0

    0

    (c)

    No dead time

    V

    (a)

    ( )2DC dead

    aS

    V tV sign iT

    DCV21

    DCV21

    o a

    1D

    2D

    1G

    2G

    1S

    2S

    1E

    2E

    ai

    sesRsL

    Lv

    Due to the current sign change

    Voltage Drop Vo Induced by the Blanking Time

    actualideal )()( ANAN vvv

    0

    0

    dc As

    AN

    dc As

    t V iT

    Vt V iT

    0

    0

    dc As

    BN

    dc As

    t V iT

    Vt V iT

    2 0

    2 0

    AN BN dc As

    o

    dc As

    tV V V iT

    Vt V i

    T

    0ideal actual

    Ts

    0

    Ts

    0

    t

    t

    t

    dcVAi

    ov

    oi

    BiA BBD

    BD

    AD

    AD

    AT

    AT

    BT

    BT

    ANv

    BNv

    0Ai

  • 107/140

    Effect of t on Vo

    (a)

    0

    Vo

    Vo

    No blanking time(independent of io)

    (b)

    Effect of t on Vo, where Vo is defined as a voltage drop if positive.

    dcVAi

    ov

    ov

    oicontrolv

    Bi

    0oi

    0oi

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    A BBD

    BD

    AD

    AD

    AT

    AT

    BT

    BT

    108/140

    Effect of ton the Sinusoidal Output

    0

    0

    t

    t

    ideal

    actual

    Measured current of a PWM inverter with dead-time distortion.

    )(tvo

    oi

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

  • 109/140

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Filter Design for Grid Inverters

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    110/140

    Control Architecture of a Single-Phase NPC Grid Inverter

    Sourceor

    Load

    ModulatorController

    ev

    1L gL

    cv

    2L gi

    gvfCci

    ai

    *v

    v

    GRID

    PLL

    gv

    ai

    gicv

    1dcv

    1dcv

    P

    N

    O

  • LCL Ripple Filter & EMI Filter of a Grid Inverter

    ev

    gLgi

    gv

    GRIDPWM Inverter

    dcV

    1S

    2S

    3S

    4S

    a

    b

    DC-link Return

    DC-link

    1L 2L

    C

    Ripple Filter EMI Filter

    xC yC

    yC

    yT xTxC

    F1

    L

    G

    NF2

    RV1

    Protection

    2LC1L

    CLL

    oC

    1L 2L

    1st-order L Filter 2nd-order LC Filter 3rd-order LCL Filter 4st-order LLCL Filter

    oL

    Voltage FedCurrent Fed Current Fed Current Fed

    Frequency Response of the LCL Filter

    2011.A Single Phase Grid Connected DC-AC Inverter with Reactive Power Control for Residential PV Application (Xiangdong Zong).pdf

    2 sf 1 2

    1L L 1 2

    1( )C L L

    60 /dB dec

    20 /dB dec

    0dB

    70dB

    gvdcV

    1L 2Lcv

    ci1Li 2LifC

    gi

    dcCdR

    0

    3 21 2 1 2 1 2

    ( )( )

    ( )

    1( ) ( )

    g

    gf

    ab v

    f d

    f f d

    i sH s

    v s

    sC Rs L L C s C R L L s L L

    a

    b

    0

    1sL

    0

    1 2

    20log L dBL L

    Inductance reduction with LCL filter:

    60HzdB

    ( )fH s

    100

    ( ) 1( )( )

    g

    gf

    ab v

    i sH s

    v s sL

    1S

    2S

    3S

    4S

    60 Hz

  • Frequency Response of LCL Ripple-Rejection Filter

    60 Hz

    1sL

    20

    0

    -20

    -40

    -60

    -80

    -100

    Gai

    n [d

    B]

    210 410 51010

    ( )fH s

    20 logQ

    60HzdB

    fsdB

    -60dB/dec

    1 2

    12 ( )L L 0

    12 L

    1 2

    12 ( )r f

    fL L C

    sfHz

    1 2

    1( )s L L

    -20dB/dec

    1 2

    12 L L C

    310

    31 2

    1

    fs L L C

    114/140

    Single Inductor Filter Design: Design Guide Lines

    單電感濾波器的設計較為簡單,也可提供濾波器與控制迴路設計的參考。

    併網電流在額定輸出的總諧波失真(≤5%)是濾波器設計的主要規格。假設其中2%來自電流漣波,另外3%來則其他非線性導致的失真,則來自電流漣波所導致的總諧波失真THD=2%可作為一階單電感濾波器的設計規格。

