68
i ĐẠI HC QUC GIA THÀNH PHHCHÍ MINH TRƢỜNG ĐẠI HC BÁCH KHOA KHOA KTHUT HÓA HC BMÔN CÔNG NGH SINH HC ------------------oOo------------------- ĐỒ ÁN MÔN HC S  Ả N XU  Ấ T BIODIESEL TVI T  Ả O: K  Ỹ THU  Ậ T NUÔI C  Ấ  Y VI T  Ả O THU LIPID SVTH: BÙI NG C ĐOAN CHIÊU MSSV: 60604048 GVHD: KS. HU NH NGUYN ANH KHOA Tp HCM, Tháng 6/2010

SẢN XUẤT LIPID TỪ VI TẢO

Embed Size (px)

Citation preview

Page 1: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 1/68

i

ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH

TRƢỜNG ĐẠI HỌC BÁCH KHOA

KHOA KỸ THUẬT HÓA HỌC

BỘ MÔN CÔNG NGHỆ SINH HỌC

------------------oOo-------------------

ĐỒ ÁN MÔN HỌC

S Ả N XU Ấ T BIODIESEL TỪ VI T Ả O:

K Ỹ THU Ậ T NUÔI C Ấ  Y VI T Ả O THU LIPID

SVTH: BÙI NGỌC ĐOAN CHIÊU 

MSSV: 60604048

GVHD: KS. HUỲNH NGUYỄN ANH KHOA

Tp HCM, Tháng 6/2010

Page 2: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 2/68

ii

LỜI CÁM ƠN 

Đồ án môn học Sản xuấ t biodiesel t ừ vi t ảo: K  ỹ  thuật nuôi cấ  y vi t ảo thu lipid  

đƣợ c thực hiện từ tháng 2 đến tháng 7/2010. Trong suốt quá trình đó, để hoàn tất tốt

các nội dung nghiên cứu, em đã nhận đƣợ c rất nhiều sự giúp đỡ nhiệt tình và cở i mở .

Em xin đƣợ c gửi đến:

KS. HU Ỳ  NH NGUY  Ễ  N ANH KHOA, là cán bộ trực tiếp hƣớ ng dẫn em làm đồ án

này, lờ i cảm ơn sâu sắc và chân thành. Chính nhờ sự hƣớ ng dẫn tận tình về mặt kiến

thức và giúp đỡ về mặt tài liệu học thuật của thầy, em đã hoàn thành tốt các nội dung

đề ra.

TS. NGUY  Ễ  N TH  Ị HUY  Ề  N, là cán bộ làm việc tại phòng 117B2, lòng biết ơn tri

ân. Cô đã luôn tạo không khí thoải mái khi em vào phòng trao đổi học tập, điều đó có

tác dụng động viên em rất nhiều.

T ậ  p thể  quý thầ  y cô thuộc bộ môn Công nghệ sinh học nói riêng và khoa K  ỹ  

thuật hóa học nói chung lòng biết ơn thật nhiều. Thầy cô là những ngƣời đã cung cấp

các kiến thức cơ sở  cũng nhƣ chuyên ngành cho em trong suốt quá trình lâu dài làm

nền tảng cho những nghiên cứu về sau.

Page 3: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 3/68

iii

TÓM TẮT ĐỒ ÁN

Thực trạng ô nhiễm môi trƣờ ng và sự thiếu hụt nguồn năng lƣợng trong tƣơng lai

chính là mối quan tâm hàng đầu của các quốc gia hiện nay, và biodiesel đƣợ c xem là

một giải pháp khả thi nhằm thay thế cho nguồn nhiên liệu diesel dầu hỏa sử dụng cho

các phƣơng tiện giao thông vận tải lẫn trong công nghiệp.

Trong khi các nguồn nguyên liệu sản xuất biodiesel thông thƣờ ng: dầu thực vật,

mỡ  động vật và nguồn dầu mỡ phế thải đều tỏ ra không thể đáp ứng nhu cầu biodiesel

trên toàn thế giớ i, vi tảo lại thể hiện là một đối tƣợ ng rất tiềm năng cho lĩnh vực này

nhờ  vào khả năng sản xuất sinh khối lớ n và nguồn lipid thu nhận từ các loài vi tảo

cũng khá phù hợp để điều chế biodiesel.

Tình hình nghiên cứu và áp dụng nuôi cấy vi tảo trên quy mô lớ n ngày càng phổ 

biến trong nhiều lĩnh vực nhƣ: sản xuất thực phẩm chức năng và xử lý môi trƣờ ng, do

đó việc ứng dụng nuôi cấy vi tảo trên các môi trƣờ ng sửa đổi để nâng cao năng suấtlipid phục vụ sản xuất biodiesel là hoàn toàn có khả thi.

Nghiên cứu các đặc điểm sinh lý và sinh hóa của loài vi tảo  Nannochloropsis

oculata có thể dự đoán đƣợc đây là một loài vi tảo rất phù hợ p vớ i mục tiêu sản xuất

 biodiesel: năng suất sinh khối cao trong môi trƣờ ng quang tự dƣỡ ng, hàm lƣợ ng lipid

nhiều và thành phần lipid dễ điều chỉnh theo điều kiện nuôi cấy. Từ đó đề xuất khảo

sát các yếu tố môi trƣờ ng nhằm nuôi cấy Nannochloropsis oculata thu lipid với năng

suất cao: môi trƣờng f/2, độ mặn trong khoảng 22-49g NaCl/L, nhiệt độ môi trƣờ ng25-270C, chiếu sáng bằng đèn huỳnh quang ít tỏa nhiệt 400-500µmol/m2s, hạn chế 

nồng độ nitrogen và phosphorus.

Page 4: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 4/68

iv

ABSTRACT

Pollution and limitation of energy are the most important concerns of nations,

and biodiesel is considered such as a possible solution to replace petroleum diesel,

which is used for transportation and industry.

While plant oil, animal fat and waste oil which are common for biodiesel

production cannot satisfy biodiesel demand all over the world, microalgae express to

be an essential candidate for this task due to high yield of biomass and compatible

lipid component for biodiesel production.

Researchs and applications in microalgae culturing on large scale become more

and more common in many fields: functional food production and environment

treatment, so using modified medium culture to improve lipid content in microalgae

cells is really feasible.

Studying in physiological and biochemical characteristics of  Nannochloropsis

oculata gives suggestion that   N. oculata should be a suitable source for biodiesel

production: produces high yield of biomass in autotrophic culture, accumulates high

lipid content and easily be controlled lipid composition under different conditions.

Hence some nutriments factors, temperature and light regimes are proposed to grow N.

oculata with high lipid productivity: f/2 medium, salinity at 22-49g NaCl/L,

temperature at 25-270C, irradiance at 400-500µmol/m2s with cool white fluorescent

tubes, limited nitrogen and phosphorus concentrations.

Page 5: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 5/68

v

MỤC LỤC

Đề mục  Trang 

LỜI CÁM ƠN .....................................................................................................ii  

TÓM TẮT ĐỒ ÁN ............................................................................................ iii 

MỤC LỤC .......................................................................................................... v 

DANH SÁCH BẢNG ....................................................................................... vii 

DANH SÁCH HÌNH .......................................................................................... ix 

DANH SÁCH TỪ VIẾT TẮT ............................................................................. x 

1.  TỔNG QUAN VỀ BIODIESEL ................................................................... 1 

1.1.  Định nghĩa các dạng năng lƣợ ng và biodiesel ......................................... 1 

1.1.1.   Năng lƣợ ng không tái sinh ............................................................... 1 

1.1.2.   Năng lƣợ ng tái sinh ......................................................................... 2 

1.2.  Tầm quan trọng của biodiesel và khả năng thay thế cho nguồn nhiên liệu

hóa thạch ......................................................................................................... 4 

1.3.  Nguyên tắc điều chế và nhu cầu về lipid trong sản xuất biodiesel ........... 7 

1.4.  Các nguồn nguyên liệu giàu lipid phục vụ cho việc sản xuất biodiesel và

tiềm năng của vi tảo ........................................................................................ 9 

2.  NĂNG SUẤT LIPID VÀ ẢNH HƢỞ NG CỦA MÔI TRƢỜ NG LÊN SỰ  

TÍCH LŨY LIPID CỦA MỘT SỐ LOÀI VI TẢO ........................................ 15 

2.1.  Các loại vi tảo có chứa nhiều lipid ........................................................ 15 

2.2.  Một số nghiên cứu về ảnh hƣở ng của điều kiện môi trƣờ ng lên sự tích

lũy lipid ở vi tảo ............................................................................................ 16 2.2.1.  Yếu tố nhiệt độ .............................................................................. 16 

2.2.2.  Yếu tố thành phần môi trƣờ ng ....................................................... 19 

3.  NUÔI VI TẢO   NANNOCHLOROPSIS OCULATA THU LIPID NHẰM

SẢN XUẤT BIODIESEL ................................................................................ 25 

3.1.   Nannochloropsis oculata ...................................................................... 25 

3.1.1. 

Phân loại ........................................................................................ 25 

3.1.2.  Đặc điểm hình thái......................................................................... 25 

Page 6: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 6/68

vi

3.1.3.  Đặc điểm sinh lý ............................................................................ 26 

3.1.4.  Đặc điểm sinh hóa ......................................................................... 26 

3.2.  Đề xuất mô hình thí nghiệm nghiên cứu sự  tích lũy lipid theo điều kiện

môi trƣờ ng ở   Nannochloropsis oculata ......................................................... 27 

3.2.1.  Yếu tố nhiệt độ .............................................................................. 27 

3.2.2.  Yếu tố ánh sáng ............................................................................. 32 

3.2.3.  Yếu tố độ mặn ............................................................................... 36 

3.2.4.  Yếu tố thành phần môi trƣờ ng ....................................................... 38 

4.  KẾT LUẬN.................................................................................................. 48 

TÀI LIỆU THAM KHẢO............................................................................... 51 

Page 7: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 7/68

vii

DANH SÁCH BẢNG

Bảng 1. 1: Các acid béo thƣờ ng có trong các nguồn nguyên liệu dùng sản xuất

biodiesel .............................................................................................................. 9 

Bảng 1. 2: So sánh vi tảo vớ i các nguồn nguyên liệu sản xuất biodiesel ............ 11 

Bảng 1. 3: So sánh các thuộc tính giữa dầu từ vi tảo, diesel thông thƣờ ng và tiêuchuẩn ASTM biodiesel [28]............................................................................... 12 

Bảng 2. 1: Hàm lƣợng và năng suất lipid của các loài tảo khác nhau ................. 15

Bảng 2. 2: Sự sinh trƣở ng và sản xuất lipid của C. vulgaris tại các nhiệt độ khác

nhau [5] ............................................................................................................. 17 

Bảng 2. 3: Năng suất sinh khối và năng suất lipid của   Botryococcus braunii,

Chlorella vulgaris và Scenedesmus sp. khi nuôi ở 10% CO2 trong 14 ngày ....... 20 

Bảng 2. 4: Thành phần các acid béo của   Botryococcus braunii, Chlorella

vulgaris và Scenedesmus sp. khi nuôi cấy ở 10% CO2 trong 14 ngày................. 21 

Bảng 2. 5: Tham số sinh trƣở ng và sự sản xuất lipid của C. vulgaris ở các nồng

độ NaNO3 khác nhau ......................................................................................... 23 

Bảng 3. 1: Sự sinh trƣở ng và sản xuất lipid của N. oculata tại các nhiệt độ khác

nhau .................................................................................................................. 28

Bảng 3. 2: Thành phần acid béo (%w/w acid béo tổng) của Nannochloropsis sp.vào ngày thứ 10 tại các nhiệt độ khác nhau ........................................................ 30 

Bảng 3. 3: Sản lƣợ ng sinh khối và thành phần hợ p chất hóa sinh của

 Nannochloropsis sp. vào ngày thứ 10 tại các nhiệt độ khác nhau ....................... 31 

Bảng 3. 4: Sản lƣợ ng sinh khối và hàm lƣợ ng lipid của Nannochloropsis sp. vào

ngày thứ 10 tại các độ mặn khác nhau ............................................................... 36 

Bảng 3. 5: Thành phần acid béo (%w/w TFA) của Nannochloropsis sp. vào ngày

thứ 10 tại các độ mặn khác nhau ........................................................................ 37 

Bảng 3. 6: Năng suất sinh khối và lipid của N. oculata trong hệ thống nuôi cấy

bán liên tục với các hàm lƣợ ng CO2 khác nhau .................................................. 41 

Bảng 3. 7: Tham số sinh trƣở ng và sự sản xuất lipid của N. oculata ở các nồng độ 

NaNO3 khác nhau .............................................................................................. 42 

Bảng 3. 8: Sản lƣợ ng sinh khối và thành phần hợ p chất hóa sinh của

 Nannochloropsis sp. vào ngày thứ 10 tại các nồng độ NaNO3 khác nhau .......... 44 

Page 8: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 8/68

viii

Bảng 3. 9: Thành phần acid béo (%w/w TFA) của Nannochloropsis sp. vào ngày

thứ 10 tại các nồng độ NaNO3 khác nhau .......................................................... 44 

Bảng 3. 10: Sản lƣợ ng sinh khối và thành phần hợ p chất hóa sinh của

 Nannochloropsis sp. vào ngày thứ 10 tại các nồng độ NaH2PO4 khác nhau ....... 46 

Bảng 3. 11: Thành phần acid béo (%w/w TFA) của  Nannochloropsis sp. vào

ngày thứ 10 tại các nồng độ NaH2PO4 khác nhau .............................................. 47 

Page 9: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 9/68

ix

DANH SÁCH HÌNH

Hình 1. 1: Sự hình thành các lớ p nhiên liệu hóa thạch ......................................... 1

Hình 1. 2: Các dạng năng lƣợ ng tái sinh .............................................................. 2

Hình 1. 3: Bảng thống kê sử dụng các nguồn năng lƣợ ng .................................... 3

Hình 1. 4: Phản ứng chuyển vị ester .................................................................... 7

Hình 2. 1: Phần trăm các loại FAME trên tổng lƣợ ng FAME (g/100gFAME) của C.

vulgaris tại các nhiệt độ sinh trƣở ng khác nhau ................................................. 17

Hình 2. 2: Phần trăm các loại FAME trên tổng lƣợ ng FAME (g/100gFAME) của C.

vulgaris tại các nồng độ NaNO3 khác nhau........................................................ 23 

Hình 3. 1: Thành phần acid béo các lipid chính trong Nannochloropsis sp. ....... 27

Hình 3. 2: Phần trăm các loại acid béo methyl ester trên tổng lƣợ ng acid béomethyl ester (g/100gFAME) của N. oculata tại các nhiệt độ khác nhau ................. 29 

Hình 3. 3: Ảnh hƣở ng của mức độ chiếu sáng trên sự sinh trƣở ng của tế bào và

hàm lƣợ ng chlorophyll a đối vớ i Nannochloropsis sp. ...................................... 33 

Hình 3. 4: Sự phân phối các acid béo chính trong Nannochloropsis sp. đƣợ c nuôi

cấy theo mẻ dƣớ i ảnh hƣở ng của mức độ chiếu sáng ......................................... 33 

Hình 3. 5: Thành phần acid béo của Nannochloropsis sp. khi nuôi cấy trong điều

kiện ổn định liên tục tại ba mức độ chiếu sáng................................................... 35 

Hình 3. 6: Ảnh hƣở ng nồng độ khí CO2 lên sự sinh trƣở ng của N. oculata ........ 39 

Hình 3. 7: Sự  sinh trƣở ng của   N. oculata khi nuôi cấy bán liên tục trong môi

trƣờ ng sục khí có chứa 2%, 5%, 10%, 15% CO2 ............................................... 40 

Hình 3. 8: Phần trăm các loại FAME trên tổng lƣợ ng FAME (g/100gFAME) của N.

oculata tại các nồng độ NaNO3 khác nhau ......................................................... 43 

Page 10: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 10/68

x

DANH SÁCH TỪ VIẾT TẮT

DW: dry weight khối lƣợ ng khô

FAME: fatty acid methyl ester ester của acid béo và methyl

f/2AW: f/2 artificial seawater môi trƣờng f/2 nƣớ c biển nhân tạo

EPA: eicosapentaenoic acid acid ω3 (C20:5)

PUFA: polyunsatured fatty acid acid béo chƣa no mang nhiều nối đôi 

TFA: total fatty acid hàm lƣợ ng acid béo tổng

v/v: volume/volume thể tích/thể tích

vvh: volume/ volume/hour thể tích/thể tích/giờ  

vvm: volume/ volume/minute thể tích/thể tích/phút

w/w: weight/weight khối lƣợ ng/khối lƣợ ng

Page 11: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 11/68

1.  TỔNG QUAN VỀ BIODIESEL

1

1. TỔNG QUAN VỀ BIODIESEL

1.1.  Định nghĩa các dạng năng lƣợ ng và biodiesel

1.1.1.  Năng lƣợ ng không tái sinh

Nguồn năng lƣợ ng không tái sinh là những nguồn năng lƣợ ng thiên nhiên

mà con ngƣờ i không có khả năng can thiệp vào sự hình thành cũng nhƣ quá trình

tích lũy. Đó là dạng năng lƣợ ng không thể phục hồi, không thể tái tạo, hay không

thể tái sử dụng. Tuy nhiên dạng năng lƣợng này đang đƣợ c sử dụng trên phạm vi

rộng lớ n khắp toàn cầu, và cho thấy rằng không thể đáp ứng đƣợ c nhu cầu sử 

dụng của con ngƣời trong tƣơng lai. 

 Năng lƣợng không tái sinh đƣợc chia thành hai nhóm: năng lƣợ ng hóa thạchvà năng lƣợ ng hạt nhân.

-   Năng lượ  ng hóa thạ ch: là dạng năng lƣợng đƣợ c hình thành dựa trên các quá

trình địa chất dài hàng triệu năm xảy ra đối với xác động thực vật, nhƣ một

dạng hóa thạch. Bao gồm than đá, dầu mỏ và khí thiên nhiên. Do quá trình

hình thành lâu dài nhƣ vậy, nên khi bị con ngƣờ i khai thác hết sẽ không có

khả năng phục hồi đƣợ c.

Một trong số các nhiên liệu hóa thạch ngày càng đƣợ c sử dụng rộng rãi làdiesel.

Diesel là một loại nhiên liệu lỏng, là sản phẩm thuộc phân đoạn nhẹ của quá

trình chƣng cất trực tiếp dầu mỏ vớ i khoảng nhiệt độ sôi ở áp suất khí quyển từ 

250 đến 3500C (cao hơn dầu hỏa và xăng) bao gồm các hydrocarbon khác nhau

từ C14 đến C20. Nhiên liệu diesel đƣợ c sử dụng chủ yếu cho động cơ diesel và

một phần đƣợ c sử dụng trong các tuabin cơ khí. 

Hình 1. 1: Sự hình thành các lớ p nhiên liệu hóa thạch

Page 12: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 12/68

1.  TỔNG QUAN VỀ BIODIESEL

2

-    Năng lượ   ng hạ  t nhân: là dạng năng lƣợng đƣợ c hình thành do khả  năng

phóng xạ của một vài nguyên tố. Có hai kiểu phản ứng hình thành nên năng

lƣợ ng hạt nhân, đó là phản ứng phân hạch và phản ứng nhiệt hạch.

1.1.2.  Năng lƣợ ng tái sinh

  Năng lƣợ ng tái sinh là dạng năng lƣợng thu đƣợ c từ các nguồn mà con

ngƣờ i xem là vô hạn. Sự vô hạn ở  đây ngoài ý nghĩa nhiều đến mức không thể 

cạn kiệt, nên đƣợ c hiểu theo nghĩa rộng hơn đó là có khả năng tái tạo trong một

thờ i gian ngắn và liên tục.

Dạng năng lƣợ ng này bao gồm:

Năng lƣợ ng mặt trờ i-   Năng lƣợ ng gió

-   Năng lƣợ ng sóng

-   Năng lƣợ ng thủy triều

-   Năng lƣợng địa nhiệt

-   Năng lƣợ ng sinh khối

Hình 1. 2: Các dạng năng lƣợ ng tái sinh

Nguồn năng lƣợng tái sinh đang đƣợ c sử dụng nhiều nhất là thủy năng.

Song, nguồn năng lƣợ ng sinh khối cũng là một trong những nguồn đƣợ c con

ngƣờ i khai thác và sử dụng hiệu quả. Sinh khối đƣợ c xem là nguồn năng lƣợ nglớ n thứ  tƣ, ƣớ c tính chiếm khoảng 14-15% tổng lƣợng năng lƣợ ng tiêu thụ trên

Page 13: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 13/68

1.  TỔNG QUAN VỀ BIODIESEL

3

thế giớ i. Ở các nƣớc đang phát triển, sinh khối thƣờ ng là nguồn năng lƣợ ng lớ n

nhất, trung bình đóng góp khoảng 35% trong tổng cung cấp năng lƣợ ng. Vì vậy,

trong chiến lƣợ c sử dụng các nguồn năng lƣợ ng cách hiệu quả  thì năng lƣợ ng

sinh khối luôn đƣợc xem là ƣu tiên hàng đầu và mang tính quyết định trong việcđáp ứng nhu cầu năng lƣợ ng của thế giới trong tƣơng lai [1].

Hiện nay, theo thuật ngữ về nhiên liệu, thì sinh khối (biomass) đƣợ c xem là

nhiên liệu ở dạng rắn, nhiên liệu sinh học (biofuel) là những nhiên liệu dƣớ i dạng

lỏng thu nhận từ sinh khối và cuối cùng khí sinh học (biogas) là sản phẩm của

quá trình phân giải yếm khí các chất hữu cơ [1].

