18
EGE UNIVERSITY ENGINEERING FACULTY CIVIL ENGINEERING DEPARTMENT 2013 -2014 STEEL STRUCTURES – 2 PROJECT 1 st CHECKING Student No: Name: 05100000837 Doğan SAMANCIOĞLU

Proje Celik Doğan

  • Upload
    mert180

  • View
    235

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Proje Celik Doğan

EGE UNIVERSITY

ENGINEERING FACULTY

CIVIL ENGINEERING DEPARTMENT

2013 -2014

STEEL STRUCTURES – 2

PROJECT

1st CHECKING

Student No: Name:

05100000837 Doğan SAMANCIOĞLU

Page 2: Proje Celik Doğan

1. PROJECT DATA

Relevant information about steel structure was indicated in Figure1.

1.1.Roof Slope

tan∝= 3/8= 0,375 ; ∝ =20,55

1.2.Length Of Frame Elements

Lower Flange( Ui) ;

U1= U’1=U2 =U’2= U3=U’3=U4=U’4= 16/8 = 2 m

Verticals ( Vi=tan∝*Ui);

V1=V’1= 2*0,375 =0,75 m

V2=V’2=(2+2)*0,375= 1,5 m

V3=V’3=(2+2+2)*0,375= 2,25 m

V4=V’4=(2+2+2+2)*0,375=3 m

Diaganals (Di);D1=D’1=√V 1²+U 2² = √0 ,75²+2²= 2,14 m

D2=D’2=√V 2²+U 3² = √1 ,5²+2² =2,5 m

D3=D’3= √V 3²+U 4²= √2 ,25²+2² =3,01 m

2

*Material: St37*Type of purlin: Simple Beam*Type of roof clading: Sandwich Panel*City/Elevation: İzmir / 25 m*Height of the building = 7 m

Page 3: Proje Celik Doğan

Upper Flange(Oi);

O1=O’1=√U 1²+V 1²= √2²+0 ,75²=2,14 m

O2=O’2= √(U 1+U 2)²+V 2²- O1= √4²+1 ,5²- 2,14= 2,14 m

O3=O’3= √(U 1+U 2+U 3)²+V 3²- O1-O2= 2,14 m

O4=O’4=√(U 1+U 2+U 3+U 4) ²+V 4² - O1-O2-O3=2,14 m

Calculated values are shown in Figure 2.

Figure 2. Length of the members

2. LOADS

2.1. Snow Load

Snow load is affected like in Figure 3 on the roof.

Figure 3.Loading condition for snow

Pk=m.Pko Pk= snow load calculation value Pko= snow loadm=reduction factor dependent on roof slope

According to TS 498(1980);City: İzmir……I.Bölge pko=75 kg/cm2Elevation: 25 m<200 …..m=1

Pk=1*75= 75 kg/m2Pk vertical= 75*cos20,55= 70,23 kg/m2

3

Page 4: Proje Celik Doğan

2.2. Wind Load

TS 498 suggests following equations for wind load calculations(Figure 4):

Figure 4. Calculation of wind load

Height of the building 7m<8 m …… q= 50 kg/m2

Wind left; (1,2sin∝ -0,4)q = (1,2sin20,55 – 0,4)*50= 1,06 kg/m2

-0,4q= -0,4*50= -20 kg/m2

There is sucking pressure both side of the roof .

2.3. Roof Clading

In this project Aluminium sandwich panel produced by Atermit Firm was used. Relevant information

is in the Table 1.

Table 1.Bearing capasity

Opening of purlin : 2,14 m

4

a=roof slope

q= sucking pressure dependent on height of the building(kg/m2)

Page 5: Proje Celik Doğan

There is snow and wind load on the roof and roof clading should be bear 75 kg/m2 .

Choosed clading can bear max 143 kg/m2.

Effect type of cladding load is shown in Figure 5.

Figure 5. Effect of cladding

2.4. Purlin Self Weight

In beginning of the project weight of the purlin was estimated 12 kg/m2 on the horizontal plane.