    濾波器與控制器頻率響應所構成的控制迴路,應使其閉路之頻寬介於電網頻率與開關頻率之間,同時維持足夠之相位邊界(phase margin > 60)。

    1 2

    1L L

    1 2

    1( )C L L

    60 /dB de c

    20 /dB de c

    0dB

    70dB0

    1sL

    60HzdB

    ( )fH s

    2 sf

    60 Hz

  • 115/140

    References: LCL Filter Design

    [1] Chapter 11: Grid Filter Design, Grid Converters for Photovoltaic and Wind Power Systems, Remus Teodorescu, Marco Liserre, and Pedro Rodriguez, Wiley; 1 Ed., IEEE Press, April 12, 2011.

    [2] P.A. Dahono, A. Purwadi, Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” IEEE Power Electronics and Drive Systems (PEDS) Conf. Proc., pp. 571-576, 21-24 Feb 1995.

    [3] Michael Lindgren and Jan Svensson, “Control of a voltage-source converter connected to the grid through an LCL-filter-application to active filtering,” IEEE IAS Annual Meeting, pp. 229-235, 1998.

    [4] M. Liserre, F. Blaabjerg, and S. Hansen, “Design and control of an LCL-filter based three-phase active rectifier,” IEEE IAS Annual Meeting, pp. 299-307, 2001. [see also: M. Liserre, F. Blaabjerg, and S. Hansen, “Design and control of an LCL-filter-based three-phase active rectifier,” IEEE Trans. Ind. Appl. vol. 41, no. 5, pp. 1281-1291, October 2005.]

    [5] M. Liserre, F. Blaabjerg, and A. Dell’Aquila, “Step-by-step design procedure for a grid-connected three-phase PWM voltage source converter,” International Journal of Electronics, vol. 91, no. 8, pp. 445–460. August 2004.

    [5] F.A. Magueed and J. Svensson, “Control of VSC connected to the grid through LCL -filter to achieve balanced currents,” IEEE IAS Annual Meeting, pp. 572-578, 2005.

    [6] R. Hamid and Hadi Saghafi, “Basic criteria in designing LCL filter for grid connected converters,” IEEE ISIE Conf. Proc., pp. 1996-2000, July 2006.

    [7] Fei Liu, Shanxu Duan, Pengwei Xu, Guoqiang Chen, and Fangrui Liu, “Design and control of three-Phase PV grid connected converter with LCL filter,” IEEE IECON Conf. Proc., pp. 1656-1661, Nov. 2007.

    [8] A. Papavasiliou, S.A. Papathanassiou, S.N. Manias, and G. Demetriadis, “Current control of a voltage source inverter connected to the grid via LCL filter,” IEEE PESC Conf. Proc., pp. 2379-2384, June 2007.

    [9] S. Saridakis, E. Koutroulis, and F. Blaabjerg, “Filter optimization of Si and SiC semiconductor-based H5 and Conergy-NPC transformerless PV inverters,” 15th European Conference on Power Electronics and Applications (EPE), pp. 1-10, 2-6 Sept. 2013.

    [10] A. Reznik, M.G. Simoes, A. Al-Durra, and S.M. Muyeen, “LCL filter design and performance analysis for grid-interconnected systems,”IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1225-1232, March-April 2014.

    [12] S. Sen, K. Yenduri, and P. Sensarma, “Step-by-step design and control of LCL filter based three phase grid-connected inverter,” IEEEInternational Conference on Industrial Technology (ICIT), pp. 503-508, 2014.

    [10] Y. Zhang, M. Xue, M. Li, Y. Kang, and J. M. Guerrero, “Co-design of the LCL filter and control for grid-connected inverters,” Journal of Power Electronics, vol. 14, no. 5, pp. 1047-1056, 2014.

    116/140

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Modeling of Grid Inverters

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

  • 117/140

    A Hybrid DC & AC Microgrid System

    Solar irradiation

    PVTemperature

    WindSpeed

    UtilityGrid

    Gear

    DFIG

    Boost Converter

    AC/DC/AC

    Breaker

    Battery Converter

    Main Converter

    Battery

    AC Load

    pvi 1i1L 1R

    pvvpvC

    STTv dcv dC

    1 11i dD

    DC

    Load

    7ST

    8ST

    D

    ci dcibi

    7Dbi

    8D

    3L 3Rbatv

    Dv

    aci

    1ST 3ST 5ST5D3D1D

    2L 2R

    4ST4D

    6ST6D

    2ST2D

    CB

    A2C

    CiBiAi

    Modeling of a Single-Phase Grid Inverter

    REF: Bradford Christopher Trento, Modeling and Control of Single Phase Grid-Tie Converters, Master Thesis, University of Tennessee, Knoxville, 2012.