Hai dạng nhiên liệu sinh học phổ biến nhất đó là biodiesel và bio-ethanol, là

hai dạng nhiên liệu tƣơng ứng có thể thay thế đƣợ c cho diesel và gasoline màkhông cần cải tiến nhiều hoặc không cần cải tiến động cơ các phƣơng tiện giao

thông cũng nhƣ máy móc sản xuất. Chúng đƣợ c sản xuất chủ yếu từ sinh khối

hay các nguồn năng lƣợ ng tái sinh khác và góp phần giảm thiểu khí thải từ việc

đốt cháy nhiên liệu so vớ i nhiên liệu hóa thạch tính trên cùng một đơn vị hiệu

suất [80].

-  Định nghĩa Biodiesel

Biodiesel là hỗn hợ p các alkyl monoesters thu nhận đƣợ c từ quá trìnhchuyển vị ester dầu thực vật và mỡ  động vật [80], có khả năng thay thế cho diesel

từ dầu mỏ.

Hình 1. 3: Bảng thống kê sử dụng các nguồn năng lƣợ ng

Page 14: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 14/68

1.  TỔNG QUAN VỀ BIODIESEL

4

1.2.  Tầm quan trọng của biodiesel và khả năng thay thế cho nguồn nhiên

liệu hóa thạch

Gần đây, con ngƣời đang quan tâm đến hai vấn đề quan trọng, đó là môi

trƣờ ng và sự khủng hoảng năng lƣợ ng. Đối với môi trƣờ ng, sự nóng dần lên của trái

đất chính là tâm điểm. Mọi ngƣời đều biết rằng sử dụng nhiên liệu hóa thạch chính

là nguyên nhân gây ra sự nóng dần lên của toàn cầu, vì vậy nguồn năng lƣợ ng sạch

và có khả năng tái sinh sản xuất từ sinh khối nhằm thay thế cho nhiên liệu hóa thạch

là rất cấp thiết để giảm thải CO2. Ngoài ra, sự khủng hoảng năng lƣợ ng khiến cho

giá dầu thô trên thế giới ngày càng tăng, ảnh hƣởng đến tình hình năng lƣợ ng sử 

dụng trong gia đình cũng nhƣ trong khu vực [67].

Xét trên lĩnh vực môi trƣờ ng, giao thông vận tải và sản xuất công nghiệp lànhững nguồn thải chủ yếu của con ngƣờ i. Khảo sát tại liên minh Châu Âu, ngƣờ i ta

nhận thấy có đến 20% khí thải nhà kính là do giao thông vận tải và 60% khí thải nhà

kính xuất phát từ các khu công nghiệp [20]. Nông nghiệp là nguồn thải lớ n thứ ba,

tƣơng ứng khoảng 9% khí thải nhà kính, trong đó quan trọng nhất là các khí nitrous

oxide N2O và khí methane CH4 [21]. Theo dự đoán, sự phát triển của các nền kinh

tế mới đang tăng trƣởng nhƣ Ấn Độ và Trung Quốc sẽ làm gia tăng sự tiêu thụ năng

lƣợ ng trên toàn cầu, dẫn đến thêm nhiều mối nguy hại cho môi trƣờ ng [35].

Khí nhà kính không chỉ góp phần gây ra hiện tƣợ ng nóng dần lên của trái đất

mà còn gây ra nhiều ảnh hƣớ ng khác tớ i môi trƣờng và đờ i sống nhân loại. Các đại

dƣơng hấp thụ khoảng một phần ba lƣợ ng CO2 thải ra mỗi năm do các hoạt động

của con ngƣờ i. Khi nồng độ CO2  tăng lên trong không khí, lƣợ ng hòa tan trong

nƣớ c biển cũng tăng, dẫn đến giảm pH và nƣớ c biển có tính acid hơn. Sự giảm pH

là một điều kiện bất lợ i có thể gây ra những hủy hoại nhanh chóng đối vớ i các rặng

san hô cũng nhƣ sự đa dạng sinh thái đại dƣơng, vốn có quan hệ to lớn trong đờ i

sống các sinh vật đại dƣơng và trên cạn [55].

Chính sự nóng dần lên của trái đất đã, đang và sẽ tiếp tục ảnh hƣởng đến nhiều

khía cạnh khác nhau của đờ i sống nhân loại và môi trƣờ ng trên toàn cầu, chúng ta

cần không phải chỉ riêng lẻ một mà là một loạt các giải pháp để có thể cải thiện và

khắc phục vấn đề bức bách này [40].

Xét trên l ĩ nh vực khủng hoảng năng lƣợ ng, sự sụt giảm nguồn nguyên liệu dầu

thô dự trữ và những khó khăn trong việc trích ly và tinh luyện chúng dẫn đến sự gia

tăng về giá thành [40]. Đây thực sự là những trở ngại lớ n đối vớ i vấn đề giao thông

Page 15: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 15/68

1.  TỔNG QUAN VỀ BIODIESEL

5

vận tải, vì cho tớ i hiện nay vẫn chƣa tìm ra đƣợ c nguồn nguyên liệu nào có thể thay

thế cho nguồn nguyên liệu hóa thạch với giá thành tƣơng đƣơng [80].

Tìm kiếm những nguồn nguyên liệu sạch và có khả năng tái sinh là một trong

những vấn đề thách thức nhất mà con ngƣời đang phải đối mặt trong hiện tại lẫn về 

lâu dài. Đây là vấn đề liên quan mật thiết vớ i sự phát triển kinh tế và sự thịnh vƣợ ng

cũng nhƣ chất lƣợ ng cuộc sống, sự bền vững toàn cầu do đó đòi hỏi các nhà đầu tƣ

phải có những quyết định lâu bền và những giải pháp dài hạn [80].

Hiện nay, nhiều lựa chọn đang đƣợ c nghiên cứu và đƣa vào thực nghiệm, đã

đạt đƣợ c những mức độ  thành công khác nhau trong các giai đoạn nghiên cứu và

thực nghiệm khác nhau, bao gồm các nguồn năng lƣợng nhƣ năng lƣợ ng mặt trờ i,

bao gồm cả nhiệt năng và quang năng, thủy điện, địa nhiệt, gió, nhiên liệu sinh học,và sự cô lập carbon, cùng những loại khác [19, 27]. Mỗi loại đều có những ƣu điểm

cũng nhƣ những vấn đề  vƣớ ng mắc, tùy thuộc vào khu vực áp dụng, những điều

kiện khác nhau sẽ có mức độ phù hợ p tốt hơn đối vớ i từng loại phƣơng pháp. Mục

tiêu quan trọng đó là giảm thiểu các khí thải từ các phƣơng tiện chuyên chở, nhƣ là

thay thế dần từng bƣớ c một nguồn nguyên liệu hóa thạch bằng những nguồn nguyên

liệu tái sinh, trong đó nhiên liệu sinh học đƣợ c xem là một cộng tác viên thực sự để 

đạt đƣợ c những mục tiêu đó, đặc biệt trong tƣơng lai gần [80].

Trái đất nóng dần lên, do sự gia tăng nồng độ của khí nhà kính trong không

khí, đã và đang là mối lo ngại quan trọng nhất về môi trƣờ ng [85]. Giảm bớ t sự hình

thành CO2 trong khí quyển, nhiệm vụ hàng đầu của việc làm giảm hiệu ứng nhà

kính, có thể thực hiện bởi ba phƣơng pháp sau [6]:

-  Giảm bớ t sử dụng nhiên liệu hóa thạch

-  Loại bỏ CO2 trong khí quyển

-  Thu hồi và cô lập hoặc tận dụng CO2 từ việc đốt nhiên liệu hóa thạch trƣớ c

khi nó đƣợ c thải ra môi trƣờ ng.

Sản xuất nhiên liệu sinh học có thể đem lại những cơ hội mớ i góp phần gia

tăng sự đa dạng về các nguồn thu nhập cũng nhƣ các nguồn cung cấp năng lƣợ ng,

cụ thể là đẩy mạnh việc làm ở các vùng nông thôn, phát triển sự thay thế dài hạn đối

vớ i nguồn nhiên liệu hóa thạch, và giảm bớt lƣợ ng khí thải nhà kính, đẩy mạnh việc

loại bỏ Carbon từ các nhiên liệu vận tải và nâng cao sự an toàn trong việc cung cấp

nhiên liệu [80].

Page 16: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 16/68

1.  TỔNG QUAN VỀ BIODIESEL

6

Tìm kiếm những nguồn nguyên liệu thay thế đang là vấn đề nóng bỏng đối vớ i

nhiều nƣớc, đặc biệt là những nƣớ c thiếu các nguồn tài nguyên năng lƣợ ng thông

thƣờ ng. Vào những thập niên 1930 và 1940, dầu thực vật đã đƣợ c sử dụng nhƣ là

nhiên liệu diesel trong những trƣờ ng hợ p khẩn cấp. Trong những năm gần đây, khinền công nghiệp hiện đại phát triển ngày một rộng rãi và quy mô, nhu cầu về năng

lƣợng đã gia tăng đột biến, vì vậy những nguồn năng lƣợ ng thay thế  đang đƣợ c

thăm dò và nghiên cứu ráo riết. Trong tổng số các động cơ   phƣơng tiện hiện nay, tỷ 

lệ  phƣơng tiện sử dụng nhiên liệu diesel ngày càng phổ biến và đƣợ c sử dụng nhiều

hơn. Thêm vào đó, động cơ diesel cũng đƣợ c sử dụng rộng rãi trong công nghiệp

[75]. Vì vậy, nhiên liệu diesel là nguồn sử dụng lớ n nhất trong số các nhiên liệu dầu

mỏ sử dụng cho động cơ, và tỷ lệ này tăng lên liên tục ngày qua ngày [11]. Từ đó,

nhu cầu đối vớ i biodiesel càng trở nên cấp thiết, và thuật ngữ “biodiesel” xuất hiện

một cách thƣờ ng xuyên trong các bài báo cáo gần đây [24].

Biodiesel đƣợ c sản xuất từ sinh khối dầu (biomass oils), chủ yếu là từ dầu thực

vật. Biodiesel trở thành nguồn năng lƣợng đáng đƣợ c chú ý vì những lý do nhƣ sau.

-  Thứ nhất, biodiesel là nguồn năng lƣợ ng tái sinh có thể đáp ứng cung và cầu.

 Ngƣời ta đã ƣớc tính đƣợ c rằng lƣợ ng dầu mỏ dự trữ sẽ hoàn toàn cạn kiệt

trong vòng 50 năm trở lại tính theo mức tiêu thụ hiện nay [70].

-  Thứ hai, biodiesel cho thấy thân thiện với môi trƣờng hơn các loại nhiên liệu

hóa thạch. Sử dụng biodiesel không làm gia tăng lƣợ ng khí thải carbon

dioxide nhƣng lại có hàm lƣợ ng các khí sulfur thấp hơn hẳn [4, 82]. Thành

phần khí thải sulfur và carbon monoxide giảm thiểu lần lƣợ t là 30% và 10%

khi sử dụng biodiesel. Lƣợ ng khí tạo thành trong quá trình đốt cháy nhiên liệu

có thể ít lại, và sự giảm bớ t carbon monoxide là nhờ vào hàm lƣợ ng oxygen

cao có trong biodiesel. Hơn nữa, biodiesel không chứa các hợ p chất dễ bay

hơi và các hợ p chất hóa học khác gây hại cho môi trƣờ ng. Gần đây, các cuộcđiều tra cho thấy rằng sử dụng biodiesel giảm thiểu đƣợ c 90% chất độc hại

trong không khí và 95% các bệnh ung thƣ khi so sánh với diesel thông thƣờ ng

[69].

-  Thứ  ba, biodiesel đem lại tiềm năng kinh tế đáng kể bởi vì trong tƣơng lai,

các dạng năng lƣợng không tái sinh nhƣ nhiên liệu hóa thạch sẽ ngày một gia

tăng giá thành là một điều không thể tránh khỏi [10].

-  Cuối cùng, biodiesel tốt hơn diesel thông thƣờ ng ở nhiệt độ phát cháy và khả 

năng phân hủy sinh học [45].

Page 17: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 17/68

1.  TỔNG QUAN VỀ BIODIESEL

7

Nguồn sinh khối không những sẽ trở  thành nguồn cung cấp năng lƣợ ng bền

vững mà còn góp phần vào cuộc sống xã hội trong khu vực nhờ giúp gia tăng các

hoạt động thƣơng mại và tạo nhiều cơ hội việc làm cho nông dân.

Vi tảo, thu nhận dƣớ i dạng sinh khối, là một nguồn năng lƣợ ng tái sinh rất

tiềm năng, và chúng có thể đƣợ c chuyển hóa thành năng lƣợng dƣớ i dạng nhiên liệu

sinh học bao gồm dầu và gas. Vì vi tảo có hàm lƣợng nƣớ c nhiều, do đó không phải

toàn bộ  lƣợ ng sinh khối có thể áp dụng thành năng lƣợ ng. Sử dụng phƣơng pháp

nhiệt hóa học có thể sản xuất ra dầu và gas, và bằng các phƣơng pháp hóa sinh để 

sản xuất ra ethanol và biodiesel. Sản phẩm từ vi tảo có các đặc tính tƣơng tự nhƣ

các sản phẩm từ dầu thực vật và dầu cá, vì vậy, nó có thể thay thế đƣợ c cho dầu mỏ 

[67].1.3.  Nguyên tắc điều chế và nhu cầu về lipid trong sản xuất biodiesel

Biodiesel là hỗn hợ p các ester giữa acid béo và alkyl thu đƣợ c thông qua quá

trình chuyển vị ester của dầu thực vật hay mỡ  động vật. Nguồn nguyên liệu lipid

dầu thực vật hay mỡ  động vật bao gồm 90-98% khối lƣợ ng là các triglyceride và

một lƣợ ng nhỏ các mono và diglyceride, acid béo tự do chiếm khoảng 1-5%, phần

còn lại là các phospholipid, phosphatide, carotene, tocopherol, hợ p chất sulphur, và

một ít nƣớ c [7].Chuyển vị ester là một phản ứng phức tạp, bao gồm ba bƣớ c chuyển đổi liên

tiếp: triglyceride đƣợ c chuyển hóa thành diglyceride, sau diglyceride chuyển hóa

thành monoglyceride,và monoglyceride sẽ chuyển hóa thành các ester (biodiesel) và

glycerol (phụ phẩm). Phản ứng chuyển vị ester tổng quát đƣợ c mô tả trong hình sau,

trong đó R1, R2, R3 tƣợng trƣng cho các hydrocarbon mạch dài, chính là các acid

béo [80].

Hình 1. 4: Phản ứ ng chuyển vị ester

Page 18: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 18/68

1.  TỔNG QUAN VỀ BIODIESEL

8

Trong phản ứng chuyển vị ester, tác nhân phản ứng là dầu hay mỡ cùng các

alcohol có mạch carbon ngắn (thƣờ ng là methanol), có sự hiện diện của chất xúc tác

(thƣờ ng là NaOH). Mặc dù tỷ lệ phân tử gam giữa alcohol : dầu theo lý thuyết là 3:1

nhƣng thông thƣờng ngƣờ i ta áp dụng theo tỷ lệ 6:1 để phản ứng xảy ra hoàn toàn.Mối quan hệ giữa nguyên liệu đầu vào và sản phẩm biodiesel đầu ra đạt tỷ lệ 

khoảng 1:1, nghĩa là theo lý thuyết, 1kg dầu sẽ tạo ra đƣợ c 1 kg biodiesel [80].

Có thể sử dụng chất xúc tác đồng thể hay dị thể, acid, base hoặc enzyme lipase

để tăng mức độ phản ứng chuyển vị ester, mặc dù đối vớ i vài quá trình sử dụng các

chất lỏng siêu tớ i hạn (methanol hoặc ethanol) có thể không cần dùng đến các chất

xúc tác [84]. Trong công nghiệp, thƣờ ng sử dụng nhất là các chất xúc tác đồng thể 

có tính kiềm (ví dụ nhƣ NaOH hay KOH) trong các bình phản ứng có khuấy đảo,thực hiện theo mẻ [80]. Các phản ứng chuyển vị ester đƣợ c xúc tác bở i các chất có

tính kiềm có tốc độ phản ứng nhanh hơn 4000 lần so vớ i xúc tác bở i acid [25].

Trong phân tử triglyceride, khối lƣợ ng glycerol là khoảng 41 g/mol, trong khi

khối lƣợ ng các gốc acid béo dao động từ 650-790 g/mol. Chính thành phần các gốc

acid béo tạo ra các nhóm hoạt động trong phân tử glyceride, và chúng có tầm ảnh

hƣởng đáng kể đến tính chất của dầu thực vật và mỡ  động vật [11].

Trong quá trình sản xuất biodiesel, ngƣờ i ta có thể sử dụng nguồn lipid từ dầuthực vật, mỡ  động vật hoặc các loại dầu thải. Tuy nhiên, để sản xuất biodiesel đạt

chuẩn nhiên liệu, tính chất của nguồn nguyên liệu rất quan trọng, ngay từ quá trình

nghiên cứu ban đầu cho tới giai đoạn sản xuất, vì chất lƣợ ng của biodiesel phụ 

thuộc vào chất lƣợ ng nguồn nguyên liệu [11].

Những nguồn nguyên liệu giàu các acid béo chƣa bão hòa chứa nhiều nối đôi

(polyunsaturated) thì dễ mắc phải quá trình oxy hóa hơn các nguồn lipid có nhiều

acid béo bão hòa hay chỉ có một nối đôi trong mạch (monounsaturated) [11].

Tuy nhiên, biodiesel từ nguồn nguyên liệu chứa một lƣợ ng lớ n các acid béo

bão hòa sẽ có nhiệt độ điểm sƣơng (nhiệt độ biodiesel bắt đầu xuất hiện tinh thể) và

nhiệt độ dòng chảy (nhiệt độ thấp nhất mà biodiesel vẫn có thể  bơm và chảy đƣợ c

trong ống dẫn) cao. Thực tế cho thấy, biodiesel từ dầu thực vật có nhiệt độ điểm

sƣơng và nhiệt độ dòng chảy thấp hơn biodiesel từ mỡ  động vật [11].

Nếu nguồn nguyên liệu lipid chứa một lƣợ ng lớ n các acid béo tự do và nƣớ c

thì quá trình chuyển vị ester sẽ gặp nhiều khó khăn vì chúng không thể chuyển hóa

đƣợ c thành biodiesel thông qua phản ứng xúc tác vớ i kiềm. Đây là vấn đề vƣớ ng

Page 19: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 19/68

1.  TỔNG QUAN VỀ BIODIESEL

9

mắc khi sử dụng dầu đã qua chế biến, dầu thải nhà hàng, dầu cặn, mỡ  động vật làm

nguồn nguyên liệu sản xuất biodiesel dù đây là những nguồn nguyên liệu có giá

thành rẻ [11].

Thành phần ester phổ biến nhất trong biodiesel là ester của các acid palmitic,

acid stearic, acid oleic, acid linoleic và acid linolenic. Các loại nguyên liệu nhƣ đậu

nành, hoa hƣớng dƣơng, hạt cải dầu (canola), cọ và lạc có thành phần lipid khá phù

hợp nhƣ trên [26]. Trong số  đó, methyl oleate đƣợ c xem là thành phần chính lý

tƣởng để sản xuất biodiesel. Một số  ester khác nhƣ methyl palmitoleic cũng có

những ƣu điểm, khi so vớ i methyl oleate thì trội hơn về nhiệt độ đông đặc thấp [26].

Bảng 1. 1: Các acid béo thƣờ ng có trong các nguồn nguyên liệu dùng sảnxuất biodiesel [26]

1.4.  Các nguồn nguyên liệu giàu lipid phục vụ cho việc sản xuất biodiesel

và tiềm năng của vi tảo

Thông thƣờ ng, biodiesel chủ yếu đƣợ c sản xuất từ dầu của đậu nành và các

loại rau quả [9], cọ [2], hoa hƣớng dƣơng [4], hạt cây cải dầu [58] cũng nhƣ dầu phế 

thải từ các nhà hàng [8]. Số  lƣợ ng nguyên tử carbon trong chuỗi mạch carbon củaphân tử dầu diesel vào khoảng 15C, và điều này gần nhƣ tƣơng ứng vớ i dầu thực

vật vớ i chuỗi carbon vào khoảng 14-18C. Các đặc điểm về cấu trúc của biodiesel

cho thấy rằng biodiesel có thể  ứng dụng để thay thế đƣợc cho năng lƣợ ng thông

thƣờ ng. Hiện tại, giá thành của biodiesel thì cao gấp 2 lần so với diesel thƣờ ng. Chi

phí sản xuất biodiesel bao gồm 2 phần chính, đó là chi phí cho nguồn nguyên liệu

thô (dầu thực vật và mỡ  động vật) và chi phí quá trình. Chi phí cho nguồn nguyên

liệu thô chiếm khoảng 60-75% tổng chi phí nhiên liệu biodiesel [39]. Dù vậy, vẫn

có thể tìm đƣợ c một lƣợ ng lớ n dầu mỡ giá thành thấp từ các chế phẩm phế thải nhà

Page 20: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 20/68

1.  TỔNG QUAN VỀ BIODIESEL

10

hàng và từ động vật [30], vấn đề chính khi sử dụng những nguồn dầu mỡ  này đó là

chúng thƣờ ng chứa nhiều acid béo tự  do gây khó khăn cho quá trình sản xuất

biodiesel thông qua quá trình chuyển vị ester [17]. Nguồn nguyên liệu thô có tỷ lệ 

triglyceride cao thì phù hợp hơn. Ví dụ nhƣ dầu thực vật là loại nguyên liệu có tỷ lệ triglyceride rất cao, do đó nó đƣơc sử dụng để sản xuất biodiesel trong vài năm qua

[18].