2.5. Stability Bars

Stability bars will connect to the purlins and weight of the stability bars is used 3 kg/m2 .

2.6. Truss Self Weight

In the beginning of the project weight of the truss was estimated 16 kg/m2 on the horizontal plane.

2.7. Loads Table

First Loads were shown in the table2.

Table2. First Loads

Dead Load

Roof Cladding 5,20 kg/m2Purlin self weight 12 kg/m2Stability Bars 3 kg/m2

total 20,2 kg/m2Truss self weight 16 kg/m2

total 36,2 kg/m2

Snow Load For horizontal plane 75 kg/cm2

Wind LoadFor roof plane Left RightWind-left 1,06 -20Wind-right -20 -1,06

3. PURLIN CALCULATION

Purlin was supported as basic beam. Interval of the purlin was used as 3m . and Interval of the truss beam was used 6 meters(figure6).

3.1. Determination Of Loads And Section Stress For Purlin:

5

Page 6: Proje Celik Doğan

Wind load is sucking both side of the roof. Therefore in purlin calculation Wind load was accepted as

0. Figure 6. Intervals

Snow load ;

Pk =75 kg/m2

On the one purlin surface ; 75*3=225 kg/m

Roof cladding; 5.20 kg/m2

On the one purlin surface ; 5,20*2,14=11,128 kg/m

Purlin self weight; 12 kg/m2

On the one purlin surface ; 12*3=36 kg/m

Stability bars;3 kg/m2

On the one purlin surface ;3*3=9 kg/m

Load on the purlin as horizontal:

225+11,128+36+9=281,128 kg/m2

qx=281,128*cos20,55= 263,24 kg/m

qy=281,128*sin20,55= 98,68 kg/m

Direction of the loads is in Figure 7. Figure 7. Directions

Purlin was designed as basic beam:

Mx= qx∗l2

8 = 263,24*6²/8= 1184,58 kgm =118458 kgcm

My=qy∗l2

8 = 98,68*6²/8 = 3444,06 kgm= 44406 kgcm

3.2. Choosing Of Purlin Profil

σ =MW ; σem=1440 kg/cm2

Wx (needed)=Mxσ = 118458/1440= 82,26 cm3

Wy (needed)=Myσ = 44406/1440= 30,84 cm3

Profil I140;

Wx (needed)= 82,26 cm3 > Wx=81,9 cm3

6

Profil I140Wx=81,9 cm3Wy=10,7 cm3

Page 7: Proje Celik Doğan

Profil I140 is not suitable under these conditions.

Profil I160;

σ Control (N=0)

σ =MxWx +

MyWy ≤ σem

*Tieless :

σ =118458

117 +4440614,8 = 4012,86 ¿ σem=1440 kg/cm2

*Single tie : l/2= 6/2= 3m for My direction

σ =118458

117 +( 98,68∗32 )∗100

814,8

= 1762,56 kg/cm2 ¿ σem=1120 kg/cm2

*Double tie: l/3=6/3=2 m My direction

σ =118458

117 +( 98,68∗22 )∗100

814,8

=1345,84 kg/cm2 ¿σem=1120 kg/cm2

Deflection control:

fx= 5

384 * qx l4

E∗Ix ; fy=

5384 * qy l

4

E∗Iy ; f=√ fx 2+ fy2 < l/300

fx=5

384 *263,24∗10−2∗6004

2100000∗935 =2,26 cm

fy=5

384 *96,68∗10−2∗3004

2100000∗54,7 =0,90 cm

f=√2,262+0,902 = 2,43 > 600/300=2 cm

Profil is not suitable under these conditions even if it has double ties..