    (a) Full-bridge grid inverter

    (b) Hybrid NPC Full-bridge grid inverter

  • Single-Phase Half-Bridge Grid Inverter

    Summary of dq-Transformation

    c

    b

    a

    fff

    ff

    23

    230

    21

    211

    32

    ff

    ff

    q

    d

    cossinsincos

    c

    b

    a

    q

    d

    fff

    ff

    sinsinsincoscoscos

    32

    0 cba fff

    abc dq

    1( )s tv

    ( )bv t ( )cv t

    b

    c

    a

    q

    ( )av t

    1.5

    1.0

    0.5

    23

    d

    ( )bv t ( )cv t

    1t

    ( )av tmV

    23 = angle between d-q and reference frames

  • 121/140

    Summary of dq-Transformation ..

    abcdq

    0 cba fff

    q

    d

    ff

    ff

    cossinsincos

    1 0

    1 32 21 32 2

    a

    b

    c

    ff

    ff

    f

    q

    d

    c

    b

    a

    ff

    fff

    sincossincos

    sincos

    122/140

    Modeling of a Full-Bridge Grid Inverter in Natural Reference Frame

  • Modeling of a Full-Bridge Grid Inverter in dq-Model Synchronous Reference Frame

    Simulation Model for a Three-Phase Grid-Connected PV Inverter System

    REF: Marcelo G. Molina, and Luis E. Juanico, “Dynamic modelling and control design of advanced photovoltaic solar system for distributed generation applications,” Journal of Electrical Engineering: Theory and Application, vol. 1, pp. 141-150, 2010.

    Tbst

    PV Solar ArrayBoost DC/DC

    ConverterThree-Phase Three-LevelVoltage Source Inverter Line Filter

    Step-UpCoupling

    Transformer

    Electric Utility Grid

    PCC

    Lb Db

    CbDfd

    Cd1

    Cd2

    0 NPa

    bc

    -Vd /2

    +Vpv /2

    -Vpv /2

    +Vd /2LF1

    LF2

    LF3

    CF1

    CF2CF3

    PV

    PV

    PV

    PV

    PV

    PV

    Yg):N( :1

    Np

    Ns

  • 125/140

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Control of Grid Inverters

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    台灣新竹‧交通大學‧電機控制工程研究所‧電力電子實驗室~鄒應嶼 教授

    126/140

    Intelligent Distributed Power Generation

    電力網路

    交流柴油發電機

    併網型太陽光變頻器

    併網型燃料電池變頻器

    微型渦輪發電機

    電池儲能發電機變頻器

    併網型風力發電變頻器

    儲能系統

    110/220 V, 50/60 Hz

    DCAC

    DCAC

    DCAC

    DCAC

    DCAC

    DCAC

  • 127/140

    Generic Control Structure for a PV Inverter with Boost Stage

    PVPanelsString

    dc-dcboost

    dc-acPWM-VSI

    LCLfilter

    X’form&

    Grid

    VdcControl

    GridSynchronization

    CurrentControl

    Basic Functions (grid connected converter)

    MPPTAnti-IslandingProtections

    Grid /PV plantMonitoring

    PV specific functions

    Active FilterControl

    Micro GridControl

    Grid Support(V,f,Q)

    Ancillary functions

    L

    N

    IPV

    VPV

    PWMPWM

    gV

    gI

    dcV

    C

    128/140

    Modeling of a Single-Phase Grid Inverter

    ai 1L

    dcC

    dcv

    bati

    1S

    2S

    3S

    4S

    a Lr

    invi

    ci

    GaN

    b

    gegL

    gi

    gv

    Grid

    MOSFET

    IGBT

    cvfC

    2LPCC

    Grid Disturbances

    batv

    0R2R

    2V2C

    oE

    I

    oV

    1R

    1C1V

    Battery Bank

    Nonlinear Characteristics of Filter Inductance

  • Block Diagram of a Single-Phase Grid Inverter

    CurrentControl

    PLL

    MPPT

    BatteryDC

    AC

    DC

    DC

    ctrlVDC

    )sin( tgrid

    Grid Islanding Protection

    CurrentController

    gridi

    refi

    dcV

    *dcv

    dcv

    dci

    gridv

    Load Power Control

    PLL Controller

    Loop Filter VCO*

    av

    ff

    PI

    Line VoltageDetector

    ˆavav

    1sPDdcV

    1S

    2S

    3S

    4S

    LA

    BgvLi

    *CHGi

    dcC

    Control Issues of Grid Inverters

    1S

    2S

    3S

    4S

    a

    bdcC

    invici

    dcvsv

    sR

    Large variation of grid voltage (may be shorted due to fault) Variations of grid impedance (inductive, resistive, or