Tuy nhiên, dầu thực vật còn là nguồn tiêu thụ của con ngƣờ i. Vì vậy sử dụng

dầu thực vật sản xuất biodiesel có thể làm cho giá thành dầu thực vật dùng trong

thực phẩm tăng cao, từ đó dẫn đến giá thành biodiesel cao và ngƣờ i tiêu dùng hạn

chế sử dụng dù rằng biodiesel có nhiều ƣu điểm hơn so vớ i diesel [80].

Dầu thực vật đƣợ c sử dụng trong nhiều mục đích thƣơng mại và khả  năngcung ứng dầu thực vật cho việc sản xuất biodiesel thì không thể đáp ứng nổi tiềm

năng thƣơng mại của biodiesel trên một khu vực. Một ví dụ cụ thể đó là để đáp ứng

đƣợ c 10% chỉ tiêu tại EU từ việc sản xuất quy mô hộ gia đình, thì nguồn nguyên

liệu thực sự cung cấp không đủ cho nhu cầu hiện tại, và sự đòi hỏi về diện tích canh

tác thì vƣợ t xa tiềm năng phát triển đất trồng đối vớ i các loại cây trồng sản xuất

năng lƣợ ng sinh học [68]. Mở rộng trồng trọt, áp lực trong sự thay đổi sử dụng đất

trồng và sự gia tăng các cánh đồng canh tác có thể dẫn tớ i cạnh tranh đất đai và làm

mất đi sự đa dạng sinh học do sự lấn chiếm rừng và các vùng sinh thái quan trọng

[64]. Biodiesel sẽ không còn đƣợ c xem là một giải pháp ƣu việt khi nó chiếm dụng

nguồn cây trồng phục vụ cho những lợ i ích khác của con ngƣờ i hay nguồn nguyên

liệu của nó xâm lấn vào diện tích rừng và các môi trƣờ ng trọng yếu khác có liên

quan mật thiết đến sự đa dạng sinh học [80].

Giá thành và những khó khăn trong việc thu nhận và tinh chế các nhiên liệu

hóa thạch cùng những chính sách ở cấp độ khu vực cho tớ i quốc gia sẽ ngày càng

thúc đẩy gia tăng sản xuất biodiesel hoặc các loại nhiên liệu tái sinh khác. Và để biodiesel có thể trở thành quen thuộc đối với ngƣờ i tiêu dùng thì giá cả của nó phải

cạnh tranh đƣợ c với diesel thông thƣờ ng. Do đó mục tiêu đặt ra là phải giảm bớ t

đƣợ c chi phí cho nguồn nguyên liệu thô vốn chiếm 60-70% tổng chi phí nhiên liệu

biodiesel [11].

Để không phải cạnh tranh vớ i nguồn dầu thực phẩm, biodiesel nên đƣợ c sản

xuất từ các nguồn nguyên liệu giá thành rẻ nhƣ là các nguồn dầu phi thực phẩm, sử 

dụng dầu rán, mỡ  động vật, dầu cặn, và dầu nhờ n. Tuy nhiên, khối lƣợ ng dầu thảivà mỡ  động vật sẵn có thì không đủ để đáp ứng nhu cầu biodiesel hiện nay. Vì vậy,

Page 21: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 21/68

1.  TỔNG QUAN VỀ BIODIESEL

11

công nghệ sản xuất biodiesel chuyển tiếp qua một thế hệ mớ i, thế hệ thứ hai, lấy

nguồn nguyên liệu là sinh khối vi tảo, có thể góp phần giảm bớt đƣợ c những đòi hỏi

bức thiết về mặt bằng nhờ có hiệu suất năng lƣợng cao hơn trên mỗi đơn vị diện

tích đất cũng nhƣ không cạnh tranh ảnh hƣở ng tới đất nông nghiệp. Hơn nữa,biodiesel cần phải có mức tác động môi trƣờ ng thấp hơn và bảo đảm có cùng chất

lƣợ ng so vớ i các nguồn nhiên liệu hiện nay [61].

Thực tế, vi tảo có hiệu suất dầu cao nhất trong số các cây trồng lấy dầu đa

dạng khác. Có thể so sánh hiệu suất nuôi trồng vi tảo vớ i việc khai thác các nguồn

sinh khối khác qua bảng số liệu sau:

Bảng 1. 2: So sánh vi tảo vớ i các nguồn nguyên liệu sản xuất biodiesel khác [80]

Nguồn

Hàm lƣợ ngdầu (% khốilƣợ ng sinh

khối)

Năng suấtlipid (L

dầu/ha.năm) 

Đất sử  dụng

(m2.năm/kgbiodiesel)

Năng suấtbiodiesel (kg

biodiesel/ ha.năm) 

Bắp/Ngô ( Zea mays L.) 44 172 66 152

Gai dầu (Cannabis

 sativa L.)33 363 31 321

Đậu nành (Glycine max L.)

18 636 18 562

Jatropha ( Jatropha

 curcas L.)28 741 15 656

Camelina (Camelina

 sativa L.)42 915 12 809

Canola/Cải dầu( Brassica napus L.)

41 974 12 862

Hƣớng dƣơng

( Helianthus annuus L.)40 1070 11 946

Hải ly ( Ricinus

 communis)48 1307 9 1156

Cọ dầu ( Elaeis

 guineensis)36 5366 2 4747

Vi tảo (lượ  ng d ầu thấ  p) 30 58700 0.2 51927

Vi tảo (lượ  ng d ầu

 trung bình)50 97800 0.1 86515

Vi tảo (lượ  ng d ầu cao) 70 136900 0.1 121104

Page 22: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 22/68

1.  TỔNG QUAN VỀ BIODIESEL

12

Để giải quyết vấn đề thiếu hụt năng lƣợ ng toàn cầu, tìm kiếm các nguồn

nguyên liệu sinh học giàu lipid để sản xuất biodiesel đạt hiệu quả cao đang thu hút

rất nhiều sự quan tâm. Các vi sinh vật có chất dầu đƣợ c kỳ vọng nhờ có chu kỳ sinh

trƣở ng ngắn, hàm lƣợ ng lipid cao và dễ dàng đƣợ c cải tạo giống bởi các phƣơngtiện công nghệ sinh học. Vài loài vi tảo đƣợ c liệt vào nhóm vi sinh vật giàu chất dầu

phù hợ p vớ i nhu cầu sản xuất lipid [15]. Vi tảo đƣợ c xem là đối tƣợ ng tiềm năng để 

sản xuất nhiên liệu bở i rất nhiều ƣu điểm nhƣ là hiệu suất quang hợ p cao, sinh khối

lớ n và mức độ sinh trƣởng cao hơn khi so sánh vớ i các loại cây trồng sản xuất năng

lƣợ ng [50].

Trong số các nguồn sinh khối, vi tảo đƣợ c xem là một nguồn sinh khối hiện

đại và có nhiều tiềm năng nhất hiện nay bở i vì vi tảo có khả năng quang hợ p hiệuquả  hơn bất kỳ loại sinh khối thực vật nào khác, mà theo Hall in Ref, quá trình

quang hợ p của vi sinh vật là quá trình tái sinh sử dụng năng lƣợ ng mặt trời để 

chuyển hóa thành một dạng năng lƣợ ng dự trữ mới dƣớ i dạng các liên kết hóa học,

ngoài ra con ngƣờ i hoàn toàn có thể chủ động sản xuất sinh khối vi tảo vớ i số lƣợ ng

lớ n. Vì vậy nếu có thể thu hồi năng lƣợ ng với năng suất cao từ chúng thì sinh khối

vi tảo đƣợ c xem là một nguồn tài nguyên đầy hứa hẹn để sản xuất nhiên liệu [67],

và vi tảo có thể  đƣợc xem nhƣ một nguồn năng lƣợ ng thay thế cho nguồn năng

lƣợ ng hóa thạch đang cạn kiệt dần [48]. Hơn nữa, theo tiêu chuẩn biodiesel củaAmerican Society for Testing Materials (ASTM), biodiesel từ dầu vi tảo có các

thuộc tính tƣơng tự vớ i biodiesel tiêu chuẩn, và nó cũng an toàn hơn vì có nhiệt độ 

phát cháy cao.

Bảng 1. 3: So sánh các thuộc tính giữ a dầu từ vi tảo, diesel thông thƣờ ng vàtiêu chuẩn ASTM biodiesel [28]

Thuộc tính Biodiesel từ vi tảo DieselTiêu chuẩn

biodiesel ASTM

Khối lƣợ ng riêng(kg/L)

0.864 0.838 0.84-0.90

Độ nhớ t (mm2 /s,cSt tại 400C)

5.2 1.9-4.1 3.5-5.0

Điểm phát cháy(0C)

115 75 Tối thiểu 100

Điểm đông đặc(0C)

-12 -50-10 -

Chỉ số acid (mgKOH/g)

0.374 Tối đa 0.5 Tối đa 0.5

Giá trị nhiệt năng  41 40-45 -Tỷ lệ H/C 1.81 1.81 -

Page 23: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 23/68

1.  TỔNG QUAN VỀ BIODIESEL

13

Những ƣu điểm khi nuôi cấy vi tảo nhƣ nguồn tài nguyên sinh khối:

-  Tảo đƣợc xem là các cơ thể sống có khả năng thu nhận năng lƣợ ng mặt trờ i

để tạo ra các hợ p chất hữu cơ rất hiệu quả [83].

-  Tảo đƣợ c xếp vào loài thực vật không có hệ mạch dẫn, đa phần đều thiếu cơ 

quan sinh sản phức tạp [83].

-  Vi tảo dễ dàng nuôi cấy để sản xuất một số hợ p chất đặc thù chọn lọc, có giá

trị kinh tế vớ i nồng độ cao nhƣ protein, carbohydrate, lipid và các sắc tố dựa

vào các điều kiện sinh trƣởng đa dạng [83]. Từ  đó có thể tối ƣu hóa môi

trƣờng để thu đƣợ c sinh khối với hàm lƣợ ng lipid cao.

-  Vi tảo thuộc vào nhóm vi sinh vật sinh sản theo chu kỳ  phân đôi tế bào [83].

Vi tảo có thể sống đƣợ c ở   môi trƣờng nƣớ c biển, nƣớ c lợ  hoặc nƣớ c ngọt.Mặc dù vi tảo sống trong môi trƣờng nƣớc, nhƣng không đòi hỏi cần nhiều

nƣớc nhƣ các loại cây trồng khác [43]. Mặt khác, vi tảo cũng có thể thích nghi

với môi trƣờng nƣớ c thải, do đó không cần thiết phải tốn chi phí sử dụng

nƣớ c sạch [80].

-  Hệ thống sản xuất sinh khối tảo dễ dàng thích nghi ở các quy mô và kỹ thuật

khác nhau [83].

-  Việc nuôi thu sinh khối vi tảo không đòi hỏi nhiều diện tích nhƣ khi trồng các

loại cây lấy dầu khác [15], và năng suất sinh khối vi tảo cũng không phụ thuộc vào thờ i tiết hay ảnh hƣở ng của môi trƣờ ng [43]. Biodiesel sản xuất từ 

vi tảo không làm ảnh hƣởng đến việc sản xuất thực phẩm và các sản phẩm

khác từ thực vật [28].

-  Vi tảo có mức độ sinh trƣở ng rất nhanh, chu kỳ sinh trƣở ng hoàn tất chỉ trong

vài ngày [71], và có rất nhiều loài tảo chứa nhiều dầu [28], năng suất dầu trên

mỗi đơn vị nuôi cấy vi tảo có thể cao vƣợ t trội hơn so với năng suất dầu của

cây có hạt chứa hàm lƣợ ng dầu nhiều nhất [43]. Thông thƣờ ng các loài vi tảo

có hàm lƣợ ng dầu vào khoảng 20-50% [15].

Ví dụ  nhƣ loài tảo Chlorella protothecoides  khi nuôi theo phƣơng thức dị 

dƣỡ ng có thể tích lũy lipid đạt 55% khối lƣợ ng khô của tế bào sau 144h nuôi

cấy trong môi trƣờ ng có bổ sung bột cao ngô trong fermenter [87].

-  Sản xuất sinh khối vi tảo có thể đƣợ c xem là một phƣơng pháp cố định trực

tiếp khí thải CO2 vì vi tảo sử dụng CO2  nhƣ nguồn Carbon nhờ  khả  năng

quang hợ p (1kg sinh khối khô đòi hỏi cần có 1.8kg CO2) [43].

-  Nuôi cấy vi tảo không cần dùng các loại thuốc xịt cỏ hay thuốc trừ sâu [43].

Page 24: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 24/68

1.  TỔNG QUAN VỀ BIODIESEL

14

-  Các phần sinh khối vi tảo còn dƣ lại sau quá trình trích ly dầu có thể đƣợ c

dùng nhƣ nguồn thức ăn cho gia súc, hoặc làm phân bón, hoặc qua quá trình

lên men tạo các sản phẩm ethanol hay methane [43].

-  Toàn bộ quá trình từ việc nuôi thu sinh khối có hàm lƣợng lipid cao đến sảnxuất biodiesel từ dầu vi tảo đều đã đƣợ c nghiên cứu.

Ở điều kiện phòng thí nghiệm, hàm lƣợng lipid lý tƣở ng có thể đạt tớ i 56-

60% trên tổng sinh khối khô nhờ vào kỹ thuật di truyền hoặc kỹ thuật nuôi dị 

dƣỡ ng. Những tiến bộ kỹ thuật cho thấy rằng trong tƣơng lai việc sản xuất

biodiesel từ vi tảo có thể đƣợ c thực hiện trên quy mô công nghiệp [28].

Page 25: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 25/68

2.  NUÔI VI TẢO SẢN XUẤT BIODIESEL

15

2. NĂNG SUẤT LIPID VÀ ẢNH HƢỞ NG CỦA MÔI TRƢỜ NG

LÊN SỰ  TÍCH LŨY LIPID CỦA MỘT SỐ LOÀI VI TẢO

2.1.  Các loại vi tảo có chứ a nhiều lipid

Một số loài vi tảo có thể tích lũy lipid đạt đến 75% (w/w) sinh khối khô nhƣng

năng suất thấp, nhƣ là  Botryococcus braunii. Một số loài vi tảo khác rất phổ biến

cho việc sản xuất lipid đó là Chlorella, Crypthecodinium, Cylindrotheca,

  Dunaliella, Isochrysis, Nannnochloris, Nannochloropsis, Neochloris, Nitzschia,

Phaeodactylum, Porphyridum, Schizochytrium, Tetraselmis vì có năng suất sinh

khối cao nên năng suất lipid cao hơn nhiều mặc dù hàm lƣợ ng lipid chỉ đạt từ 20-

50% sinh khối khô [80].Ngoài ra, thành phần lipid trong tế bào vi tảo cũng khác nhau tùy theo chủng

loại. Đây thực sự cũng là một điểm đáng lƣu ý khi lựa chọn các loài vi tảo vì sẽ ảnh

hƣởng đáng kể đến đặc tính của biodiesel đƣợ c sản xuất từ lipid của chúng. Thành

phần lipid trong vi tảo gồm có các acid béo bão hòa và chƣa bão hòa, chứa 12-22

nguyên tử carbon, và một số thuộc họ ω3 và ω6 [80].

Bảng 2. 1: Hàm lƣợng và năng suất lipid của các loài tảo khác nhau [80]

Các loài vi tảo nƣớ cmặn và nƣớ c ngọt 

Hàm lƣợ ng lipid(% sinh khối khô) 

Sinh khối khô(g/L/ngày) 

Năng suất lipid(mg/L/ngày) 

Chlorella emersonii 25.0-63.0 0.036-0.041 10.3-50.0

Chlorella sorokiniana 19.0-22.0 0.23-1.47 44.7

Chlorella sp. 10.0-48.0 0.02-2.5 42.1Chlorococcum sp. 19.3 0.28 53.7

 Nannochloris sp. 20.0-56.0 0.17-0.51 60.9-76.5 Nannochloropsis

 oculata22.7-29.7 0.37-0.48 84.0-142.0

 Nannochloropsis sp. 12.0-53.0 0.17-1.43 37.6-90.0 Neochloris

oleoabundans29.0-65.0 - 90-134.0

Scenedesmus sp. 19.6-21.1 0.03-0.26 40.8-53.9Spirulina maxima 4.0-9.0 0.21-0.25 -

Tetraselmis suecica 8.5-23.0 0.12-0.32 27.0-36.4

Tetraselmis sp. 12.6-14.7 0.30 43.4

Page 26: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 26/68

2.  NUÔI VI TẢO SẢN XUẤT BIODIESEL

16

Theo số liệu trên, ta thấy trong số các loài vi tảo có hàm lƣợ ng lipid cao,

 Nannochloropsis oculata là một tiềm năng sáng giá. Mặc dù hàm lƣợ ng lipid tính

theo phần trăm sinh khối khô chỉ trong khoảng 22.7-29.7%, thấp hơn một số loài

nhƣ Chlorella emersonii, Chlorella sp., Nannochloris sp., Neochloris

oleoabundans…, nhƣng do   Nannochloropsis oculata  nuôi theo phƣơng pháp tự 

dƣỡ ng có sức sinh sản cao, lƣợ ng sinh khối trong ngày lớ n, năng suất lipid của loài

này có giá trị cao đáng kể. Vì vậy có thể xem Nannochloropsis oculata là một loài

vi tảo rất có tiềm năng trong việc sản xuất biodiesel.

2.2.  Một số nghiên cứ u về  ảnh hƣở ng của điều kiện môi trƣờ ng lên sự  

tích lũy lipid ở vi tảo

 Năng suất dầu của vi tảo là khối lƣợ ng dầu đƣợ c sản xuất trên mỗi đơn vị thể tích canh trƣờ ng vi tảo mỗi ngày, phụ thuộc vào mức độ sinh trƣở ng của tảo và hàm

lƣợ ng lipid có trong sinh khối. Xem xét qua một vài kết quả nghiên cứu, ta có thể 

thấy rằng hàm lƣợ ng và đặc tính của lipid trong tế bào vi tảo rất đa dạng, tùy thuộc

vào sự  thay đổi của điều kiện sinh trƣởng (nhƣ nhiệt độ và cƣờng độ chiếu sáng)

hay thành phần dinh dƣỡng trong môi trƣờ ng nuôi cấy (nhƣ nồng độ nitrogen,

phosphate và sắt) [34, 44].

2.2.1.  Yếu tố nhiệt độ Nhiệt độ  ảnh hƣở ng sâu sắc đến sự  sinh trƣở ng và sự tích lũy các thành

phần hóa sinh trong tế bào vi tảo, đặc biệt là sự tích lũy lipid và sự thay đổi thành

phần lipid nội bào.

Một ví dụ cụ thể đó là Chlorella vulgaris trong thí nghiệm của Attilio và

các cộng sự: loài vi tảo này đƣợc nuôi trong môi trƣờng cơ bản Bold, sử dụng

CO2 có sẵn trong không khí (khoảng 300ppm) và NaNO3 là những nguồn cung

cấp carbon và nitrogen duy nhất trong suốt quá trình thí nghiệm, nuôi cấy theo phƣơng thức quang tự dƣỡng trong 14 ngày dƣớ i ánh sáng liên tục có cƣờng độ 

70µE/m2s, ở các nhiệt độ 25, 30, 35 và 380C [5].

Sự  sinh trƣở ng của C. vulgaris bị  ảnh hƣở ng mạnh mẽ khi nhiệt độ trên

300C. Ở 350C, loài vi tảo này bắt đầu bị ức chế, cụ thể là mức độ sinh trƣởng đặc

trƣng đã giảm 17% so vớ i ở 300C. Khi tăng nhiệt độ lên cao hơn nữa (380C), sự 

sinh trƣở ng của C. vulgaris bị ngừng đột ngột, sau đó các tế bào vi tảo bị chết.

Điều này rất dễ nhận biết vì các tế bào sẽ thay đổi màu sắc, chuyển từ màu xanh

sang màu nâu, và mức độ sinh trƣở ng của tế bào vi tảo có kết quả là số âm [5].

Page 27: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 27/68

2.  NUÔI VI TẢO SẢN XUẤT BIODIESEL

17

Khi nhiệt độ sinh trƣở ng giảm từ 300C xuống còn 250C thì hàm lƣợ ng lipid

trong tế bào C. vulgaris tăng, từ 5.9 lên 14.7%, trong khi đó mức độ sinh trƣở ng

vẫn duy trì không đổi. Kết quả năng suất lipid đã tăng từ 8 lên đến 20mg/L.ngày

[5].Bảng 2. 2: Sự  sinh trƣở ng và sản xuất lipid của C. vulgaris tại các nhiệt độ 

khác nhau [5]

Nhiệt độ (0C)

µ - Tốc độ sinh trƣở ngđặc trƣng (1/ngày) 

Sản lƣợ ng lipid(glipid /100gsinh khối khô)

Năng suất lipid(mglipid /L.ngày)

25 0.14 ± 0.00 14.71 ± 0.30 20.22 ± 0.60

30 0.14 ± 0.00 5.90 ± 0.42 8.16 ± 0.65

35 0.12 ± 0.01 5.60 ± 0.59 8.21 ± 0.1738 -0.01 ± 0.01 11.32 ± 0.20 -2.72 ± 1.62

Hình 2. 1: Phần trăm các loại FAME trên tổng lƣợ ng FAME (g/100gFAME)của C. vulgaris tại các nhiệt độ sinh trƣở ng khác nhau [A4]

(FAME: fatty acid methyl ester)

Sau quá trình chuyển vị ester, phân tích các FAME thì thấy lƣợ ng acid

palmitic (C16:0) trong C. vulgaris chiếm 60% (mol/mol) trên tổng lƣợ ng lipid[5].

Một điều đáng ghi nhận nữa là khi tăng nhiệt độ vƣợ t quá nhiệt độ nuôi cấy

tối ƣu (34-380C), hàm lƣợ ng acid oleic trong C. vulgaris sẽ tăng cao đáng kể [5].