7

Profil I160Ix=935 cm4Iy=54,7 cm4Wx=117 cm3Wy=14,8 cm3

Page 8: Proje Celik Doğan

Profil I180;

σ =MxWx +

MyWy ≤ σem

Tieless:

σ =118458

161 +4440619,8 = 2978,5 ¿ σem=1440 kg/cm2

Single tie: l/2= 6/2= 3m for My direction

σ =118458

161 +( 98,68∗32 )∗100

819,8

=1296,45 ¿σem=1440 kg/cm2

Deflection control:

fx= 5

384 * qx l4

E∗Ix ; fy=

5384 * qy l

4

E∗Iy ; f=√ fx 2+ fy2 < l/300

fx=5

384 *263,24∗10−2∗6004

2100000∗1450 =1,458 cm

fy=5

384 *98,68∗10−2∗3004

2100000∗81,3 =0,61 cm

f=√1,4582+0,612 = 1,58 cm < 2 cm

Checking shear forces in purlin:

τx=¿ TxA≤ τem=1440

√3=831,38kg/cm2

τy=¿ TyA≤ τem=1440

√3=831,38kg/cm2

8

Profil I180Ix=1450 cm4Iy=81,3 cm4Wx=161 cm3Wy=19,8 cm3

Page 9: Proje Celik Doğan

Tx= qx*l/2 = 263,24*6/2=789,72kg/cm2 < 831,38kg/cm2

Ty=qy*l/2=98,68*3/2= 148,02 kg/cm2 <831,38kg/cm2

Choosed profil : I180- Single Tie birim boy ağırlığı: 21,9 kg/m

Control Of Choosed Profil with own weight: weight of the unit length: 21,9 kg/m

Load on the purlin as horizontal: snow, roof, purlin, stability, respectively:

225+11,128+ 21,9 +9=267,02 kg/m2

qx=263,24*cos20,55= 246,48 kg/m

qy=263,24*sin20,55= 92,40 kg/m

Purlin was designed as basic beam:

Mx= qx∗l2

8 = 246,48*6²/8= 1109,16 kgm =110916 kgcm

My=qy∗l2

8 = 92,40*6²/8 = 415,8kgm= 41580 kgcm

Profil Control For Purlin:

σ =MW ; σem=1440 kg/cm2

Wx (needed)=Mxσ = 110916/1440= 77,03 cm3 < Wx=161 cm3

Wy (needed)=Myσ = 41580/1440= 28,88 cm3 > Wy=19,8 cm3

Single Tie : l/2= 6/2= 3m for My direction

σ Control (N=0)

9

Profil I180Ix=1450 cm4Iy=81,3 cm4Wx=161 cm3Wy=19,8 cm3

Page 10: Proje Celik Doğan

σ =110916

161 +( 92,40∗32 )∗100

819,8

=1213,92 ¿σem=1440 kg/cm2

Deplasman:

fx= 5

384 * qx l4

E∗Ix ; fy=

5384 * qy l

4

E∗Iy ; f=√ fx 2+ fy2 < l/300

fx=5

384 *246,68∗10−2∗6004

2100000∗1450 =1,36 cm

fy=5

384 *92,40∗10−2∗3004

2100000∗81,3 =0,57 cm

f=√1,362+0,572 = 1,47 cm < 2 cm

3.3. Last Loads on Purlin:

After purlin calculations loads with real weight of purlin were shown in Table 3.

Table 3. Last Loads after purlin calculationsSnow 225 kg/m : 3m 75 kg/m2Roof 11,128 kg/m :2,14m 5,20 kg/m2Purlin (I180) 21,9 kg/m : 3m 7,3 kg/m2Stability 9 kg/m:3m 3 kg/m2

Total: 90,50 kg/m2

3.4. Control of Ridge Purlin

Loads are used as half of the general purlin loads.(Table 4).