    nonlinear rectifier) Disturbances, operation, and protection due to grid faults Filter dynamics and nonlinear characteristics (saturation

    effect of filter inductor) Nonlinearities of PWM inverter (dead-time effect, voltage

    drop of switching devices, etc.) PWM control due to selected inverter topology Noise corrupted feedback signal sensing (instantaneous

    average signal sampling, EMI due to switching, isolation, CM noise rejection, etc.)

    Large dc-link voltage variations Sampling effect due to PWM and digital control Parallel operation of multiple inverters

    fL

    cvfC gvGL

    AC Grid220V, 60Hz

    R

    R

    dci

    Fault Protection Test Shorted Circuit Test Open Circuit Test L/HHRT L/HVRT

  • Current Control of Single-Phase VSI Inverters

    Fen Li, Yunping Zou, Wei Chen, and Jie Zhang, “Comparison of current control techniques for single-phase voltage-source PWM rectifiers,”IEEE International Conference on Industrial Technology (ICIT), pp.1-4, 21-24 April 2008.

    PI Control IP Control Proportional Resonant (PR) Control Feed-Forward PR Control

    sKK ip

    PWMBridge

    2)1 (r

    r

    K

    s

    2)1 (r

    r

    K

    s

    PKabv

    sv

    mv

    mv

    mv

    abvsv

    sv

    si

    si

    si

    1

    L sr sL

    1

    L sr sL

    1

    L sr sL

    *si

    *si

    *si

    PK

    PWMBridge

    PWMBridge

    CurrentController

    PWMController

    sL

    si

    sv

    1S

    2S

    3S

    4S

    A

    B

    dcC

    PVi

    ci

    si

    *si

    sv

    dcviK

    sPWMBridge

    mv abvsv

    si1

    L sr sL*si

    PK

    invi

    132/140

    Current Control Architectures

    (a) Hysteresis control.

    (c) PWM ramp control.

    (b) Adaptive hysteresis control.

    (d) Predictive control.

    AdaptiveController

    aS

    bS

    cS

    si

    *si

    abc

    3

    aS

    bS

    cSsi

    *si

    abc

    3

    aS

    bS

    cS

    si

    *si

    3

    abc

    sv

    *sv a

    S

    bS

    cS

    3

    ki ks ki

    1ki

    *ki Minimization

    of g functionPredictive

    model

  • Current Control Architectures of 3-Phase VSI

    (a) Stationary PI in three-axis coordinates

    (b) PI in synchronous coordinates(c) PI in stationary coordinates

    SA

    SBSC

    Three-phaseLoad

    uAcuBc

    uCc

    Carrier

    Three-phaseLoad

    PWMmodulator

    isd

    isq

    isqc

    isdcPI

    PI

    dq

    ABC

    ABC

    dq

    ssinscos

    Currentregulator

    Coordinatetransformation

    PWMmodulator

    ABC

    ABC

    ibia

    ic

    K2

    K1

    K1

    K2

    i

    ii

    ci

    c

    cii

    cu

    cu

    Three-phaseLoad

    dcV

    dcV

    (b) State feedback controller in three-axis

    PWMmodulator

    Statefeedback

    FeedforwardDisturbance

    Integral part

    usc

    Three-phaseLoad

    dKfK

    iK

    pK

    *si

    si

    dcV

    dcV

    ai

    bi

    ci

    *ai*bi*ci

    ai

    bi

    ci

    134/140

    Current Control Techniques

    CurrentController

    PWMController

    sL

    si

    sv

    1S

    2S

    3S

    4S

    A

    B

    dcC

    ci

    si

    *si

    sv

    dcv

    dci invi

    dcv

    CurrentController

    PWMController

    sL

    si

    sv

    1S

    2S

    3S

    4S

    A

    B

    dcC

    ci

    *di

    dcv

    dci invi

    dcv

    CoordinateTransform

    PLL

    *qi

    si

    sv

    di qiqv

    CT

    (b) Control in synchronous rotating frame with control of signals in dc quantities.

    (a) Control in stationary frame with control of signals in ac quantities.