Xem xét thêm các kết quả từ những nghiên cứu khác càng có thể chứng

minh rằng nhiệt độ có một tầm tác động đáng kể trong quá trình nuôi cấy các loài

vi tảo. Mỗi loài vi tảo thích ứng vớ i một ngƣỡ ng nhiệt độ nhất định và ở các nhiệt

độ khác nhau thì thành phần hóa sinh trong tế bào là khác nhau.

Page 28: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 28/68

Page 29: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 29/68

2.  NUÔI VI TẢO SẢN XUẤT BIODIESEL

19

2.2.2.  Yếu tố thành phần môi trƣờ ng

Hàm lƣợ ng lipid trong vi tảo có thể  tăng lên dƣới các điều kiện nuôi cấy

khác nhau nhƣ sự thiếu hụt nitrogen [34, 79, 42], cƣờng độ chiếu sáng mạnh

[37], nhiệt độ thấp [62], nồng độ muối cao [78], và nồng độ sắt cao [44]. Dƣớ i

các điều kiện kích thích, nhiều loài vi tảo có thể đáp ứng bằng cách gia tăng hàm

lƣợ ng lipid, thông thƣờ ng từ 30% tớ i 60% (w/w) tế bào khô [14].

 2.2.2.1.  Thành phầ n Carbon

Cả hai loại nguồn carbon phi hữu cơ (CO2) lẫn carbon hữu cơ (glucose,

acetate…) đều đƣợ c vi tảo sử dụng để sản xuất lipid. Do vi tảo có khả năng sử 

dụng CO2 nhƣ nguồn carbon chính trong thành phần dinh dƣỡ ng nhờ vào khả 

năng quang hợp, con ngƣời hƣớng đến việc cô lập CO2 từ các nguồn khí thải

để tận dụng cho quá trình quang hợ p của vi tảo, một mặt giảm đƣợ c chi phí 

trong quá trình nuôi cấy vi tảo, mặt khác là giảm thiểu CO2 trong không khí,

đáp ứng nhiệm vụ cải thiện môi trƣờ ng và khắc phục hiện tƣợ ng nóng dần lên

của trái đất do các loại khí nhà kính [12]. Theo ƣớ c tính, để sản xuất đƣợ c 100

tấn sinh khối vi tảo thì có khoảng 180 tấn CO2 đƣợ c sử dụng trong quá trình

quang hợp dƣới điều kiện ánh sáng tự nhiên hoặc nhân tạo [5].

Để việc sản xuất biodiesel và làm giảm CO2  trong không khí đạt hiệuquả, các loài vi tảo phải đƣợ c chọn lựa thỏa mãn các yêu cầu: sinh trƣở ng

mạnh, hàm lƣợ ng lipid nhiều và có khả năng thích nghi tốt khi mức độ CO2 

cao [12]. Khi khảo sát yếu tố nồng độ CO2 đối vớ i mức độ sinh trƣở ng và sự 

tích lũy lipid trên một số loài tảo đƣợ c lựa chọn nhằm sản xuất lipid, Chan

Yoo và các cộng sự đã đạt đƣợ c một số kết luận nhƣ sau [12]:

Ba loài tảo Scenedesmus sp., Chlorella sp., và   Botryococcus braunii

đƣợ c nuôi trong điều kiện nhiệt độ 25 ± 1

0

C, chiếu sáng liên tục 150µmol/m

2

strong 2 tuần. Để rút ngắn thờ i gian phase lag, vi tảo trƣớc đó đƣợ c nuôi trong

môi trƣờ ng sục không khí có 2% CO2 trong 1 tuần trƣớ c khi cấy mẫu. Môi

trƣờ ng nuôi cấy thực sự thì sử dụng không khí chứa 10% CO2 hoặc khí thải từ 

ống khói vớ i vận tốc 0.3v/v/m, nồng độ CO2 là 5.5%.

-  Đối vớ i mức độ sinh trƣở ng của tế bào khi nồng độ CO2 là 10%

Trong ba loài đƣợ c khảo sát thì Scenedesmus sp. là loài đạt năng suất

sinh khối cao nhất. Sinh khối tối đa đạt đƣợ c là 3.13g/L vào ngày thứ 14, năngsuất sinh khối đạt 217.50 ± 11.24 mg sinh khối khô/L.ngày. Trong một nghiên

Page 30: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 30/68

2.  NUÔI VI TẢO SẢN XUẤT BIODIESEL

20

cứu khác của Morais và Costa [51], đối vớ i hai loài Chlorella sp. và

Scenedesmus sp. cô lập từ nhà máy nhiệt điện than đá, năng suất sinh khối của

chúng cũng khá cao khi nồng độ CO2 từ 6-12%. Năng suất tối đa của hai loài

này vớ i 6% CO2 lần lƣợ t là 87 và 85mg sinh khối khô/L.ngày. Hơn nữa,hai loài tảo này cũng có thể sống trong môi trƣờ ng chứa CO2 vớ i nồng độ lên

tới 18%, và năng suất sinh khối cao nhất của loài Scenedesmus obliquus là

140mg sinh khối khô/L trong một ngày vớ i nồng độ CO2 là 12% [50]. Qua đó

thấy rằng, khi nuôi ở 10% CO2, năng suất sinh khối của Scenedesmus sp. cao

gấp 2-3 lần so vớ i các nghiên cứu ở nồng độ khác, và cả ba loài tảo đƣợ c khảo

sát ở nồng độ CO2 này đều không gặp phải bất kỳ ảnh hƣở ng xấu nào. Tuy

nhiên, B. braunii lại có mức độ thích nghi chậm vớ i nồng độ CO2 10%, do đó

mức sinh trƣở ng của loài này thấp hơn. Sục khí ở nồng độ cao hoặc sục khí 

liên tục CO2 2% sẽ làm giảm đáng kể pH của môi trƣờ ng [60]. Lee và các

cộng sự [41] đã đề xuất rằng khi tăng mật độ tế  bào ban đầu thì sẽ tăng đƣợ c

sức chịu dựng của vi tảo đối vớ i nồng độ CO2 cao và giảm đƣợ c thờ i gian

thích nghi. Nhƣ vậy, nếu B. braunii đƣợ c cho thích nghi vớ i nồng độ CO2 thấp

trƣớc đó, thì mức độ sinh trƣở ng và sản lƣợ ng sinh khối sẽ có thể gia tăng mà

không cần qua trải qua thờ i kỳ thích nghi [12].

-  Đối vớ i lipid và acid béo khi nồng độ CO2 là 10%

Hàm lƣợ ng lipid tổng trong vi tảo theo nghiên cứu của Chan Yoo và các

cộng sự đạt từ 6.25% tớ i 25.79% khối lƣợ ng khô. Từ ngày thứ 7 đến ngày thứ 

14, các giá trị có xu hƣớ ng giảm. Hàm lƣợ ng lipid trong Scenedesmus sp. thì

thấp hơn so vớ i  B. braunii, nhƣng do Scenedesmus sp. có năng suất sinh khối

cao nên có năng suất lipid tổng cao nhất trong ba loài khảo sát.

Bảng 2. 3: Năng suất sinh khối và năng suất lipid của Botryococcus braunii,Chlorella vulgaris và Scenedesmus sp. khi nuôi ở 10% CO2 trong 14 ngày [12].

LoàiNăng suất sinh khối

(mg sinh khối khô/L.ngày)Năng suất lipid tổng

(mg/L.ngày)

 B. braunii 26.55 ± 7.66 5.51 ± 1.53

C. vulgaris 104.76 ± 10.73 6.91 ± 0.03

Scenedesmus sp. 217.50 ± 11.24  20.65 ± 0.13

Trong khi hàm lƣợ ng lipid của cả hai loài Scenedesmus sp. và C. vulgaris

đều thấp hơn 11.92%, hàm lƣợ ng lipid tổng của   B. braunii vào ngày thứ 7

và ngày thứ 14 lần lƣợ t là 25.79% và 21.10%. Các kết quả khác lại cho thấy

Page 31: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 31/68

2.  NUÔI VI TẢO SẢN XUẤT BIODIESEL

21

rằng, hàm lƣợ ng lipid tổng có thể đạt đƣợ c từ 20-50% là khá phổ biến, thậm

chí một số loài vi tảo có thể  tích lũy lipid tớ i 80% (w/w) sinh khối khô.

Và nuôi cấy trên các điều kiện môi trƣờng khác nhau cũng có thể  gia tăng

đƣợc hàm lƣợng lipid tích lũy trong tế bào vi tảo [44]. Hàm lƣợ ng lipid tổngcủa B. braunii trong phase cân bằng sớm thì cao hơn trong phase sinh trƣở ng

theo hàm số mũ (phase log). Mặc dù hàm lƣợ ng lipid của cả ba loài tảo đƣợ c

Chan Yoo khảo sát vớ i nồng độ 10% CO2 có thấp hơn một chút so vớ i kết quả 

nghiên cứu trong các bản báo cáo khác, nhƣng chỉ xét trên phase cân bằng thì

hàm lƣợ ng này lại cao hơn [12].

Bảng 2. 4: Thành phần các acid béo của Botryococcus braunii, Chlorellavulgaris và Scenedesmus sp. khi nuôi cấy ở 10% CO2 trong 14 ngày [12].

LoàiC16:0

(% w/w acidbéo)

C16:1(% w/w acid

béo)

C18:0(% w/w acid

béo)

C18:1(% w/w acid

béo)

C18:2(% w/w acid

béo)

 B. braunii 29.5 ± 0.8 3.4 ± 0.3 1.0 ± 0.2 44.9 ± 0.4 21.2 ±0.4

C. vulgaris 24.0 ± 0.1 2.1 ± 0.0 1.3 ± 0.2 24.8 ± 1.5 47.8 ± 1.6

Scenedesmus

sp.36.3 ± 7.1 4.0 ± 0.8 2.7 ± 0.7 25.9 ± 4.5 31.1 ± 11.5

Trong số  các acid béo, thì acid palmitic, acid oleic, acid linoleic đƣợ c

xem là thành phần chính vớ i tỷ lệ từ 21% tớ i 45% tên tổng hàm lƣợ ng lipid

trong ba loài tảo, các acid palmitoleic và acid stearic chỉ là thứ yếu, tỷ lệ 

chiếm rất thấp. Đặc biệt, acid oleic, là acid béo đƣợc xem nhƣ là thành phần

chính và rất lý tƣởng để sản xuất biodiesel, thì lại chiếm tới 44.9% hàm lƣợ ng

lipid tổng trong B. braunii [12]. Tỷ lệ này là rất cao khi so sánh vớ i tỷ lệ acid

oleic đạt đƣợ c là 28% trong bản báo cáo của Ranga Rao và các cộng sự [60].

Vì vậy, có thể kết luận rằng, nồng độ CO2 10% là một nồng độ khá tối ƣu

để nuôi cấy vi tảo thu lipid nhằm mục đích sản xuất biodiesel. Để khắc phục

nhƣợc điểm hàm lƣợ ng lipid tổng hơi thấp, ta có thể sử dụng nồng độ 10%

CO2 kết hợ p vớ i một số yếu tố dinh dƣỡ ng tối ƣu khác, vấn đề chính là ở nồng

độ này có thể thu đƣợ c thành phần lipid phù hợ p cho yêu cầu sản xuất

biodiesel chất lƣợ ng cao, nhất là trên một số chủng cụ thể đƣợ c lựa chọn. Vấn

đề sinh trƣở ng chậm của một số loài nhƣ B. braunii, ta có thể áp dụng một số 

biện pháp cải thiện nhƣ tiền thích nghi giống vớ i nồng độ CO2 thấp để rútngắn thờ i gian thích nghi khi nuôi cấy ở nồng độ CO2 cao.

Page 32: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 32/68

2.  NUÔI VI TẢO SẢN XUẤT BIODIESEL

22

-  Khi nuôi bằng khí thải từ  ống khói, nồng độ CO2 5.5% 

Hai trong ba loài tảo nêu trên, B. braunii và Scenedesmus sp. đƣợ c nuôi

ở hai chế độ để so sánh, đó là sục không khí và dùng khí thải từ ống khói có

nồng độ CO2 là 5.5%. Năng suất sinh khối của B. braunii và Scenedesmus sp.

vớ i khí thải từ nhà máy lần lƣợt là 77 và 203mg/L.ngày. Năng suất lipid của

 B. braunii và Scenedesmus sp. đạt 21 và 39mg/L.ngày, tƣơng đƣơng vớ i hàm

lƣợ ng lipid là 24 và 18% [12]. Qua đó chứng tỏ rằng B. braunii vẫn giữ đƣợ c

hàm lƣợ ng lipid cao khi nuôi bằng khí thải nhƣ khi nuôi bằng khí chứa 10%

CO2. Sinh khối và hàm lƣợ ng lipid trong các chủng Scenedesmus sp. thì tƣơng

đƣơng khi nuôi ở 5% CO2 [66].

Thành phần acid béo của   B. braunii và Scenedesmus sp. khi nuôi sụckhông khí và khí thải ống khói thì gần nhƣ không thay đổi, đặc trƣng cho mỗi

loài. Tỷ lệ acid oleic trong  B. braunii lần lƣợt là 56 và 59% lƣợ ng acid béo

tổng khi nuôi bằng không khí và khí thải. Vì vậy kết luận rằng có thể sử dụng

khí thải từ  ống khói để nuôi  B.braunii nhằm sản xuất biodiesel vì có hàm

lƣợ ng lipid nhiều và trong đó thành phần acid oleic chiếm tỷ lệ rất cao [12].

 2.2.2.2.  Thành phầ n Nitrogen

Nitrogen là một yếu tố ảnh hƣở ng sâu sắc đến sự chuyển hóa và tích lũylipid trong nhiều loài vi tảo. Thêm vào đó, điều khiển nồng độ nitrogen khá dễ 

dàng và đây là một yếu tố có chi phí thấp khi so sánh vớ i các yếu tố khác [14].

Vì vậy, thành phần và hàm lƣợ ng nitrogen bổ sung vào môi trƣờ ng nuôi cấy vi

tảo để tăng năng suất lipid đã đƣợ c nhiều nhà khoa học nghiên cứu.

  Nhƣ đối tƣợ ng Chlorella vulgaris, khi  đƣợc nuôi trong môi trƣờng cơ 

bản Bold, sử dụng CO2 có trong không khí (khoảng 300ppm) và NaNO3 là

những nguồn cung cấp carbon và nitrogen duy nhất trong suốt quá trình thí nghiệm [5], nuôi cấy theo phƣơng thức quang tự dƣỡng trong 14 ngày dƣớ i

ánh sáng liên tục có cƣờng độ 70µE/m2s, ở nhiệt độ 300C. Nồng độ nitrogen

trung bình trong môi trƣờ ng nuôi cấy Chlorella vulgaris theo Guillard là

1.50g/L, do đó khi khảo sát sự giảm nồng độ nitrogen để kích thích sự tích lũy

lipid, Attilio và các cộng sự  đã nghiên cứu ở  2 nồng độ khác là 0.750 và

0.375g/L để so sánh vớ i nồng độ trung bình [5]. Điều kiện hàm lƣợ ng nitrogen

thấp trong môi trƣờ ng nuôi cấy thực sự làm gia tăng đáng kể sự tích lũy lipid

trong vi tảo [34]. Vì vậy hàm lƣợ ng nitrate lần lƣợt đƣợ c giảm đi còn ½ và ¼

Page 33: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 33/68

2.  NUÔI VI TẢO SẢN XUẤT BIODIESEL

23

so vớ i nồng độ tiêu chuẩn trong khi cƣờng độ chiếu sáng và tốc độ sục khí vẫn

giữ nguyên trong suốt các thí nghiệm. Ảnh hƣở ng của việc giảm thiểu nồng độ 

NaNO3 trên sự sinh trƣở ng của C. vulgaris đƣợ c tóm tắt trong bảng sau:

Bảng 2. 5: Tham số sinh trƣở ng và sự sản xuất lipid của C. vulgaris ở cácnồng độ NaNO3 khác nhau [5]

NaNO3(g/L)µ-Tốc độ sinh trƣở ng

đặc trƣng (1/ngày)Sản lƣợ ng lipid

(glipid /100gsinh khối khô)Năng suất lipid(mglipid /L.ngày)

1.500 0.14±0.00 5.90±0.42 8.16±0.65

0.750 0.14±0.01 14.37±0.64 20.44±0.75

0.375 0.14±0.00 15.31±0.51 20.30±0.40

Qua đó ta thấy, trong khi tốc độ sinh trƣở ng riêng của C. vulgaris thay

đổi không đáng kể thì hàm lƣợ ng lipid tăng gấp 3 lần khi giảm nồng độ nitrate

từ 1.500g/L còn 0.375g/L.

Khi thay đổi nồng độ NaNO3, hàm lƣợng acid palmitic không thay đổi

đáng kể  [5]. Tuy nhiên, hàm lƣợ ng acid linolenic acid (C18:3) trong

C. vulgaris thì phù hợ p vớ i tiêu chuẩn biodiesel sử dụng cho các phƣơng tiệnvận chuyển ở Châu Âu (12%, mol/mol) [38].

Hình 2. 2: Phần trăm các loại FAME trên tổng lƣợ ng FAME (g/100gFAME)của C. vulgaris tại các nồng độ NaNO3 khác nhau [A4]

(FAME: fatty acid methyl ester)

Tuy nhiên trong kỹ thuật nuôi cấy vi tảo, nguồn nitrogen có thể đƣợ c sử dụng dƣớ i nhiều dạng khác nhau, nhƣ là ammonia, nitrate, nitrite và urea. Tùy

Page 34: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 34/68

2.  NUÔI VI TẢO SẢN XUẤT BIODIESEL

24

thuộc vào đặc tính loài, việc sử dụng các nguồn nitrogen khác nhau đem đến

những hiệu quả khác nhau. Nhƣ đối vớ i  Ellipsoidion sp, sử dụng ammonium

làm nguồn cung cấp nitrogen sẽ đem lại mức độ sinh trƣởng và hàm lƣợ ng

lipid cao hơn khi sử dụng urea và nitrate [88].  Neochloris oleoabundans khinuôi bằng nitrate sẽ sinh trƣởng nhanh hơn và tích lũy lipid nhiều hơn khi nuôi

vớ i urea [42], nhƣng tế bào lại sinh trƣở ng yếu trong môi trƣờ ng sử dụng

nguồn nitrogen là ammonium. Thêm vào đó, nhiều nghiên cứu cho thấy rằng

cả ba loại nguồn nitrogen là nitrate, ammonium và urea đều có thể đáp ứng tốt

đối vớ i Spirulina platensis [16, 74]. Trong số các nguồn nitrogen hữu cơ,

urea đóng một vai trò quan trọng và thƣờng đƣợ c sử dụng trong nuôi cấy vi

tảo trên quy mô lớ n bở i vì giá thành của urea thì thấp hơn nhiều khi so vớ i các

nguồn nitrogen khác [14].

Ngoài ra, chế độ nuôi cấy ảnh hƣở ng tớ i sự sinh trƣở ng và thành phần

hóa sinh trong tế bào vi tảo. Sử dụng phƣơng pháp nuôi cấy fed- batch để điều

chỉnh mức độ bổ  sung môi trƣờ ng nhằm gia tăng năng suất [14]. Cải thiện

năng suất lipid có thể thực hiện bằng biện pháp nuôi cấy fed-batch bổ sung

gián đoạn nguồn nitrogen [79]. Thêm vào đó, trong phƣơng pháp nuôi cấy bán

liên tục, nồng độ chất dinh dƣỡng ban đầu và mức độ khôi phục cũng đƣợ c

sử dụng để biến đổi các thành phần hóa sinh trong tế bào vi tảo [56, 22].

Page 35: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 35/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

25

3. NUÔI VI TẢO NANNOCHLOROPSIS OCULATA THU LIPID

NHẰM SẢN XUẤT BIODIESEL

3.1.  Nannochloropsis oculata

3.1.1.  Phân loại

Nguồn gốc: thuật ngữ  Nannochloris bắt nguồn từ chữ Nannochlorid, vì vậy

thể chính xác là  Nannochloridopsis. Và Nannochloropsis là một cụm từ viết tắt

từ thuật ngữ trên [32].

  Nannochloropsis oculata thuộc vào lớ p tảo Eustigmatophyceae,

bộ Eustigmatales, họ Monodopsidaceae, chi Nannochloropsis [32].

Sự phân loại  Nannochloropsis  đã từng mắc phải nhiều nhầm lẫn. Đây là

loài tảo có kích thƣớ c rất nhỏ (nhỏ hơn 5 µ m), màu hơi xanh, không có giai đoạn

giao tử chuyển động để sinh sản hữu tính. Khi phân loại hình thái cơ thể sinh vật

của chi tảo này, các nhà khoa học đã xem xét dựa trên những nhóm chính đó là

Chlorophyceae, Tribophyceae và Eustigmatophyceae. Sử dụng kính hiển vi

quang học để phân biệt hình thái giữa các loài tảo trên gặp phải nhiều hạn chế,

do đó dẫn đến các nhận định sai lầm [32]. Hầu hết các tảo có hình dạng

chung chung nhƣ thuộc tảo đơn bào, có lớ p lục lạp đơn tại vách tế bào, váchtế bào trong suốt vô cấu trúc thiếu chất nhầy bao quanh, và chỉ sinh sản theo kiểu

chia đôi thành 2 phần bằng nhau đều đƣợ c liệt vào những loài của chi

 Nannochloris Naumann thuộc Chlorophyceae [53].

 Nannochloropsis  đƣợ c Droop phát hiện ra vào năm 1955 tại các vùng

nƣớ c lợ  bề mặt trong các hồ giữa những rặng đá. Antia và các cộng sự [3] đã

phát hiện ra những điểm không tƣơng thích trong sự phân loại của Droop [32]

dựa trên cơ sở  thành phần các hợ p chất trong lục lạp và vi cấu trúc, qua đó N. coccoides đƣợ c xếp vào lớ p Chlorophyceae trong khi N. oculata đƣợ c xếp vào

Eustigmatophyceae.  Nannochloropsis là một chi mớ i bao gồm các loài rất nhỏ 

thuộc lớp Eustigmatophyceae, trong đó phổ biến nhất là loài  Nannochloropsis

oculata.

