Rie 28 Presentation

Embed Size (px)

Citation preview

  • 8/13/2019 Rie 28 Presentation

    1/25

  • 8/13/2019 Rie 28 Presentation

    2/25

    The Competition

    Every two years SENAI promotes the KnowledgeOlympiad;

    Industrial Robotics is an occupation where a teamof three students need to develop a mobile robot;

    2012 regional competition demanded a robot able

    to identify and extinguish fire focuses.

    paper 28 p. 2

  • 8/13/2019 Rie 28 Presentation

    3/25

    The Robot

    Pneumatic components (1)

    Transmission components(2)

    Batteries (3)

    Flame detector sensor

    board (4)

    Step motors (5) Robot chassis (6)

    Robot controller (7)

    Drives (8)

    paper 28 p. 3

  • 8/13/2019 Rie 28 Presentation

    4/25

    Mathematical model

    x

    =f

    (x, u

    ) =

    cosx3 0

    sinx3

    00 1

    u (1)

    paper 28 p. 4

  • 8/13/2019 Rie 28 Presentation

    5/25

  • 8/13/2019 Rie 28 Presentation

    6/25

    Mathematical model

    paper 28 p. 6

  • 8/13/2019 Rie 28 Presentation

    7/25

    Mathematical model

    e= x21+ x

    22 (4)

    = atan2(x2, x1) (5)

    = x3 . (6)

    e=u1cos

    =u1sin

    e

    = u1sin

    e +u2.

    (7)

    paper 28 p. 7

  • 8/13/2019 Rie 28 Presentation

    8/25

    Mathematical model

    r

    =

    u1+u2b

    2

    rr (8)

    l =u1 u2

    b

    2

    rl(9)

    nr =r

    2NrT (10)

    nl = l

    2NlT (11)

    paper 28 p. 8

  • 8/13/2019 Rie 28 Presentation

    9/25

    System Stability

    Lyapunov candidate function:

    V =12e2 +12(

    2 +h2), (12)

    Input signal u(k)that makes the system stable:

    u1= 1e cos (13)

    u2=

    2

    1cos

    sin

    (

    h), (14)

    paper 28 p. 9

  • 8/13/2019 Rie 28 Presentation

    10/25

    Pose Estimation

    xc[k+ 1] = xc[k] + D[k]cosc[k] +[k]

    2 (15)

    yc[k+ 1] = yc[k] + D[k]sin

    c[k] +

    [k]

    2

    (16)

    c[k+ 1] = c[k] + [k] (17)

    D[k] = nprNpr 2rr+

    npl

    Npl 2rl

    2 (18)

    [k] = npr

    Npr2rr

    npl

    Npl2rl

    b (19)

    paper 28 p. 10

  • 8/13/2019 Rie 28 Presentation

    11/25

    Simulation Results

    0 2 4 6 8 10 12 14 16 18 200

    0.5

    1

    1.5

    2

    2.5

    time(s)

    xc(t)

    Point Stabilization: xc x time

    paper 28 p. 11

  • 8/13/2019 Rie 28 Presentation

    12/25

    Simulation Results

    0 2 4 6 8 10 12 14 16 18 200

    0.5

    1

    1.5

    2

    2.5

    time(s)

    yc(t)

    Point Stabilization: yc x time

    paper 28 p. 12

  • 8/13/2019 Rie 28 Presentation

    13/25

    Simulation Results

    0 2 4 6 8 10 12 14 16 18 200

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    time(s)

    thetac(t),rad

    Point Stabilization: thetac x time

    paper 28 p. 13

  • 8/13/2019 Rie 28 Presentation

    14/25

    Simulation Results

    0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5

    xc(t)

    yc(t)

    Point Stabilization: xc x yc

    paper 28 p. 14

  • 8/13/2019 Rie 28 Presentation

    15/25

    Simulation Results

    0 2 4 6 8 10 12 14 16 18 202

    1

    0

    1

    2

    3

    4

    5

    time(s)

    v(t),m

    /s,omega(t),rad/s

    Point Stabilization: (v, omega) x time

    paper 28 p. 15

  • 8/13/2019 Rie 28 Presentation

    16/25

    Simulation Results

    0 2 4 6 8 10 12 14 16 18 20400

    200

    0

    200

    400

    600

    800

    time(s)

    npr(t),npl(t)

    Point Stabilization: (npr, npl) x time

    paper 28 p. 16

  • 8/13/2019 Rie 28 Presentation

    17/25

    Simulation Results

    0 2 4 6 8 10 12 14 16 18 202

    1.5

    1

    0.5

    0

    0.5

    1

    1.5

    2

    2.5

    time(s)

    xc(t)

    Path Tracking: xc x time

    paper 28 p. 17

  • 8/13/2019 Rie 28 Presentation

    18/25

    Simulation Results

    0 2 4 6 8 10 12 14 16 18 204

    3

    2

    1

    0

    1

    2

    3

    4

    time(s)

    yc(t)

    Path Tracking: yc x time

    paper 28 p. 18

  • 8/13/2019 Rie 28 Presentation

    19/25

    Simulation Results

    0 2 4 6 8 10 12 14 16 18 201

    0

    1

    2

    3

    4

    5

    6

    7

    time(s)

    thetac(t),rad

    Path Tracking: thetac x time

    paper 28 p. 19

  • 8/13/2019 Rie 28 Presentation

    20/25

    Simulation Results

    2 1.5 1 0.5 0 0.5 1 1.5 2 2.54

    3

    2

    1

    0

    1

    2

    3

    4

    xc(t)

    yc(t)

    Path Tracking: xc x yc

    paper 28 p. 20

  • 8/13/2019 Rie 28 Presentation

    21/25

    Simulation Results

    0 2 4 6 8 10 12 14 16 18 205

    0

    5

    10

    15

    20

    25

    30

    35

    time(s)

    v(t),m/s,omega(t),rad/s

    Path Tracking: (v, omega) x time

    paper 28 p. 21

  • 8/13/2019 Rie 28 Presentation

    22/25

    Simulation Results

    0 2 4 6 8 10 12 14 16 18 2080

    60

    40

    20

    0

    20

    40

    60

    80

    time(s)

    npr(t),npl(t)

    Path Tracking: (npr, npl) x time

    paper 28 p. 22

  • 8/13/2019 Rie 28 Presentation

    23/25

    Simulation Results

    0 2 4 6 8 10 12 14 16 18 205000

    0

    5000

    10000

    15000

    20000

    time(s)

    nr,nl

    Path Tracking: (nr, nl) x time

    paper 28 p. 23

    A k l d t

  • 8/13/2019 Rie 28 Presentation

    24/25

    Acknowledgment

    Authors would like to thank Fundao de Apoio Pesquisa do Estado do Rio Grande do Sul

    (FAPERGS) and Servio Nacional de AprendizagemIndustrial (SENAI) for the financial support.

    paper 28 p. 24

    Th k Y !

  • 8/13/2019 Rie 28 Presentation

    25/25

    Thank You!

    QUESTIONS?

    paper 28 p. 25