  • 135/140

    Control in Stationary Reference Frame

    abc

    PRcontroller

    PRcontroller

    HC

    HCdq

    *i

    *i

    i

    i

    *v

    *v

    GridModulation

    AndPWM

    InverterQcontroller

    DC-linkcontroller

    PLL

    *di

    *qi

    ai bi ci av bv cv

    *dcV

    *Q

    Q

    dcV

    2 20( )

    2 20

    0( )

    0

    ip

    PRi

    p

    K sKs

    G sK sK

    s

    General structure for stationary reference frame control strategy using resonant controllers and harmonic compensators.

    136/140

    Control in Synchronous Reference Frame

    PIcontroller

    Qcontroller

    PIcontroller

    Modulationand

    PWMInverter

    Grid

    DC-linkcontroller

    L

    L

    PLL

    *di

    *qi

    di

    qi di qi

    *dcV

    *Q

    Q

    dcV*dv

    *qv

    qv

    dv

    ai bi ciavbvcv

    qvdv

    General structure for synchronous rotating frame control using cross-coupling and voltage feedforward terms.

    ( )0

    ( )0

    ip

    dqPR

    ip

    KKsG s

    KKs

    dqabc

    dqabc

    Control in the synchronous reference frame transforms the reference signals and the feedback signals to dc quantities from a fixed reference frequency.

    In this control scheme, the accuracy of this reference angle () of the reference frame is the key for the elimination of the steady-state error. The design of the PLL plays an important role for both transient and steady-state responses.

  • Synchronous Reference Frame Current Control for Single-Phase PV Inverters

    2008.Synchronous Reference Frame Grid Current Control for Single-Phase Photovoltaic Converters (ias).pdf

    Grid Current

    Grid Voltage

    CurrentController

    PLL

    PVString

    0dV

    sksk ip

    s1

    V

    dV̂

    ff

    V

    ,qd ,

    Delay

    *dI dv

    qd

    0* qI v

    dI

    qI

    i

    i

    PI

    PI

    PLL

    TV

    2

    -1

    qvto

    qd to

    qV̂

    ̂

    ̂

    PWMModulator

    ̂

    *gI

    138/140

    Control of Three-Phase Three-Level Grid Inverter

    vrvm

    VpvPg

    Kv∆v

    iqr min

    vm idr max

    Ipv vmPr1 idr mix

    TtrackDiniC1

    D

    idr1

    vq1 vd1

    vq vd idiqid1

    iq1

    va vb vc ia ib ic

    θs

    θs

    iqr manVCM

    MPPT Voltage Control

    LC1

    APCM

    LPF

    Mag(v)

    LPF LPF

    MPPTAlgorithm

    dq0abc abc

    dq0

    Lagcompensator

    PIDcontroller

    PI1iqr 1 ∆iqr1

    Lmax

    Lminiq1

    id1

    idr1 ∆idr1

    x1

    Lmax

    PIDcontroller

    PI3

    Lmin

    PIDcontroller

    Lmax

    Lmin

    LPF

    idr* PI2

    x2

    ∆Vd ∆Vdr

    Vd max

    Vd min

    Vd D

    Current Control PWM Control

    dq0abc

    vinv q1

    θs

    vinv d1

    vinva vinv b vinvc

    1

    -1

    4

    4

    4

    1

    0

    Three-phasedq-PLL

    Three-PhaseThree-LevelVSI SPWM

    DC-DCConverter

    PWM 1

    Three-phase

    VSIIGBTsControlPulses

    DC-DCConverter

    IGBTsControlPulses

    dV

    L‘s

    L‘s

    av bv cv s

  • 139/140

    Evaluations of Current Controllers

    A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, “Evaluation of current controllers for distributed power generation systems,” IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 654-664, March 2009.

    (a) General structure for synchronous rotating frame control using cross-coupling and voltage feedforward terms.

    (b) General structure for stationary reference frame control strategy using resonant controllers and harmonic compensators.

    Control Algorithms for the Grid Inverters

    11

    1LrsL

    si

    dcv

    dm

    dc

    vv

    abv sv*si

    PWMModulator

    Hysteresis Control, Variable Hysteresis Control PI Control, IP Control, Adaptive PI Control Dead-Beat Control, Soft Dead-Beat Control Predictive Control, Adaptive Predictive Control Proportional Resonant (PR) Control Repetitive Control, Adaptive Repetitive Control Repetitive Control with Limited BW Constraint H∞ Repetitive Control Fuzzy Control Phase-Locked Loop Control Control Loop Design with LCL, LCCL, and LLCL Filter