3.1.2.  Đặc điểm hình thái

 Nannochloropsis oculata là loài tảo đơn bào, tự nổi trên môi trƣờ ng lỏng.

Tế bào có dạng hình cầu với đƣờ ng kính khoảng 2-4µm, hoặc hình trụ vớ i kíchthƣớ c là 3-4x1.5µm [32].

Page 36: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 36/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

26

  Nannochloropsis oculata có một lớ p màng ngoài mỏng hiện diện ở  các

giai đoạn nhất định trong chu kỳ sinh trƣở ng của tế bào, thành tế bào trong suốt

và không tạo hình dạng xác định, mang một lớp đơn các sắc tố diệp lục màu

vàng xanh, là sắc tố  đặc trƣng của nhóm Eustigmatophyceae, không có lớ pmàng nhầy bên ngoài [32].

3.1.3.  Đặc điểm sinh lý

 Nannochloropsis sp. là một chi thuộc dạng phiêu sinh vật tự dƣỡ ng, trong

tế bào có các hợ p chất chlorophylls [32]. 

  Nannochloropsis oculata là loài vi tảo sống tối ƣu trong môi trƣờ ng

nƣớ c mặn, tuy nhiên đôi khi cũng hiện diện trong môi trƣờng nƣớ c ngọt hay

nƣớ c lợ và sự thay đổi về hình thái là không đáng kể mấy [36].

 Nannochloropsis oculata có khả năng sống trong một dải nhiệt độ khá rộng.

Thích nghi tốt trong điều kiện môi trƣờ ng có nhiệt độ thấp, thậm chí là ở gần 00C

[36]. Điều kiện sinh trƣở ng tốt nhất của Nannochloropsis oculata ở khoảng 210C,

mức độ chiếu sáng 52µmol photon/m2s, pH 8.4, mức độ sục khí 14.7 vvh [57].

 Nannochloropsis oculata thuộc vào thể đơn bội [36], sinh sản vô tính theo

kiểu phân đôi theo chiều ngang [32].

3.1.4.  Đặc điểm sinh hóa

Khi điều kiện dinh dƣỡng đầy đủ,  Nannochloropsis sp. thƣờ ng có

khuynh hƣớ ng đầu tiên sẽ chuyển hóa carbon thành protein [52]. Tuy nhiên,

dƣới các điều kiện thay đổi khác nhau, tế bào vi tảo bị kích ứng, sẽ có nhiều

carbon đƣợ c chuyển hóa thành lipid và carbohydrate. Ảnh hƣở ng của các yếu tố 

môi trƣờ ng sẽ tác động lên thành phần lipid và các acid béo có trong tế bào vi tảo

[77].

Các acid béo chủ yếu có trong Nannochloropsis sp. là C14:0, C16:0, C16:1,

C20:4 và C20:5. Ngoài ra cũng có sự hiện diện của một số acid béo phụ khác nhƣ

C18:0, C18:1, C18:2 và C18:4. Các acid béo này tồn tại ở  ba dạng lipid trong

tế bào vi tảo, đó là: galactolipid, phospholipid và lipid trung tính. Galactolipid

của  Nannochloropsis sp. giàu các acid béo C20:5 và C20:4, kết hợ p vớ i C16:0

và C16:1, một lƣợ ng nhỏ C14:0. Lipid trung tính của  Nannochloropsis sp. thì

chủ yếu là các triacylglycerol, gồm các acid béo C16:0 và C16:1, một ít acid béo

C14:0 và C18:0. Phospholipid của  Nannochloropsis sp. giàu C16:1, một lƣợ ngđáng kể C18:1 và C18:4, hàm lƣợ ng C16:0 thấp [77].

Page 37: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 37/68

Page 38: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 38/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

28

carbon là CO2 có sẵn trong không khí vớ i tốc độ sục khí khoảng 300ppm,

và nguồn cung cấp nitrogen là NaNO3. Các mẻ nuôi cấy tự dƣỡ ng thực hiện

trong 14 ngày dƣớ i ánh sáng liên tục có mật độ dòng photon là 70µE/m2s.

Mỗi thí nghiệm lập lại hai lần [5].

-  Mức độ sinh trƣở ng và sự sản xuất lipid

Thay đổi điều kiện sinh trƣở ng tối ƣu của   N. oculata (200C) dẫn đến

kết quả làm biến đổi đáng kể mức độ sinh trƣở ng của loài vi tảo này.

Bảng 3. 1: Sự  sinh trƣở ng và sản xuất lipid của N. oculata tại các nhiệt độ khác nhau [5]

Nhiệt độ (0C)

µ - Tốc độ sinh trƣở ngđặc trƣng (1/ngày) 

Sản lƣợ ng lipid(glipid /100gsinh khối khô)

Năng suất lipid(mglipid /L.ngày)

15 0.06 ± 0.00 14.92 ± 0.82 9.11 ± 0.30

20 0.13 ± 0.00 7.90 ± 0.21 10.01 ± 0.22

25 0.07 ± 0.01 13.89 ± 0.61 10.10 ± 2.09

Khi nhiệt độ dƣớ i mức tối ƣu, mức độ tăng trƣở ng giảm hơn một nửa, từ 

0.13 giảm còn 0.06/ngày. Sự giảm rõ nét này cũng đƣợ c ghi nhận khi nuôi cấy

ở nhiệt độ cao, 250

C [5]. Sự giảm thiểu đáng kể này chứng tỏ rằng N. oculatamặc dù có thể thích nghi trong một phổ rộng nhiệt độ nhƣ nêu trong phần trên,

nhƣng là một loài khá nhạy cảm khi sinh trƣở ng tại các nhiệt độ khác nhau.

Vì vậy, nếu nhiệt độ càng hạ thấp hoặc càng tăng cao thì mức độ sinh trƣở ng

của loài vi tảo này càng bị hạn chế.

Sự  thay đổi nhiệt độ lại có ảnh hƣở ng tích cực lên sự tích lũy lipid đối

vớ i N. oculata. Nhiệt độ tối ƣu cho sự sinh trƣở ng của loài vi tảo này là 200C,

nhƣng khi tăng hoặc giảm nhiệt độ nuôi cấy, sản lƣợng lipid tích lũy trong

vi tảo tăng lên đáng kể, gần nhƣ gấp đôi so vớ i ở 200C [5].

Nhiệt độ thay đổi ảnh hƣở ng không tốt đến mức độ sinh trƣởng đặc trƣng

nhƣng lại có tác động tích cực lên sự tổng hợp và tích lũy lipid trong tế bào

vi tảo. Chính vì thế năng suất lipid của N. oculata khi nuôi cấy tại các nhiệt độ 

khác nhau lại gần nhƣ tƣơng đƣơng nhau, không hơn kém nhau nhiều lắm.

Kết quả cho thấy, tại 250C, năng suất lipid của N. oculata đạt giá trị cao nhất,

có thể lên đến 12.19mg/L.ngày [5].

-  Sự  thay đổi hàm lƣợ ng các acid béo trong thành phần lipid

Page 39: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 39/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

29

Hình 3. 2: Phần trăm các loại FAME trên tổng lƣợ ng FAME (g/100gFAME)của N. oculata tại các nhiệt độ khác nhau [A4]

(FAME: fatty acid methyl ester)

Qua đồ thị trên ta thấy, tại 150C, hàm lƣợ ng C16:0 và C18:3 khá cao.

Còn hàm lƣợ ng C18:1 lại rất thấp. Khi nhiệt độ  tăng lên 250C, hàm lƣợ ng

C18:1 tăng lên nhiều (khoảng 20%), trong khi đó C16:0 và C18:3 lại có

xu hƣớ ng giảm [5].

 3.2.1.2.   Nghiên cứ u củ a Hanhua Hu và Kunshan Gao, 2006 

Hanhua Hu và Kunshan Gao cũng đã khảo sát sự  sinh trƣở ng vàthành phần lipid của  Nannochloropsis sp. tại ba mức nhiệt độ khác nhau:

140C, 220C và 300C. Trong nghiên cứu của mình, Hanhua Hu và Kunshan Gao

đã thiết lập thí nghiệm nuôi cấy Nannochloropsis sp. tại các điều kiện nhƣ sau:

môi trƣờ ng nuôi cấy f/2 nƣớ c biển nhân tạo (f/2AW: f/2 artificial seawater),

mức độ sục khí 200mL/phút với hàm lƣợ ng CO2 cao (2800µL/L), mức độ 

chiếu sáng 50µmol/m2s, thu mẫu vào ngày thứ 10 sau khi cấy giống vào

môi trƣờ ng. Mỗi thí nghiệm lập lại 3 lần [31].

-  Mức độ sinh trƣở ng và thành phần hợ p chất hóa học trong tế bào

 Nannochloropsis sp. có khả năng sinh trƣở ng tốt trong khoảng nhiệt độ 

14-300C [31]. Sản lƣợ ng sinh khối khô (mg/L) của cả ba chế  độ nhiệt

không có sự  thay đổi đáng kể, ngoại trừ  ở  300C mức sinh trƣở ng có sự 

giảm nhẹ so vớ i nhiệt độ tối ƣu là 220C [31].

Khi nhiệt độ môi trƣờng thay đổi ra khỏi khoảng nhiệt độ tối ƣu, dù cao

hơn hay thấp hơn đều cho kết quả hàm lƣợ ng lipid tổng tăng đáng kể. Cụ thể 

là ở 220C, hàm lƣợ ng lipid trong tế bào vi tảo chỉ đạt 9%, trong khi ở 140C

Page 40: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 40/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

30

và 300C hàm lƣợ ng lipid lần lƣợt đạt 19% và 15%. Hàm lƣợ ng carbohydrate

và protein cũng có sự thay đổi nhẹ [31].

-  Thành phần các acid béo trong tế bào vi tảo

Khi nhiệt độ tăng, tỷ lệ acid palmitic tăng đáng kể, tuy nhiên hàm lƣợ ng

EPA giảm. Dƣới các điều kiện stress nhiệt độ (nhiệt độ cao hoặc thấp), vi tảo

đều đáp ứng gia tăng hàm lƣợ ng TFA. Nhƣng hàm lƣợ ng của các PUFA

giảm dần khi nhiệt độ  môi trƣờng tăng, cụ thể  là hàm lƣợ ng các PUFA

lần lƣợt đạt 40%, 35% và 27% tƣơng ứng vớ i các nhiệt độ 14%, 22% và 30%

[31].

Trong khi đó, tại cả 3 chế  độ nhiệt khác nhau, hàm lƣợ ng các acid

palmitoleic (C16:1) và acid oleic (C18:1) thay đổi không đáng kể. Đây là hai

loại acid béo lý tƣở ng sản xuất biodiesel. Vấn đề chính là lựa chọn chế  độ 

nhiệt độ nuôi cấy sao cho các loại acid béo khác chiếm tỷ lệ phù hợ p vớ i tiêu

chuẩn biodiesel. Hàm lƣợ ng acid palmitic quá cao sẽ làm tăng điểm đông đặc

của biodiesel, còn hàm lƣợ ng EPA quá cao sẽ làm cho biodiesel dễ bị oxy hóa.

Bảng 3. 2: Thành phần acid béo (%w/w acid béo tổng) của Nannochloropsissp. vào ngày thứ 10 tại các nhiệt độ khác nhau [31]

Nhiệt độ (0C)14 22 30

TFA (mg/g DW) 88 ± 1.3 64 ± 1.7 143 ± 3.7

Acid béoC14:0 4.7 ± 0.7 4.1 ± 0.2 5.5 ± 0.5

C16:0 23.3 ± 0.9 25.4 ± 0.6 40.1 ±1.4

C16:1 21.3 ± 1.1 25.6 ± 0.6 20.5 ± 1.3

C18:0 Tr Tr 1.0 ± 0.2C18:1 8.4 ± 0.4 7.1 ± 0.3 4.2 ± 0.2

C18:2 4.3 ± 0.1 4.8 ± 0.1 6.8 ± 0.4

C20:1 1.3 ± 0.1 1.2 ± 0.1 Tr

C20:4 3.2 ± 0.6 3.4 ± 0.7 2.7 ± 0.4

C20:5 31.7 ± 1.8 25.3 ± 1.0 16.4 ± 0.4

C22:6 Tr 1.4 ± 0.2 Tr

Các loại khác Tr 1.4 ± 0.2 1.7 ± 0.3

Tr: trace, giá trị vết, dƣớ i 1%.

Page 41: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 41/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

31

Bảng 3. 3: Sản lƣợ ng sinh khối và thành phần hợ p chất hóa sinh của Nannochloropsis sp. vào ngày thứ 10 tại các nhiệt độ khác nhau [31]

Nhiệt độ 

(0C)

Sinh khối khô

(mg/L) Lipid (%w/w)

Carbohydrate

(%w/w)

Protein

(%w/w)14 388 ± 17.8 19 ± 0.8 12 ± 0.9 55 ± 4.1

22 403 ± 15.2 9 ± 0.5 11 ± 1.0 41 ± 2.9

30 318 ± 10.8 15 ± 0.7 11 ± 0.5 44 ± 2.7

 3.2.1.3.   Liên hệ mụ c tiêu sả n xuấ  t biodiesel 

Nguyên liệu trong sản xuất biodiesel chính là lipid từ vi tảo. Do đó

năng suất lipid là mục tiêu chính khi nuôi cấy N. oculata cho mục đích sản xuất

biodiesel. Ngoài ra, thành phần các acid béo trong nguồn lipid sản xuất biodiesellà rất quan trọng. Tỷ lệ acid béo bão hòa nhiều sẽ làm cho biodiesel dễ bị 

lắng cặn do acid béo bão hòa có khả năng xoắn cuộn và tạo thành kết tủa, do đó

nhiệt độ  đông đặc của biodiesel giàu acid béo bão hòa sẽ cao. Còn khi tỷ lệ 

acid béo chƣa bão hòa mang nhiều nối đôi cao, biodiesel lại dễ bị oxy hóa làm

thay đổi tính chất của biodiesel. Hai loại acid béo lý tƣở ng nhất để sản xuất

biodiesel chính là C16:1 và C18:1.

Chính vì vậy trong thí nghiệm của Attilio, khi nuôi cấy N. oculata ở 250C,

ta thấy hàm lƣợng acid béo bão hòa và acid béo chƣa bão hòa mang nhiều nối đôi

có xu hƣớ ng giảm, trong khi C18:1 là một nguyên liệu rất phù hợp để sản xuất

biodiesel thì lại tăng lên nhiều. Thêm vào đó, tại 250C, năng suất lipid của

 N. oculata tuy không khác biệt đáng kể so vớ i mức 150C và 200C, nhƣng vẫn là

đạt giá trị năng suất cao nhất.

Còn trong thí nghiệm của Hanhua Hu và Kunshan Gao, ta thấy sản lƣợ ng

sinh khối ở  cả 3 nhiệt độ nuôi cấy không có sự khác biệt đáng kể, nhƣng

hàm lƣợ ng lipid tổng khi nhiệt độ cao hay thấp thì tăng gần nhƣ gấp đôi so vớ iở  220C. Hàm lƣợ ng acid béo bão hòa tăng nhẹ khi nhiệt độ từ 140C tớ i 220C,

nhƣng  tăng mạnh khi nhiệt độ  tăng từ 220C tớ i 300C và hàm lƣợ ng acid béo

mang nhiều nối đôi giảm đáng kể.

Vì vậy khi kết hợ p kết quả của 2 thí nghiệm, ta thấy cần tăng nhiệt độ 

để giảm hàm lƣợ ng EPA trong tế bào Nannochloropsis oculata, tuy nhiên không

nên tăng nhiệt độ quá cao so vớ i nhiệt độ tối ƣu để hàm lƣợ ng C16:0 chỉ  tăng

một lƣợ ng nhỏ. Do đó, điều kiện nhiệt độ thích hợ p nuôi cấy  N. oculata nhằmsản xuất biodiesel chính là ở 250C – 270C.

Page 42: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 42/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

32

3.2.2.  Yếu tố ánh sáng

Tốc độ  sinh trƣở ng của tảo tự  dƣỡ ng là một hàm không tuyến tính theo

mức độ chiếu sáng. Tại mật độ dòng photon thấp, tốc độ sinh trƣở ng gần nhƣ

tuyến tính theo mức độ chiếu sáng; tuy nhiên, tại cƣờng độ sáng cao, tốc độ 

sinh trƣở ng trở  nên bão hòa (cân bằng) so vớ i mức độ chiếu sáng. Các tế bào

sinh trƣở ng tại các mức độ chiếu sáng khác nhau có các đặc điểm sinh trƣở ng

khác nhau và cho thấy có sự  thay đổi đáng kể trong thành phần hóa học

tổng quát, hàm lƣợ ng sắc tố và hoạt động quang hợ p [23, 65, 59, 76].

Theo kết quả khảo sát của Assaf Sukenik và Yael Carmeli về sự điều hòa

hoạt động tổng hợ p các thành phần acid béo của Nannochloropsis sp. thông qua

chế  độ chiếu sáng [77], ta có thể dự  đoán rằng khi nuôi tế bào vi tảo  Nannochloropsis oculata ở   các điều kiện chiếu sáng khác nhau bao gồm

ánh sáng giớ i hạn sinh trƣởng, ánh sáng bão hòa sinh trƣở ng và ánh sáng gây

kìm hãm, thành phần các hợ p chất hóa học và số lƣợ ng tế bào trong dịch nuôi cấy

cũng sẽ có sự thay đổi.

Trong nghiên cứu của Assaf Sukenik và Yael Carmeli, huyền phù

 Nannochloropsis sp. đƣợ c nuôi trong môi trƣờ ng f/2, nƣớ c biển thiên nhiên,

ở  25

0

C [29]. Trong suốt phase sinh trƣở ng logarith, các mẫu đƣợ c lấy để  đomức độ sinh trƣở ng và thành phần sắc tố. Cuối phase sinh trƣở ng thu mẫu để 

xác định thành phần lipid. Ảnh hƣở ng của mức độ chiếu sáng đƣợc xác định

bằng cách duy trì trạng thái ổn định điều kiện môi trƣờ ng trong thiết bị 

turbidostat 2.6L (là một thiết bị nuôi cấy liên tục), ánh sáng đƣợ c cung cấp

thông qua các đèn huỳnh quang trắng ít tỏa nhiệt, 20W (Osram, W. Germany)

theo ba mức độ  đƣợ c ký hiệu là: growth-limiting (GLL) 35µmol /m2s;

growth-saturating (GSL) 290 µmol/m2s và photoinhibiting (PIL) 550 µmol /m2s.

Assaf Sukenik và Yael Carmeli đã thu đƣợ c một số kết quả nhƣ sau [77]:

-  Mức độ sinh trƣở ng và thành phần nội bào

Mức độ chiếu sáng có mối liên hệ mật thiết vớ i mức độ  sinh trƣở ng

của huyền phù  Nannochloropsis sp.. Mức độ sinh trƣở ng tế bào sẽ đạt bão hòa

khi mật độ dòng photon trên 200 µmol/m2s. Khi ánh sáng vƣợ t qua một ngƣỡ ng

nào đó, sẽ trở  thành yếu tố  ức chế sự  sinh trƣở ng của tế bào, cụ thể  ở  

 Nannochloropsis sp. là 500 µmol/m2s. Hảm lƣợ ng chlorophyll nội bào giảm theo

hàm số mũ khi mức độ chiếu sáng tăng, đƣợ c thể hiện qua đồ thị sau:

Page 43: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 43/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

33

Hình 3. 3: Ảnh hƣở ng của mức độ chiếu sáng trên sự  sinh trƣở ng của tế bàovà hàm lƣợ ng chlorophyll a [S8]

Mức độ sinh trƣở ng của tế  bào và hàm lƣợng chlorophyll a đƣợc xác định

trong phase sinh trƣở ng hàm số mũ, thành phần acid béo đƣợc xác định khi bắt

đầu phase cân bằng.

Hàm lƣợ ng chlorophyll a trong tế bào giảm hơn 85% khi mức độ chiếu

sáng tăng 20 lần từ 30 tớ i 600 µmol/m2s. Những thay đổi về sắc tố nội bào có

mối liên hệ vớ i thành phần acid béo.

Hình 3. 4: Sự phân phối các acid béo chính trong Nannochloropsis sp. đƣợ cnuôi cấy theo mẻ dƣớ i ảnh hƣở ng của mức độ chiếu sáng [77]

Page 44: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 44/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

34

Tuy nhiên, để  xác định ảnh hƣở ng của mức độ chiếu sáng trên sự hình

thành các hợ p chất hóa học nội bào, thiết bị nuôi cấy turbidostat cần đƣợc điều

chỉnh sao cho chế  độ chiếu sáng (bao gồm thờ i gian chiếu sáng, góc độ 

chiếu sáng) không gây ảnh hƣở ng tớ i sự sinh trƣở ng của tế bào.