Table 4. Half LoadsSnow 112,5 kg/mRoof 5,564 kg/mPurlin (I180) 10,95 kg/mStability 4,5 kg/m

Total: 133,514 kg/m2

qx=133,514*cos20,55 = 125,02 kg/m

qy=133,514*sin20,55 = 46,87 kg/m

10

Page 11: Proje Celik Doğan

Ridge purlin was designed as basic beam, too:

Mx= 125,02∗62

8 = 562,59 kgm =56259 kgcm

My=46,87∗62

8 = 210,92 kgm= 21092 kgcm

Choosed profil I180 as tieless :

σ =56259

161 +2109219,8 = 1414,7kg/cm2 < σem=1440 kg/cm2

Deflection Control:

fx=5

384 *125,02∗10−2∗6004

2100000∗1450 =0,69 cm

fy=5

384 *46,87∗10−2∗6004

2100000∗81,3 =4,63 cm

f=√0,692+4,632 = 4,68 cm > 2 cm

A support profil is needed. General for ridge purlin L40.40.4 profil is used.

Single tie:

σ =56259

161 +( 46,87∗32 )∗100

819,8

=615,74kg/cm2 < σem=1440 kg/cm2

Single tie is suitable and L40.40.4 profil can be choosed.4. Tie Bar Dimensions

Purlin with single tie bar;

Z is force in skewed tie bar and qy is the total qy component of all purlin (except ridge purlin between two truss beam;

Z= L

4 cosβ Σqy

In this design there are 8 purlin with 6 meters length between two truss.

Tanβ = 3/2,14 = 1,40 ; β=54,46°

Z= 6

4 cos 54,46 *(8*92,40)=1907,54 kg

Atie= Zσem =

1907,541440 = 1,32 cm2

11

Page 12: Proje Celik Doğan

ϕ 12 = 1,13 cm2 1907,54/1,13 =1688 kg/cm2 > σem=1440 kg/cm2

ϕ 14 = 1,54 cm2 1907,54/1,54 =1238,7 kg/cm2 ¿ 1440 kg/cm2

***Choosed tie bar: ϕ 14 ***

5. CALCULATION FORCE OF LATTICE BAR

One sample of point loads calculation was mentioned below( for snow). Other loading was calculated by the help of SAP2000(Tablo6) . Used loads in Sap were shown in Table 5.

Table.5. Truss LoadsSnow 75 kg/m2 *3*6 1350 kgRoof 5,20 kg/m2*2,14*6 66,7kgPurlin (I180) 21,9 kg/m*6 132kgStability 3 kg/m2*3*6 54kgWind left 1,06/ -20 kg/m2 13,58/ -256,30Wind right -20/ 1,06 -256,30/ 13,58Truss 16 kg/m2*3*6 288kg

5.1. Snow Loading:

ΣMA=¿ 1350(2+4+6+8+10+12+14)+675*16=By*16 ; By= 86400/16=5400 kgAy=By=5400 kg

Point

O1y=5400-675=4725

0,752

=4725O 1x

;

12

Page 13: Proje Celik Doğan

O1x= 12600

O1= √4725²+12600² =13456 (-)

U1= O1x=12600 (+)

Point U2=12600(+)V1=0

Point – - RitterΣM3= 5400*4-675*4-1350*2-O2y*2-O2x*0,75=01,5 O2x = 24300O2x= 16200O2y=4050O2= 13504(-)

3*O2y= 0,75 *O2x (From angle)

Point – - – Ritter

Σ M4=5400*6-675*6-1350*4-1350*2- O3x*1,5-O3y*3=0

30375=2,25* O3xO3x = 13500O3y=3375O3=11490 (-)

3*O2y= 0,75 *O2x (From angle)

Point – - – – Ritter5400*18-675*18-1350*6-1350*4-1350*2- O4x*2,25-O4y*3=0

32400=3* O4xO4x=10800O4y=2700

13

Page 14: Proje Celik Doğan

O4=9329 (-)

Point

D1= √2700²+675² = 2783,09 (-)

Point

V2=675 (+)U3=12600-2700=9900(+)

Point

D2=√2700²+1350² =3018,69 (-)

Point V3=1350(+)U4=9900-2700= 7200(+)

Point

D3= √2700²+2025² =3375 (-)

14

Page 15: Proje Celik Doğan

Point V4= 2700+2700=4050(+)

The other points are symetric with these points.

Wind Left Loading

Wind Right Loading

Dead Loading

15

Page 16: Proje Celik Doğan

16