Khi đƣợ c nuôi cấy dƣớ i mức độ chiếu sáng GLL (35µmol /m2s),

môi trƣờ ng nuôi cấy  Nannochloropsis bị giớ i hạn về ánh sáng, và mức độ 

nhân đôi tế bào chỉ đạt 57% so vớ i khi nuôi ở  điều kiện ánh sáng bão hòa (GSL,

290 µmol /m2s). Điều kiện ánh sáng PIL (550µmol /m2s) lại có tác dụng ức chế,

gây giảm mức độ nhân đôi của tế bào một phần. Khi mức độ chiếu sáng tăng lên

đến 850µmol /m2s, mức độ  nhân đôi tế bào giảm nghiêm trọng. Điều đó

cho thấy,  Nannochloropsis sp. khá nhạy cảm vớ i dòng photon có mật độ cao.Nồng độ các sắc tố quang hợ p giảm đi khi cƣờng độ ánh sáng tăng. Hàm lƣợ ng

carotenoid giảm không tƣơng xứng với lƣợ ng chlorophyll a. Kết quả là tỷ lệ giữa

carotenoid:chlorophyll a tăng lên khi mức độ chiếu sáng tăng. Nồng độ protein

vẫn duy trì không đổi, trong khi đó carbohydrate, lipid và các acid béo tăng

khi tăng mức độ chiếu sáng. Tỷ lệ khối lƣợ ng acid béo trong tổng lƣợ ng lipid

tăng k hi tế   bào đƣợ c nuôi ở  GSL, điều này cho thấy có sự  tăng tƣơng ứng về 

triacylglycerol. Nhƣng khi nuôi cấy ở  chế  độ  PIL thì hàm lƣợ ng lipid và các

acid béo nội bào không gia tăng thêm nữa so vớ i chế độ GSL.

-  Thành phần acid béo

Thành phần acid béo trong Nannochloropsis sp. chủ yếu là C20:5, tiếp theo

là C16:1, nhƣ đã nêu ở phần trên. Các kết quả nghiên cứu khi nuôi cấy theo mẻ 

cho thấy rằng mức độ chiếu sáng thực sự ảnh hƣở ng nhiều đến thành phần acid

béo trong tế bào vi tảo. Khi tăng cƣờng độ chiếu sáng, hàm lƣợ ng các PUFA nhƣ

C20:4 và C20:5 giảm theo hàm số mũ, đồng thờ i hàm lƣợng C16:0 và C16:1 tăng

lên. Những kết quả này đã đƣợ c kiểm tra thông qua nuôi cấy điều kiện ổn địnhliên tục ở các mức độ chiếu sáng khác nhau. Khi nuôi ở  điều kiện ánh sáng GLL,

hàm lƣợng acid béo C20:4 và C20:5 đạt khá cao, lần lƣợ t là 7.8 và 37.6%, hàm

lƣợ ng C16:0 và C16:1 thấp. Khi nuôi ở  điều kiện ánh sáng GSL và PIL thì hàm

lƣợng C16:0 và C16:1 cao hơn, trong khi phần trăm C20:4 và C20:5 giảm mạnh.

-  Sự tổng hợ p lipid

Quá trình đồng hóa CO2 tạo thành các loại lipid trong tế bào vi tảo cũng

phụ thuộc nhiều vào mức độ chiếu sáng. Dƣới điều kiện ánh sáng yếu, chỉ có

Page 45: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 45/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

35

26% là triacylglycerol và tới 40% là các galactolipid, trong đó 26% là

monogalactosyl diacylglycerol và 14% là digalactosyl diacylglycerol. Dƣớ i

điều kiện ánh sáng bão hòa (GSL), sự tổng hợp triacylglycerol tăng lên và hàm

lƣợ ng tổng galactolipid giảm xuống. Xu hƣớ ng này vẫn tiếp tục khi tăng mức độ chiếu sáng đến mức ức chế (PIL), cụ thể là chiếu sáng ở  550µmol /m2s thì

 Nannochloropsis sp. sẽ tổng hợ p 50% triacylglycerol và chỉ có 24% là

galactolipid, trong đó hàm lƣợ ng digalactosyl diacylglycerol chỉ giảm nhẹ, còn

hàm lƣợ ng monogalactosyl diacylglycerol giảm mạnh. Phần carbon lipid còn lại

chiếm khoảng 24-36% hàm lƣợ ng carbon lipid chính là các phospholipid, sắc tố 

và một số loại lipid khác chƣa xác định.

Hình 3. 5: Thành phần acid béo của Nannochloropsis sp. khi nuôi cấy trongđiều kiện ổn định liên tục tại ba mức độ chiếu sáng: GLL 35µmol /m2s, GSL

290µmol /m2s và PIL 550µmol /m2s [S8] 

-  Liên hệ mục tiêu sản xuất biodiesel

Chất lƣợ ng của biodiesel có liên quan mật thiết vớ i tính chất nguồn

cung cấp lipid. Nhƣ đã nêu ở  phần trên, nguồn lipid phù hợp để sản xuất

biodiesel là nguồn lipid có thành phần lipid chủ yếu là các triacylglycerol vớ i

hàm lƣợng các acid béo C16:1 và C18:1 càng cao càng lý tƣởng, hàm lƣợ ng các

acid béo chƣa no mang nhiều nối đôi nhƣ C20:4 và C20:5 nằm trong một tỷ lệ 

giớ i hạn nhất định, thành phần acid béo lại phụ thuộc vào mức độ chiếu sáng.

Do đó, khi nuôi cấy   Nannochloropsis oculata nhằm mục đích cung cấp lipidsản xuất biodiesel cần phải thiết lâp chế độ chiếu sáng sao cho ánh sáng tối thiểu

Page 46: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 46/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

36

đạt mức bão hòa sinh trƣở ng (GSL). Tại mức độ chiếu sáng GSL (290 µmol

 /m2s), sinh khối thu đƣợ c là hiệu quả nhất, hàm lƣợ ng C16:1 và C18:1 cao,

tuy nhiên triacylglycerol chƣa cao lắm. Nhƣng nếu chiếu sáng ở mức PIL (550

µmol /m2s), ta thấy hàm lƣợng C16:1 và C18:1 có xu hƣớ ng giảm còn C20:5 lạibắt đầu tăng trở  lại mặc dù lƣợ ng triacylglycerol đƣợ c tổng hợ p nhiều hơn.

Chính vì vậy, để đạt hiệu quả tối ƣu trong nuôi cấy  Nannnochloropsis oculata,

hƣớ ng chiếu sáng đƣợc đề nghị sử dụng là trong khoảng ánh sáng bão hòa cao,

gần đạt đến mức ức chế, nghĩa là vào khoảng 400 - 500 µmol /m2s.

3.2.3.  Yếu tố độ mặn

Hanhua Hu và Kunshan Gao khảo sát sự ảnh hƣở ng của độ mặn môi trƣờ ng

lên sự  sinh trƣở ng và thành phần các acid béo của  Nannochloropsis sp.Thí nghiệm đƣợ c thiết kế nhƣ sau: Nannochloropsis sp. đƣợ c nuôi cấy trong môi

trƣờ ng f/2AW, nhiệt độ 220C, mức độ sục khí 200mL/phút với hàm lƣợ ng CO2 

cao (2800µL/L), mức độ chiếu sáng 50µmol/m2s, thu mẫu vào ngày thứ 10 sau

khi cấy giống. Điều chỉnh độ mặn của nƣớ c biển nhân tạo bằng NaCl ở các nồng

độ nhƣ sau: 0.20, 0.36, 0.72, 1 hoặc 1.5M. Mỗi thí nghiệm lập lại 3 lần [31].

-  Sự  sinh trƣởng và hàm lƣợ ng lipid trong tế bào

 Nannochloropsis sp. phát triển tốt nhất trong môi trƣờng có độ mặnlà 31g/L (0.36M NaCl). Qua các nồng độ muối khảo sát, loài vi tảo này thể hiện

khả năng duy trì tốt sự sinh trƣở ng trong khoảng độ mặn 22  – 49g/L (0.2-0.72M

NaCl) [31].

Hàm lƣợ ng lipid trong  Nannochloropsis sp. khi đƣợ c nuôi cấy ở  khoảng

độ mặn từ 22 – 49g/L xấp xỉ khoảng 11%. Tuy nhiên, khi nồng độ muối tăng lên

đến 64g/L thì hàm lƣợng lipid tăng lên 18%, nghĩa là tăng hơn 50% so vớ i các

độ mặn thấp hơn [31].Bảng 3. 4: Sản lƣợ ng sinh khối và hàm lƣợ ng lipid của Nannochloropsis sp.vào ngày thứ 10 tại các độ mặn khác nhau [31]

NaCl (M)/Độ mặn (g/L) Sinh khối khô (mg/L) Lipid (%w/w)

0.20/22 275 ± 13.9 12 ± 0.4

0.36/31 308 ± 15.4 11 ± 0.3

0.72/49 237 ± 10.3 11 ± 0.4

1.00/64 36 ± 5.1 18 ± 0.6

1.50/88 10 ± 2.3 -

Page 47: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 47/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

37

-  Thành phần các acid béo

Các acid béo chiếm ƣu thế trong tế bào  Nannochloropsis sp. là acid

palmitic (C16:0), acid palmitoleic (C16:1) và EPA (C20:5ω3), bất kể là sinh

trƣởng trong môi trƣờ ng nào. Tỷ lệ phần trăm acid oleic (C18:1) có xu hƣớ ng

tăng khi tăng độ mặn môi trƣờ ng nuôi cấy. Trong khi đó, TFA lại có xu hƣớ ng

giảm [31].

Tỷ lệ % của PUFAs giảm khi tăng nồng độ muối, cụ thể đạt giá trị là 39%,

36%, 35%, và 17% tƣơng ứng với các độ mặn 22, 31, 49 và 64g/L.

Bảng 3. 5: Thành phần acid béo (%w/w TFA) của Nannochloropsis sp. vàongày thứ 10 tại các độ mặn khác nhau [31]

NaCl (M)/Độ mặn (g/L)0.20/22 0.36/31 0.72/49 1.00/64

TFA (mg/gDW)

90 ± 3.3 78 ± 2.5 46 ± 0.9 11 ± 0.7

Acid béoC14:0 3.1 ± 0.3 3.3 ± 0.1 4.1 ± 0.2 9.0 ± 0.3C16:0 25.3 ± 1.1 24.9 ± 1.5 22.1 ± 1.0 29.8 ± 1.9 C16:1 24.0 ± 0.7 26.0 ± 1.2 27.8 ± 0.9 23.6 ± 0.8C18:0 Tr Tr Tr Tr

C18:1 4.5 ± 0.2 4.6 ± 0.3 6.2 ± 0.5 17.8 ± 1.1C18:2 6.7 ± 0.3 7.8 ± 0.8 6.3 ± 0.1 4.7 ± 0.2C20:1 2.6 ± 0.3 3.5 ± 0.2 3.2 ± 0.1 TrC20:4 4.1 ± 0.1 4.0 ± 0.1 4.9 ± 0.2 3.9 ± 0.4C20:5 27.0 ± 0.5 23.6 ± 0.9 23.7 ± 1.1 8.4 ± 0.4C22:6 Tr Tr Tr Tr

Các loại khác 1.7 ± 0.3 1.5 ± 0.5 1.5 ±0.6 1.7 ± 0.1

Tr: trace, giá trị vết, dƣớ i 1%.

-  Liên hệ mục tiêu sản xuất biodiesel

Mục tiêu sản xuất biodiesel gắn liền với năng suất lipid trong quá trình

nuôi cấy vi tảo. Vì vậy, mặc dù tại nồng độ muối cao (64g/L), hàm lƣợ ng C18:1

tăng cao đáng kể và C20:5 giảm mạnh, hàm lƣợ ng C16:0 và C16:1 không có sự 

biến đổi mạnh, nhƣng sản lƣợ ng sinh khối khô Nannochloropsis sp. lại quá thấp

(36mg/L) nên không thể đáp ứng nhu cầu lipid trong sản xuất.

Tế   bào sinh trƣởng trong môi trƣờ ng có độ mặn 31 và 49g/L khi so vớ i

độ mặn 22g/L thì hàm lƣợng C20:5 có xu hƣớ ng giảm nhẹ, C18:1 và C16:1 lại

Page 48: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 48/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

38

tăng. Mức độ sinh trƣởng trong môi trƣờng độ mặn 31g/L là cao nhất (sinh khối

khô đạt 308mg/L). Mức độ  sinh trƣở ng của tế   bào trong môi trƣờ ng độ mặn

49g/L cũng khá cao (237mg/L). Do đó có thể lựa chọn hai mức độ mặn này để 

nuôi cấy Nannochloropsis oculata nhằm thu lipid. Để có thể chọn đƣợ c nồng độ muối phù hợ p nhất, môi trƣờ ng nuôi cấy cần đƣợ c khảo sát hai nồng độ muối

trên kết hợ p vớ i các yếu tố khác nhƣ nồng độ nitrogen, phosphorus và CO2, nhiệt

độ và mức độ chiếu sáng.

3.2.4.  Yếu tố thành phần môi trƣờ ng

 3.2.4.1.  Thành phầ n carbon

Các loài vi tảo sống trong đại dƣơng có khả  năng quang hợ p cao và

dễ dàng đƣợ c nuối cấy trong môi trƣờng nƣớ c biển vốn hòa tan một lƣợ ng lớ n

CO2 [72]. Sự cố định CO2 nhờ vào quá trình quang hợ p của vi tảo đồng thờ i

chuyển hóa sinh khối thành dạng nhiện liệu lỏng đƣợ c xem là một quá trình

đơn giản và rất có giá trị đối vớ i sự luân chuyển CO2 hiện nay, tạo nên một

giải pháp an toàn cho môi trƣờ ng [79].   Nannochloropsis oculata là một loài

vi sinh vật đáng đƣợc quan tâm trong lĩnh vực công nghệ sinh học về các

đối tƣợ ng thuộc đại dƣơng vì  N. oculata có hàm lƣợ ng lipid cao. Sheng – Yi

Chiu và các cộng sự  đã nghiên cứu ảnh hƣở ng của nồng độ CO2 trongdòng khí bổ  sung vào môi trƣờ ng nuôi cấy lên sản lƣợ ng sinh khối và sự 

tích lũy lipid ở    N. oculata, qua đó đánh giá hiệu quả  năng suất lipid khi

nuôi cấy theo mẻ và bán liên tục N. oculata [72].

Vi tảo N. oculata đƣợ c nuôi cấy trong môi trƣờ ng f/2 [72], thiết bị quang

phản ứng hình trụ bằng thủy tinh, nhiệt độ 26 ± 10C, dƣớ i ánh sáng

300µmol/m2s liên tục từ các đèn huỳnh quang ít tỏa nhiệt. Khí cung cấp vào

(đƣợ c lọc qua màng lọc 0.22µm) có các nồng độ CO2 khác nhau: 2%, 5%,

10% và 15%. Khí  đƣợ c sục từ  đáy thiết bị vớ i tốc độ sục là 200mL/phút

(tƣơng đƣơng 0.25vvm) [72]. Sau đó, Sheng –  Yi Chiu và các cộng sự  đã

rút ra đƣợ c một số kết luận sau:

-  Sinh trƣở ng của   N. oculata dƣớ i các nồng độ CO2 khác nhau khi

nuôi cấy theo mẻ [72]

Dịch nuôi cấy theo mẻ  đƣợc đặt ở  26 ± 10C, chiếu sáng liên tục

300µmol/m2s, sục khí bở i không khí (nồng độ CO2 xấp xỉ 0.03%), 2%, 5%,

Page 49: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 49/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

39

10% và 15% CO2. Môi trƣờng đƣợ c lấy mẫu sau mỗi 8h. Đƣờ ng cong

sinh trƣở ng của mỗi thí nghiệm đƣợ c thể hiện trong đồ thị sau:

Hình 3. 6: Ảnh hƣở ng của nồng độ sục khí CO2 lên sự  sinh trƣở ng của N.

 oculata 

Mức độ sinh trƣởng đặc trƣng khi sục không khí và 2% CO2 lần lƣợ t là

0.194/ngày và 0.571/ngày. Qua đồ thị ta thấy mức độ sục khí 2% CO2 

kích thích sự sinh trƣở ng của   N. oculata cao nhất. Không chỉ có sinh khối,

mà mức độ sinh trƣởng đặc trƣng khi nuôi cấy ở 2% CO2 cũng cao hơn khi

nuôi   N. oculata bằng không khí. Kết quả này cũng phù hợ p vớ i nghiên cứu

của Hu và Gao [33].   N. oculata sinh trƣở ng tốt nhất trong môi trƣờ ng giàuCO2  hơn trong không khí, có lẽ là nhờ  nguồn carbon cung cấp cho vi tảo

không bị hạn chế. Tuy nhiên, khi hàm lƣợ ng CO2 quá cao, 5 – 15%, sẽ gây ra

sự ức chế đáng kể [72].

-  Hàm lƣợ ng lipid của vi tảo tại các phase sinh trƣở ng khác nhau [72]

Hàm lƣợ ng lipid trong vi tảo đƣợc đo ở  phase sinh trƣở ng, phase

cân bằng sớ m và phase cân bằng. Các kết quả cho thấy hàm lƣợ ng lipid có

mối liên hệ chặt chẽ với phase sinh trƣở ng. Cụ thể  là hàm lƣợ ng lipid trong  N. oculata tại phase sinh trƣở ng, phase cân bằng sớ m và phase cân bằng

lần lƣợ t là 30.8, 39.7 và 50.4%. Kết quả này cho thấy hàm lƣợng lipid tích lũy

trong tế   bào tăng lên khi  N. oculata bƣớ c vào phase cân bằng. Liên hệ vớ i

nồng độ nitrate trong dịch nuôi cấy, các mẫu đƣợc đem xác định sự giảm

hàm lƣợ ng nitrate tại các phase khác nhau, trong đó hàm lƣợ ng nitrate giảm

dần từ  phase sinh trƣở ng trở  đi, điều này ám chỉ rằng lƣợ ng nitrate bị thiếu hụt

khi dịch nuôi cấy bƣớ c vào phase cân bằng. Sự thiếu hụt chất dinh dƣỡ ng,

cụ thể là thiếu hụt nitrogen đã làm gia tăng mức độ tổng hợ p lipid.

Page 50: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 50/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

40

-  Ảnh hƣở ng của nồng độ CO2 lên sự   sinh trƣở ng tế bào trong nuôi cấy

bán liên tục [72] 

Trƣớ c khi nuôi cấy trong môi trƣờ ng sục khí vớ i nồng độ CO2 cao,

  N. oculata đƣợ c trải qua giai đoạn thích nghi trong môi trƣờ ng 2% CO2 

trƣớ c khi cấy vào thiết bị nuôi cấy bán liên tục. Thêm vào đó, lƣợ ng giống cấy

vào môi trƣờ ng có mật độ tế bào cao (xấp xỉ 0.4g/L). Hệ thống bán liên tục

đƣợ c vận hành trong 8 ngày và sự sinh trƣở ng của tế   bào đƣợ c giữ ổn định

bằng cách thay ½ lƣợng môi trƣờ ng mỗi ngày, duy trì dịch nuôi cấy luôn ở  

 phase sinh trƣở ng. Kết quả là mức độ sinh trƣở ng của N. oculata khi sục khí 

vớ i nồng độ CO2  2%, 5%, 10% và 15% là tƣơng đƣơng nhau. Mức độ  

sinh trƣởng đặc trƣng trung bình và mật độ tế bào tối đa (nồng độ sinh khối)lần lƣợ t đạt từ  0.683 đến 0.733/ngày và 0.745 và 0.928g/L tại các nồng độ 

CO2 khác nhau. Khi sục khí với hàm lƣợ ng CO2 cao (5  –  15%) có thể gây

ảnh hƣở ng không tốt lên sự sinh trƣở ng tế  bào nhƣ thể hiện trong đồ thị nêu

ở  trên. Nhƣng khi tăng mật độ tế bào dịch cấy và trải qua quá trình thích nghi

trƣớ c vớ i nồng độ CO2 2% thì có thể cải thiện đƣợ c khả năng sinh trƣở ng của

vi tảo trong môi trƣờ ng sục khí với hàm lƣợ ng CO2 cao.

Hình 3. 7: Sự  sinh trƣở ng của N. oculata khi nuôi cấy bán liên tục trong môitrƣờ ng sục khí có chứ a 2%, 5%, 10%, 15% CO2 [72]

Page 51: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 51/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

41

Kết quả này chứng tỏ rằng khi gia tăng mật độ tế bào trong dịch cấy

và tạo điều kiện cho tế   bào thích nghi trong môi trƣờ ng có nồng độ CO2 

lý tƣở ng thì quá trình nuôi cấy vớ i nồng độ CO2 cao sau đó sẽ không gặp phải

những tác dụng tiêu cực lên sự sinh trƣở ng của tế bào vi tảo.

-  Sinh khối và năng suất lipid trong nuôi cấy bán liên tục

Trong hệ thống nuôi cấy bán liên tục,   N. oculata đƣợ c thu mẫu vào

thời gian trƣớ c khi dịch nuôi cấy đƣợc thay ½ môi trƣờ ng mỗi ngày để 

xác định sinh khối và năng suất lipid.

Bảng 3. 6: Năng suất sinh khối và lipid của N. oculata trong hệ thống nuôicấy bán liên tục với các hàm lƣợ ng CO2 khác nhau [72]

Nồng độ CO2

Tổng năng suất sinhkhối (khối lƣợ ng tế bào khô, g/L.ngày)

Tổng năng suấtlipid (g/L.ngày)

Phần trăm hàm lƣợ nglipid (%)

2% 0.480 ± 0.029 0.142 ± 0.049 29.7 ± 2.0

5% 0.441 ± 0.044 0.113 ± 0.035 26.2 ± 1.9

10% 0.398 ± 0.069 0.097 ± 0.026 24.6 ± 1.7

15% 0.372 ± 0.022 0.084 ± 0.021 22.7 ± 1.9

(Hệ thống nuôi cấy bán liên tục thực hiện trong 8 ngày, ½ môi trƣờ ngmới đƣợ c thay mỗi ngày. Thể tích thiết bị quang phản ứng là 800mL, thể tích

dịch thải mỗi ngày là 400mL. Số liệu ±SD đƣợc đo mỗi ngày từ ngày 1 tớ i

ngày 8).

Khi tăng nồng độ CO2 từ 2 tớ i 15%, cả sinh khối lẫn năng suất lipid đều

có xu hƣớ ng giảm. Khi nồng độ CO2 là 2%, 5%, 10%, 15% thì pH của

môi trƣờ ng lần lƣợt tƣơng ứng là 7.8, 7.7, 7.3 và 7.0. Quá trình đồng hóa

carbon để tổng hợ p lipid sẽ giảm khi pH môi trƣờ ng giảm [90]. Điều này

có thể là do khi môi trƣờng có pH càng cao thì lƣợ ng bicarbonate có thể dùng

đƣợ c cho sự tổng hợ p mạch carbon trong lipid càng nhiều. Điều này nói lên

rằng sự  tích lũy lipid trong  N. oculata có thể chủ yếu bị ảnh hƣở ng bở i pH

và hàm lƣợ ng lipid trong tế bào vi tảo sẽ giảm khi pH giảm [72].

-  Liên hệ mục tiêu sản xuất biodiesel

 Nannochloropsis oculata nhạy cảm vớ i nồng độ CO2 sục vào môi trƣờ ng

nuôi cấy. Môi trƣờ ng giàu CO2 (2%) so vớ i sục không khí sẽ  làm tăng sự 

sinh trƣở ng của   N. oculata, nhƣng khi môi trƣờ ng chứa nhiều CO2 hơn nữa

Page 52: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 52/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

42

(5-15%) thì loài vi tảo này lại bị  ức chế mạnh. Tuy nhiên, khi nuôi cấy

bán liên tục lại cho thấy rằng sự ức chế này hoàn toàn có thể khắc phục đƣợ c

nếu cho N. oculata trải qua quá trình thích nghi vớ i nồng độ CO2 2% trƣớ c khi

sục khí ở các chế độ từ 5-15%.

Vì vậy, để nuôi cấy N. oculata nhằm thu năng suất lipid lớ n, tối ƣu nhất

nên nuôi cấy ở  nồng độ CO2  2%, lƣợ ng sinh khối và lipid đều đạt giá trị 

cực đại so vớ i các nồng độ khác. Tuy nhiên, nếu muốn kết hợ p nuôi cấy

  N. oculata vừa phục vụ mục đích sản xuất biodiesel vừa lợ i dụng đặc tính

quang hợ p cao của loài này để cố định CO2, điều chỉnh chu trình tuần hoàn

CO2 nhằm cải thiện tình trạng ô nhiễm môi trƣờ ng,   N. oculata có thể  đƣợ c

nuôi cấy ở nồng độ CO2 cao khi đã qua quá trình thích nghi với môi trƣờ nggiàu CO2 so vớ i không khí.

 3.2.4.2.  Thành phầ n nitrogen

-  Thí nghiệm của Attilio và các cộng sự [5] 

 Nannochloropsis oculata đƣợc nuôi trong môi trƣờ ng Guillard f/2, nguồn

cung cấp carbon là CO2 trong không khí (khoảng 300ppm), nguồn cung cấp

nitrogen là NaNO3, nuôi trong 14 ngày, dƣới điều kiện ánh sáng liên tục

70.0µE/m2s, nhiệt độ môi trƣờ ng là 200C. Nồng độ nitrogen thích hợp để nuôi  N. oculata  theo Guillard là 0.300g/L. Do đó, để khảo sát ảnh hƣở ng của

sự thiếu hụt nitrogen trong môi trƣờ ng nuôi cấy lên sự  sinh trƣở ng và

thành phần lipid trong tế bào vi tảo, Attilio và các cộng sự đã thí nghiệm vớ i

các nồng độ NaNO3 là 0.300, 0.150, và 0.075g/L [5].

Bảng 3. 7: Tham số sinh trƣở ng và sự sản xuất lipid của N. oculata ở cácnồng độ NaNO3 khác nhau [5]

NaNO3(g/L)µ-Tốc độ sinh trƣở ng

đặc trƣng (1/ngày) Sản lƣợ ng lipid

(glipid /100gsinh khối khô)Năng suất lipid(mglipid /L.ngày)

0.300 0.13±0.00 7.88±0.21 10.01±0.16

0.150 0.10±0.00 13.01±0.39 13.61±1.10

0.075 0.10±0.00 15.86±0.59 16.41±0.11

Page 53: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 53/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

43

Hình 3. 8: Phần trăm các loại acid béo methyl ester trên tổng lƣợ ng acid béomethyl ester (g/100gFAME) của N. oculata tại các nồng độ NaNO3 khác nhau [5]

(FAME: fatty acid methyl ester)

-  Thí nghiệm của Hanhua Hu và Kunshan Gao

Một thí nghiệm khác của Hanhua Hu và Kunshan Gao nhằm khảo sát

nồng độ nitrate đối vớ i sự sinh trƣở ng, tích lũy lipid, và thành phần lipid trong

tế  bào cũng cho thấy rằng sự thiếu hụt nitrogen trong môi trƣờ ng nuôi cấy có

tác dụng đáng kể lên các đặc điểm hóa sinh của loài vi tảo này. Thí nghiệm

của Hu và Gao đƣợ c thiết lập ở  các chế  độ  nhƣ sau: tế bào vi tảo

 Nannochloropsis sp. đƣợ c nuôi cấy trong môi trƣờ ng 220C, sục khí 

200mL/phút với hàm lƣợ ng CO2 là 2800µL/L, mức độ chiếu sáng

50µmol/m2s, hàm lƣợng nitrate đƣợc điều chỉnh dựa theo môi trƣờ ng f/2AW

cơ bản: 150 (hàm lƣợ ng N thấp), 600 (hàm lƣợ ng N trung bình) và 3000µM

NO3-  (hàm lƣợ ng N cao) vớ i 36µM PO4

3-. Dùng NaNO3  để  điều chỉnh

hàm lƣợ ng N. Mỗi thí nghiệm đƣợ c lập lại 3 lần [31].

Khi tăng nồng độ nitrate từ 150µM đến 600µM, sản lƣợ ng sinh khối của

dịch nuôi cấy tăng 39%. Tuy nhiên, nếu tăng nồng độ này lên cao 3000µM thìlƣợ ng sinh khối lại có xu hƣớ ng giảm nhẹ [31].

Hàm lƣợ ng lipid trong vi tảo tăng cao khi nồng độ nitrate giảm mạnh.

Lƣợ ng acid béo tổng tăng đáng kể vớ i nồng độ nitrate thấp. Trong đó,

hàm lƣợ ng C18:1, C16:1 và C16:0 có xu hƣớng tăng khi nồng độ nitrate giảm,

còn acid C20:5 thì lại giảm khi nồng độ nitrate trong môi trƣờ ng thấp.

Hàm lƣợ ng của PUFAs lần lƣợt đạt 12%., 23%, 41% tƣơng ứng vớ i các nồng

độ N thấp, trung bình và cao [31].

Page 54: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 54/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

44

Tuy nhiên, hàm lƣợ ng C18:1 trong kết quả của Hu và Gao có chút

khác biệt so vớ i trong thí nghiệm của Attilio và các cộng sự (C18:1 giảm khi

giảm nồng độ nitrate). Sự khác biệt này có thể là do hai nghiên cứu thiết lập

tại điều kiện nuôi cấy khác nhau (ánh sáng và nhiệt độ). Thêm vào đó có thể do  Nannochloropsis sp. có vài điểm không tƣơng đồng vớ i  Nannochloropsis

oculata. Thực tế, C18:1 chỉ là thành phần thứ yếu trong thành phần lipid của

loài vi tảo này. Vì vậy, sự khác biệt này đƣợ c xem là ảnh hƣở ng không

đáng kể trong quá trình nghiên cứu.

Bảng 3. 8: Sản lƣợ ng sinh khối và thành phần hợ p chất hóa sinh của Nannochloropsis sp. vào ngày thứ 10 tại các nồng độ NaNO3 khác nhau [31]

NaNO3 (µM) Sinh khối khô (mg/L) Lipid (%w/w)150 220 ± 10.4 62 ± 2.8

600 305 ± 20.5 23 ± 0.9

3000 296 ± 15.6 13 ± 0.6

Bảng 3. 9: Thành phần acid béo (%w/w TFA) của Nannochloropsis sp. vàongày thứ 10 tại các nồng độ NaNO3 khác nhau [31]

NaNO3 (µM)150 600 3000TFA (mg/g DW) 403 ± 8.5 136 ± 5.7 105 ± 5.3

Acid béoC14:0 3.3 ± 0.2 3.7 ± 0.2 3.6 ± 0.3

C16:0 38.2 ± 1.2 33.9 ± 0.8 22.7 ± 1.4

C16:1 28.3 ± 0.9 23.7 ± 0.6 22.7 ± 1.1

C18:0 Tr Tr Tr

C18:1 16.4 ± 0.8 13.4 ± 0.6 4.1 ± 0.1C18:2 2.7 ± 0.5 4.2 ± 0.1 7.0 ± 0.8

C20:1 Tr Tr 3.3 ± 0.5

C20:4 1.1 ± 0.1 2.5 ± 0.2 3.6 ± 0.1

C20:5 7.9 ± 0.3 15.7 ± 0.8 29.9 ± 0.9

C22:6 Tr Tr Tr

Các loại khác Tr 1.1 ± 0.2 2.3 ± 0.3

Tr: trace, giá trị vết, dƣớ i 1%.

Page 55: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 55/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

45

-  Liên hệ mục tiêu sản xuất biodiesel

Qua số liệu thu đƣợ c ta thấy rằng,  N. oculata có mức sinh trƣở ng giảm

khi giảm nồng độ NaNO3  và hàm lƣợ ng lipid thì gần nhƣ tăng gấp đôi.

Kết quả này chứng tỏ rằng đây là một loài vi tảo phù hợ p vớ i mục tiêu

nuôi cấy để sản xuất biodiesel, nhiệm vụ của các nhà nghiên cứu chính là

tìm ra điều kiện môi trƣờ ng tối ƣu sao cho mức sinh trƣở ng của vi tảo chỉ 

giảm nhẹ song hàm lƣợ ng lipid trong tế bào lại gia tăng cách đáng kể [5].

Thành phần lipid trong tế bào  N. oculata có tỷ lệ các acid béo chƣa no

mang nhiều nối đôi khá cao, vì vậy để biodiesel sản xuất từ loài vi tảo này đạt

tiêu chuẩn sử dụng cho các phƣơng tiện động cơ thì biodiesel cần phải trải qua

quá trình xử lý bổ  sung nhƣ quá trình hydro hóa hoặc sử dụng dƣớ i dạnghỗn hợ p vớ i biodiesel giàu các acid béo bão hòa. Mặt khác cũng có thể 

khắc phục bằng cách áp dụng sự giảm nồng độ  nitrogen trong môi trƣờ ng

nuôi cấy kết hợ p vớ i các yếu tố khác có tác dụng tác động làm thay đổi

thành phần lipid trong tế bào vi tảo nhƣ yếu tố ánh sáng bão hòa và yếu tố 

nhiệt độ môi trƣờng. Khi đó hàm lƣợng các acid béo bão hòa và acid béo chƣa

bão hòa mang một nối đôi nhƣ C16:1 sẽ tăng lên rõ rệt, và biodiesel sản xuất

từ vi tảo N. oculata sẽ đạt chất lƣợng nhƣ tiêu chuẩn.

Trong thí nghiệm của Hu và Gao, hàm lƣợng nitrate trong môi trƣờ ng

nuôi cấy đƣợ c khảo sát ở  mức độ thấp hơn trong thí nghiệm của Attilio.

Mức thấp nhất là 150µM, tƣơng đƣơng 0.013g  /L. Trong khi mức thấp nhất

theo khảo sát của Attilio là 0.075g/L. Và kết quả của Hu và Gao cho thấy

hàm lƣợ ng lipid trong tế bào vi tảo tăng cao hơn rất nhiều so vớ i thí nghiệm

của Attilio, vào ngày thứ 10 nuôi cấy, năng suất lipid đạt tƣơng đƣơng khoảng

136.6mg/L. Thành phần lipid trong trƣờ ng hợ p nồng độ  nitrate đạt 150µM

cũng khá phù hợ p vớ i yêu cầu sản xuất biodiesel (hàm lƣợ ng C16:1, C18:1cao, hàm lƣợ ng C20:5 giảm mạnh).

 3.2.4.3.  Thành phầ n phosphorus

Thí nghiệm nghiên cứu sự ảnh hƣở ng của yếu tố dinh dƣỡ ng phosphorus

trong môi trƣờ ng nuôi cấy Nannochloropsis sp. đƣợ c Hanhua Hu và Kunshan

Gao thiết kế nhƣ sau: tế bào vi tảo  Nannochloropsis sp. đƣợ c nuôi cấy trong

môi trƣờ ng ở  220C, sục khí 200mL/phút với hàm lƣợ ng CO2 là 2800µL/L,

mức độ chiếu sáng 50µmol/m2s, hàm lƣợ ng phosphate đƣợc điều chỉnh dựa

Page 56: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 56/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

46

theo môi trƣờng f/2AW cơ bản: 6 (hàm lƣợ ng P thấp), 25 (hàm lƣợ ng P trung

bình) và 120µM PO43- (hàm lƣợ ng P cao) vớ i 882µM NO3

-. Dùng NaH2PO4 để 

điều chỉnh hàm lƣợ ng P. Mỗi thí nghiệm đƣợ c lập lại 3 lần [31].

-  Sự  sinh trƣởng và hàm lƣợ ng lipid trong tế bào

Khi tăng nồng độ   phosphate trong môi trƣờ ng nuôi cấy từ  6µM đến

25µM thì sản lƣợ ng sinh khối tăng 34%. Tuy nhiên nếu tăng nồng độ 

  phosphate lên cao hơn nữa, 120µM thì sản lƣợ ng sinh khối có sự giảm nhẹ 

[31].

Hàm lƣợng lipid tăng khi giảm nồng độ   phosphate trong môi trƣờ ng

nuôi cấy [H4]. Khi nồng độ    phosphate cao (120µM), hàm lƣợ ng lipid

giảm mạnh, chỉ còn 11% w/w sinh khối khô. Hàm lƣợ ng lipid giảm 24% khi

tăng nồng độ phosphate từ 6µM đến 25µM.

Bảng 3. 10: Sản lƣợ ng sinh khối và thành phần hợ p chất hóa sinh của Nannochloropsis sp. vào ngày thứ 10 tại các nồng độ NaH2PO4 khác nhau [31]

NaH2PO4 (µM) Sinh khối khô (mg/L) Lipid (%w/w)

6 238 ± 15.3 25 ± 3.1

25 318 ± 17.2 19 ± 0.8

120 308 ± 19.7 11 ± 0.3

-  Thành phần acid béo

Khi môi trƣờ ng nuôi cấy có nồng độ  phosphate cao, lƣợ ng acid béo tổng

có xu hƣớ ng giảm mạnh.

Khi hàm lƣợng phosphate tăng từ  6µM đến 25µM, lƣợ ng acid oleic

(C18:1) giảm đáng kể, từ 21.6% giảm còn 4.4%. Khi tăng hàm lƣợ ng

phosphate lên 120µM, C18:1 lại có xu hƣớng tăng, nhƣng tăng rất ít không

đáng kể. Điều này cho thấy sự tăng C18:1 trong hỗn hợ p acid béo bằng cáchtăng nồng độ  phosphate trong môi trƣờ ng nuôi cấy là không hiệu quả.

Hàm lƣợ ng acid palmitic và acid palmitoleic (C16:0 và C16:1) không có

sự thay đổi đáng kể khi thay đổi nồng độ  phosphate trong môi trƣờ ng.

Trong khi đó, hàm lƣợ ng EPA (C20:5) gia tăng nhiều khi nồng độ 

 phosphate tăng từ 6µM đến 25µM, cụ thể là từ 12.8% tăng lên 27.9%. Nhƣng

khi nồng độ phosphate tiếp tục tăng từ 25µM đến 120µM thì hàm lƣợ ng EPA

vẫn giữ nguyên gần nhƣ không đổi.

Page 57: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 57/68

3.  NUÔI  N. OCULATASẢN XUẤT BIODIESEL

47

Bảng 3. 11: Thành phần acid béo (%w/w acid béo tổng) của Nannochloropsis

sp. vào ngày thứ 10 tại các nồng độ NaH2PO4 khác nhau [31]

NaH2PO4 (µM)

6 25 120TFA (mg/g DW) 148 ± 6.0 88 ± 3.5 29 ± 2.1

Acid béoC14:0 3.8 ± 0.1 4.3 ± 0.4 3.3 ± 0.1

C16:0 29.8 ± 1.5 25.3 ± 0.5 23.1 ± 0.7

C16:1 23.2 ± 0.2 24.0 ± 0.8 23.0 ± 0.9

C18:0 1.2 ± 0.1 Tr Tr

C18:1 21.6 ± 1.3 4.4 ± 0.5 6.3 ± 0.7C18:2 3.2 ± 0.4 5.1 ± 0.2 7.6 ± 0.6

C20:1 Tr 3.3 ± 0.2 1.9 ± 0.1

C20:4 2.5 ± 0.4 3.5 ± 0.2 4.4 ± 0.2

C20:5 12.8 ± 1.0 27.9 ± 1.3 27.4 ± 0.5

C22:6 Tr Tr Tr

Các loại khác 1.1 ± 0.1 0.7 ± 0.3 1.7 ± 0.1

-  Liên hệ mục tiêu sản xuất biodiesel

Kết quả trên cho thấy rằng tại nồng độ phosphorus 6µM, sự sinh trƣở ng

của Nannochloropsis sp. thấp hơn khi nuôi cấy trong môi trƣờ ng chứa nhiều

phosphorus nhƣng hàm lƣợ ng lipid trong tế bào lại cao hơn (25%), do đó

năng suất lipid không bị ảnh hƣởng đáng kể.

Mặt khác, tại nồng độ phosphorus thấp, thành phần lipid trong tế bào

vi tảo là phù hợ p nhất vớ i mục tiêu sản xuất biodiesel: hàm lƣợ ng C20:5 thấp,

hàm lƣợ ng C16:0, C16:1 và C18:1 ở mức cao và ổn định. Sự giớ i hạn nồng độ 

  phosphorus trong môi trƣờng cũng giúp giảm bớ t chi phí  dinh dƣỡ ng trong

quá trình nuôi cấy.

Vì vậy, việc nuôi cấy  Nannochloropsis oculata nhằm sản xuất biodiesel

sẽ đạt hiệu quả cao khi vi tảo đƣợ c nuôi cấy trong môi trƣờ ng hạn chế hàm

lƣợ ng phosphorus, nồng độ khoảng 6µM NaH2PO4.

Page 58: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 58/68

4.  KẾT LUẬN

48

4. KẾT LUẬN

Vấn đề ô nhiễm môi trƣờ ng và sự thiếu hụt nguồn năng lƣợ ng trên toàn cầu

đang là vấn đề thu hút rất nhiều sự quan tâm. Nguồn nhiên liệu hóa thạch sử dụng chogiao thông vận tải và các phƣơng tiện cơ khí theo dự tính sẽ cạn kiệt trong vòng

50 năm tớ i. Trong các loại nhiên liệu xăng dầu, diesel có một vai trò quan trọng

và ngày càng đƣợ c sử dụng rộng rãi. Chính vì vậy nhiệm vụ tìm ra một nguồn

nhiên liệu mớ i có khả  năng tái sinh và thay thế nguồn nhiên liệu hóa thạch là một

nhiệm vụ cấp bách mang tính thờ i sự và lịch sử đối vớ i các nhà khoa học. Và biodiesel

đƣợ c xem là một giải pháp khả thi, đáp ứng đƣợ c các yêu cầu hiện tại.

Biodiesel có thể  đƣợ c sản xuất từ nhiều nguồn nguyên liệu nhƣ thực vật,

động vật hay nguồn dầu phế thải. Nhƣng để đáp ứng đƣợ c nhu cầu sử dụng, chi phí 

giá thành và không ảnh hƣở ng tớ i sự đa dạng sinh học cũng nhƣ các hoạt động khác

của con ngƣờ i (sự xâm lấn rừng và sự phân bố lại đất trồng), chỉ có vi tảo cho thấy có

khả năng trở thành nguồn cung cấp lipid tối ƣu cho việc sản xuất biodiesel.

Trong số các loài vi tảo đƣợ c khảo sát cho mục đích nuôi cấy thu lipid phục vụ 

cho biodiesel của nhiều nhà khoa học, cũng nhƣ tham khảo qua nhiều tài liệu về 

đặc tính của các loài vi tảo, có thể dự  đoán rằng   Nannochloropsis oculata là một

đối tƣợ ng rất có tiềm năng nhờ  vào khả  năng sinh trƣở ng mạnh trong môi trƣờ ngquang tự dƣỡ ng, sự  tích lũy lipid có thể  tăng cao đáng kể dƣới các điều kiện stress

môi trƣờ ng và thành phần lipid dễ dàng điều khiển thông qua điều kiện nuôi cấy.

Hàm lƣợ ng carbon cung cấp cho môi trƣờ ng nuôi cấy vi tảo là rất quan trọng.

Đối với điều kiện sục khí là không khí thì   Nannochloropsis oculata sẽ bị thiếu hụt

lƣợ ng carbon nên mức độ sinh trƣở ng không tốt. Khi hàm lƣợ ng CO2 trong không khí 

đạt 2% thì mức độ  sinh trƣở ng của   Nannochloropsis oculata đạt giá trị rất cao.

Trong suốt các khoảng nồng độ CO2 khảo sát (5-15%), nồng độ 2% CO2 chính lànồng độ tối ƣu để nuôi cấy  N. oculata. Tuy nhiên, khi loài vi tảo này đƣợ c trải qua

quá trình huấn luyện thích nghi vớ i nồng độ CO2  2% trƣớc, sau đó nuôi cấy trong

môi trƣờng có hàm lƣợ ng CO2 cao thì vẫn có thể duy trì mức sinh trƣở ng khá tốt.

Vì vậy có thể kết hợ p việc nuôi cấy N. oculata vừa thu lipid sản xuất biodiesel vừa có

tác dụng cố định CO2 cải thiện sự ô nhiễm môi trƣờ ng.

Khi đƣợc nuôi dƣỡng trong môi trƣờ ng sục khí liên tục với hàm lƣợ ng CO2 

thích hợ p, sự sinh trƣở ng của   Nannochloropsis oculata không bị giớ i hạn bở i nguồn

cung cấp carbon. Lúc này, chính hàm lƣợ ng nitrogen và phosphorus là yếu tố 

Page 59: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 59/68

4.  KẾT LUẬN

49

quan trọng mang tích chất quyết định đến mức độ sinh trƣở ng của vi tảo. Sự gia tăng

nồng độ nitrogen và phosphorus trong môi trƣờ ng nuôi cấy kích thích sự  tăng trƣở ng

mật độ tế bào trong dịch nuôi cấy. Tuy nhiên, qua kết quả nghiên cứu của các

nhà khoa học đi trƣớ c, có thể dự đoán rằng mức độ sinh trƣở ng của Nannochloropsis

oculata tăng đáng kể  khi điều kiện dinh dƣỡng (N và P) tăng từ nồng độ thấp đến

trung bình, nhƣng khi nồng độ này tăng cao hơn nữa, môi trƣờ ng nuôi cấy trở  thành

môi trƣờng giàu dinh dƣỡ ng thì mức độ sinh trƣở ng của vi tảo gần nhƣ không tăng

thêm mà lại có xu hƣớ ng giảm nhẹ. Điều này cho thấy rằng, Nannochloropsis oculata

phù hợ p khi sống trong môi trƣờng có hàm lƣợ ng nitrogen và phosphorus ở  mức

trung bình. Gia tăng hàm lƣợ ng một trong hai hoặc cả hai nguyên tố này đều gây ảnh

hƣởng đến sự cân bằng của tỷ lệ C:N hoặc N:P, do đó tác động đến sự sinh trƣở ng của

tế bào.

Khi hàm lƣợ ng nitrogen hoặc phosphorus trong môi trƣờ ng nuôi cấy bị hạn chế,

vi tảo  Nannochloropsis sp. có xu hƣớng gia tăng sự  tích lũy lipid trong tế bào.

Xu hƣớng này không đúng đối vớ i tất cả các loài vi tảo, nhƣng theo nghiên cứu

của Shifrin and Chisholm các loài tảo xanh thƣờ ng cho thấy khả  năng gia tăng sự 

tích lũy lipid trong điều kiện nuôi cấy thiếu hụt nitrogen [S11]. Hàm lƣợ ng lipid trong

tế bào  Nannochloropsis sp. tăng gần gấp 4 lần khi nuôi trong môi trƣờ ng có mức độ 

N thấp so với nuôi trong môi trƣờ ng có mức độ N cao [H4]. Tuy nhiên chƣa tìm thấytài liệu nào khảo sát đồng thờ i sự thiếu hụt của cả hai yếu tố dinh dƣỡ ng N và P lên

quá trình sinh trƣởng và tích lũy lipid đối vớ i vi tảo.

  Nannochloropsis oculata là loài vi tảo có thể sống trong một khoảng độ mặn

rộng vì loài tảo này có thể sinh sống trong môi trƣờng nƣớ c mặn, nƣớ c lợ  hoặc

thậm chí nƣớ c ngọt. Tuy nhiên, qua kết quả khảo sát của Hu và Gao đối vớ i

 Nannochloropsis sp. có thể dự  đoán rằng,   Nannochloropsis oculata sẽ bị  ức chế 

sinh trƣởng đáng kể  trong môi trƣờng có độ mặn quá cao (trên 60g NaCl/L), sinhtrƣở ng tốt trong môi trƣờng có độ mặn từ 20-50g/L, sinh trƣở ng tối ƣu khi độ mặn

khoảng 30g/L. Trong khoảng độ mặn phù hợ p cho Nannocloropsis oculata phát triển

sinh khối nhiều thì dƣờng nhƣ không ảnh hƣởng đáng kể tớ i sự  tích lũy lipid trong

tế bào vi tảo, dao động trong khoảng 11-12%w/w.

Theo nghiên cứu của Renaud và các cộng sự đối vớ i một số loài vi tảo [R7] thì

nhiệt độ không thể hiện bất kỳ sự ảnh hƣở ng nào lên sự tổng hợ p lipid trong tế bào.

Trong nghiên cứu của Zhu và các cộng sự [Z1], sự tổng hợ p lipid trong vài loài vi tảo

sẽ  tăng khi tăng nhiệt độ, đối vớ i loài   Nitzschia paleacea [R7]. Tuy nhiên,

Page 60: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 60/68

4.  KẾT LUẬN

50

 Nannochloropsis sp. lại cho thấy rất nhạy cảm vớ i nhiệt độ môi trƣờ ng: ngay cả khi

nhiệt độ thấp hơn hoặc cao hơn nhiệt độ sinh trƣở ng tối ƣu, lipid tích lũy trong tế bào

đều có xu hƣớng tăng cao đáng kể, gần nhƣ hàm lƣợng lipid tăng gấp đôi trong tế bào

vi tảo. Vì vậy, có thể dự  đoán rằng khi   Nannochloropsis oculata đƣợ c nuôi trongmôi trƣờ ng có nhiệt độ 25-270C thì mức độ sinh trƣở ng của tế bào vẫn duy trì tốt và

hàm lƣợ ng lipid trong tế bào cao hơn ở mức nhiệt độ tối ƣu. 

Điều kiện ánh sáng trong quá trình nuôi cấy đặc biệt có vai trò quan trọng trong

mục tiêu nuôi cấy   Nannochloropsis oculata nhằm sản xuất biodiesel. Chế  độ 

chiếu sáng ảnh hƣở ng sâu sắc đến thành phần lipid nội bào. Tế bào N. oculata trong

điều kiện ánh sáng bình thƣờ ng (50µmol/m2s) rất giàu acid EPA (C20:5). Acid EPA về 

mặt dinh dƣỡ ng có giá trị  cao nhƣng lại không phù hợp để sản xuất biodiesel.Tuy nhiên, thành phần lipid của N. oculata lại dễ dàng biến đổi tùy thuộc vào mức độ 

chiếu sáng. Qua nghiên cứu của Assaf Sukenik và Yael Carmeli, chế độ chiếu sáng

đƣợc xác định là phù hợ p vớ i mục tiêu sản xuất biodiesel chính là chiếu sáng ở  

cƣờng độ cao, tối thiểu là ở  mức ánh sáng bão hòa sự  sinh trƣở ng, tối đa là khi

dịch nuôi cấy bắt đầu có dấu hiệu bị ức chế sinh trƣở ng. Vì vậy, mật độ dòng photon

nên nằm trong khoảng giá trị 400-500µmol/m2s.

Page 61: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 61/68

 

51

TÀI LIỆU THAM KHẢO

1.  Nguyễn Quang Khải. Những vấn đề phát triển năng lƣợ ng sinh khối của Việt

Nam. Báo cáo t ại H ội thảo Phát triển năng lượ ng bề n vữ ng ở Việt Nam.2.  Al-Widyan MI, Al-Shyoukh AO, 2002. Experimental evaluation of the

transesterification of waste palm oil into biodiesel.   Bioresour Technol, 85:

253 – 256.

3.  Antia N. J., Bisalputra T., Cheng J.Y & Kalley, J.P., 1975. Pigment and

cytological evidence for reclassification of    Nannochloris oculata and

 Monallantis salina in the Eustigmatophyceae.  Journal of Phycology, 11: 339-

343.

4.  Antolin G, Tinaut FV, Briceno Y, 2002. Optimisation of biodiesel production by sunflower oil transesterification. Bioresour Technol, 83: 111 – 4.

5.  Attilio Converti, Alessandro A. Casazza, Erika Y. Ortiz, Patrizia Perego,

Marco Del Borghi, 2009. Effect of temperature and nitrogen concentration on

the growth and lipid content of    Nannochloropsis oculata and Chlorella

vulgaris for biodiesel production. Chemical Engineering and Processing:

Process Intensification, 48: 1146-1151.

6.  Benemann JR, 1997. CO2 mitigation with microalgae systems.   J Energy

Convers Manage, 38: S475 – 9.

7.  Bozbas K, 2008. Biodiesel as an alternative motorfuel: production and policies

in the European Union. Renewable and Sustainable Energy Reviews, 12: 542 – 

52.

8.  Bouaid A, Martinez M, Aracil J, 2007. Long storage stability of biodiesel from

vegetable and used frying oils. Fuel, 86: 2596 – 602.

9.  Bunyakiat K, Makmee S, Sawangkeaw R, Ngamprasertsith S, 2006.

Continuous production of biodiesel via transesterification from vegetable oilsupercritical methanol. Energy Fuels, 20:812 – 7.

10. Cadenas A, Cabezndo S, 1998. Biofuels as sustainable technologies:

perspectives for less developed countries. Technol Forecast Social Change,

58:83 – 103.

11. Canakci M, Sanli H, 2008. Biodiesel production from various feedstocks and

their effects on the fuel properties.   Journal of Industrial Microbiology and 

 Biotechnolog, 35: 431 – 441.

Page 62: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 62/68

 

52

12. Chan Yoo, So-Young Jun, Jae-Yon Lee, Chi-Yong Ahn, Hee-Mock Oh, 2009.

Selection of microalgae for lipid production under high levels carbon dioxide.

 Bioresource Technology.

13. Cheng-Wu Z, Zmora O, Kopel R, Richmond A, 2001. An industrial-size flatplate glass reactor for mass production of    Nannochloropsis sp.

(Eustigmatophyceae). Aquaculture , 195:35 – 49.

14. Chih-Hung Hsieh, Wen-Teng Wu, 2009. Cultivation of microalgae for oil

production with a cultivation strategy of ure limitation.  Bioresource

Technology, 100: 3921-3926.

15. Chisti Y, 2007. Biodiesel from microalgae. Biotechnol Adv, 25: 294 – 306.

16. Danesi E. D. G., Rangel-Yagui C. O., Carvalho J. C. M., Sato S., 2002. An

investigation of effect of replacing nitrate by urea in the growth and production

of chlorophyll by Spirulina platensis. Biomass Bioenergy, 23: 261 – 269.

17. Demirbas A, 2003. Biodiesel fuels from vegetable oils via catalytic and non-

catalytic super critical alcohol transesterifications and other methods: a survey.

 Energy Convers Manage, 44: 2093 – 109.

18. Demirbas A, 2002. Biodiesel from vegetable oils via transesterification in

supercritical methanol. Energy Convers Manag, 43: 2349 – 56.

19. Dewulf J, Van Langenhove H, 2006. Renewables-based technology:sustainability assessment. John Wiley & Sons, Ltd .

20. European Environmental Agency (EEA), 2004. Greenhouse gas emission

trends and projections in Europe 2004: progress by the EU and its Member

States towards achieving their Kyoto Protocol targets, Roport N05.

Copenhagen, Denmark.

21. European Environmental Agency (EEA), 2007. Greenhouse gas emission

trends and projections om Europe 2007: tracking progress towards Kyoto

targets. European Environmental Agency (EEA) Report N05. Copenhagen,

 Denmark.

22. Fabregas J., Garcia D., Morales E., Dominguez A., Otero A., 1998. Renewal

rate of semi continuous cultures of the microalga Porphyridium cruentum 

modifies phycoerythrin, exopolysaccharide and fatty acid productivity.  J.

Ferment. Bioeng, 86: 477 – 481.

23. Falkowski, P.G, 1980. Primary Productivity in the sea. Plenum Press, New

York, 99-119.

Page 63: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 63/68

 

53

24. Fischer G, Schrattenholzer L, 2001. Global bioenergy potential through 2050.

 Biomass Bioenergy, 20: 151 – 9.

25. Fukuda H, Kondo A, Noda H, 2001. Biodiesel fuel production by

transesterification of oils. J Biosci Bioeng, 92: 405 – 16.26. Gerhard Knothe, 2008. “Designer” Biodiesel: Optimizing Fatty Ester 

Composition To Improve Fuel Properties. Energy and Fuels.

27. Gilbert R, Perl A, 2008. Transport revolutions: moving people and frieght

without oil. Earthscan.

28. Guan Hua Huang, Feng Chen, Dong Wei, XueWu Zhang, Gu Chen, 2009.

Biodiesel production by microalgal biotechnology. Applied Energy.

29. Guillard R. R. L., Ryther J.H, 1962. Studies of marine planktonic diatoms,  I.

Cyclotella nana (Hustedt) and   Detonula confervacea (Cleve). Can. J.

 Microbiol, 8: 229-239.

30. Haas MJ, 2005. Improving the economics of biodiesel production through the

use of low value lipids as feed stocks: vegetable oil soapstock. Fuel Process

Technol,86: 1087 – 96.

31. Hanhua Hu, Kunshan Gao, 2006. Response of growth and fatty acid

compositions of  Nannochloropsis sp. to invironmental factors under elevated

CO2 concentration. Biotechnol Lett, 28: 987 – 992.32. Hibberd, D.J., 1980. Notes on the taxonomy and nomenclature of the algal

classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae).

  Botanical Journal of the Linnean Society (1981), 82: 93-119.

33. Hu H., Gao K., 2003. Optimization of growth and fatty acid composition of a

unicellular marine picoplankton,  Nannochloropsis sp., with enriched carbon

sources. Biotechnol. Lett , 25: 421 – 425.

34.  Illman A.M., Scragg A.H., Shales S.W., 2000. Increase in Chlorella strains

calorific values when grown in low nitrogen medium.   Enzyme Microb.

Technol, 27: 631-635.

35.  International Energy Agency (IEA), 2007. World Energy Outlook 2007. China

and India Insights, Paris, France

36. Karen P. Fawley, Marvin W. Fawley, 2007. Observations on the Diversity and

Ecology of Freshwater  Nannochloropsis (Eustigmatophyceae), with

Descriptions of New Taxa. Protist, 158: 325-336.

Page 64: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 64/68

 

54

37. Khotimchenko S.V., Yakovleva I.M, 2005. Lipid composition of the red alga

Tichocarpus crinitus exposed to different levels of photon irradiance.

Phytochemistry, 66: 73-79.

38. Knothe G., 2006. Analyzing biodiesel: standards and other methods,  J.Am. Oil

Chem. Soc, 8: 823 – 833.

39. Krawczyk T, 1996. Biodiesel – alternative fuel makes inroads but hurdles

remain. Inform, 7: 801 – 29.

40. Laherrere J, 2005. Forecasting production from discoverry. ASPO.

41. Lee J.S, Kim D.K, Lee J.P, Park S.C, Koh J.H, Cho H.S., Kim S.W., 2002.

Effect of SO2 and NO on growth of Chlorella sp. KR-1. Biores. Technol, 82: 1-

4.

42. Li Y., Horsman M., Wang B., Wu N., Lan C.Q., 2008. Effects of nitrogen

sources on cell growth and lipid accumulation of green alga  Neochloris

oleoabundans. Appl. Microbiol. Biotechnol, 81: 629-636.

43. Liliana Rodolfi, Graziella Chini Zittelli và các cộng sự, 2008. Microalgae for

Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass

Cultivation in a Low-Cost Photobioreactor. Biotechnology and bioengineering. 

44. Liu Z.Y., Wang G.C., Zhou B.C., 2008. Effect of iron of growth and lipid

accumulation in Chlorella vulgaris. Biores. Technol, 99: 4717-4722.45. Ma F, Hanna MA, 1999. Biodiesel production: a review. Bioresour Technol,

70: 1 – 15.

46. Maruyama I., Nakamura T., Matsubayashi T., Ando Y., Naeda T., 1986.

Identification of the alga known as “marine chlorella” as a member of 

Eustigmatophyceae. Jap. J. Phycol, 34: 319-325.

47. Milne TA, Evans RJ, Nagle N, 1990. Catalytic conversion of microalgae and

vegetable oil stop remium gasoline, with shape-selective zeolites. Biomass, 21:

219 – 32.48. Minowa T, Yokoyama S, Kishimoto M, Okakurat T, 1995. Oil production

from algal cells of    Dunaliella tertiolecta by direct thermochemicall

iquefaction. J Fuel, 74: 1735 – 8.

49. Minowa T, Yokoya SY, Kishimoto M, Okakura T, 1995. Oil production from

algae cells of   Dunaliella Tereiolata by direct thermochemical liquefaction.

Fuel, 74: 1731 – 8.

Page 65: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 65/68

 

55

50. Morais M.G.D, Costa J.A.V, 2007. Biofixation of carbon dioxide by Spirulina

sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular

photobioreactor. J. Biotechnol, 129, 439-445.

51. Morais M.G.D, Costa J.A.V, 2007. Isolation and selection of microalgae fromcoal fired thermoelectric power plant for biofixation of carbon dioxide.  Energy

Convers. Manage, 48: 2169-2173.

52. Myers J., 1980. Primary Productivity in the Sea. Plenum Press, New York.

53. Naumann, E., 1921. Notizen sur Systematik der Süsswasseralgen.   Arkiv for 

 Botanik, 16(2): 1-19.

54. Oliveira M.A.S., Monteiro M.P., Robbs P.G., Leite S.G., 1999. Growth and

chemical composition of  Spirulina maxima and Spirulina platensis biomass at

different temperatures. Aquacult. Int , 7:261 – 275.

55. Ormerod WG, Freund P, Smith A, Davison J, 2002. Ocean storage of CO2.

IEA greenhouse gas R&D programme. UK: International Energy Agency.

56. Otero A., Garcia D., Morales E.D., Aran J., Fabregas J., 1997. Manipulation of 

the biochemical composition of eicosapentaenoic acid-rich microalga

  Isochrysis galbana in semi continuous cultures.   Biotechnol. Appl. Bioc, 26:

171 – 177.

57. Pauline Spolaore, Claire Joannis-Cassan, Elie Duran, Arsène Isambert, 2006.Optimization of    Nannochloropsis oculata growth using the response surface

method. J Chem Technol Biotechnol, 81: 1049 – 1056.

58. Peterson CL, Reece DL, Thompson JC, Beck SM, Chase C, 1996. Ethyl ester

of rapeseed used as a biodiesel fuel – a case study. BiomassBioenergy, 10: 331 – 

6.

59. Post A.F., Dubinsky Z., Wyman K., Falkowski P.G, 1985. Physiological

responses of a marine planktonic diatom to transition in growth irradiance.

 Mar, Ecol, Prog. Ser, 25: 141-149.60. Ranga Rao A., Sarada T.R., Ravishankar G.A., 2007. Influence of CO2 on

growth and hydrocarbon production in   Botryococcus braunii.   J. Microbiol.

 Biotechnol, 17: 414-419.

61. Reinhardt G, Rettenmaier N, Koppen S, 2008. How sustainable are biofuels for

transportation? Bioenergy: challenges and opportunities. International

conference and exhibition on bioenergy.

62. Renaud S.M., Thinh L.V., Lambrinidis G., Parry D.L., 2002. Effect of 

temperature on growth, chemical composition and fatty acid composition of 

Page 66: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 66/68

 

56

tropical Australian microalgae grown in batch cultures. Aquaculture, 211: 195 – 

214.

63. Renaud S.M., Zhou H.C., Parry D.L., Thinh L.V., Woo K.C., 1995. Effect of 

temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae  Isochrysis sp.,   Nitzschia closterium,

  Nitzschia paleacea, and commercial species  Isochrysis sp., (cloneT.ISO).  J.

 Appl. Phycol, 7: 595 – 602.

64. Renewable Fuel Agency (RFA), 2008. The Gallagher review of the indirect

effects of biofuels production.

65. Richardson K., Beardall J., Raven J.A, 1983. Adaptation of unicellular algae to

irradiance: an analysis of strategies. New Phytol, 93: 157-91.

66. Rodolfi L., Zittelli G.C., Bassi N., Padovani G., Biondi N., Bonin G., Tredici,

M.R., 2009. Microalgae for oil: strain selection, induction of lipid synthesis

and outdoor mass cultivation in a low-cost photobioreactor.  Biotechnol.

 Bioeng, 102: 100-112.

67. Sarmidi Amin, 2009. Review on biofuel oil and gas production processes from

microalgae. Energy Conversion and Management , 50: 1834 – 1840.

68. Scarlat N, Dallemand JF, Pinilla FG, 2008. Impact on agricultural land

resources of biofuels production and use in the European Union.  Bioenergy:challenges and opportunities. International conference and exhibition on

bioenergy.

69. Sharp CA, 1996. Emissions and lubricity evaluation of rapeseed derived

biodiesel fuels [R]. Final Report for Montana Department of Environmental

Quality. Southwest Research Institute.

70. Sheehan J, Cambreco, Duffield J, Graboski M, Shapouri H, 1998. An overview

of biodiesel and petroleum diesel life cycles. US Department of agriculture

and Energy Report , 1 – 35.71. Sheehan J, Dunahay T, Benemann J, Roessler P, 1998. A look back at the U.S.

Department of Energy’s aquatic species program: biodiesel from algae.

 NREL/TP-580-24190, National Renewable Energy Laboratory, USA.

72. Sheng – Yi Chiu, Chien – Ya Kao, Ming – Ta Tsai, Seow – Chin Ong, Chiun –  

Hsun Chen, Chih  – Sheng Lin, 2009. Lipid accumulation and CO2 utilization

of    Nannochloropsis oculata in response to CO2 aeration.  Bioresource

Technology, 100: 833 – 838.

Page 67: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 67/68

 

57

73. Shifrin NS, Chisholm SW, 1981. Phytoplankton lipids: interspecific

differences and effects of nitrate, silicate and light-dark cycles.  J Phycol, 17:

374 – 384.

74. Soletto D., Binaghi L., Lodi A., Carvalho J. C. M., Converti A., 2005. Batchand fed-batch cultivation of Spirulina platensis using ammonium sulphate and

urea as nitrogen sources. Aquaculture, 243: 217 – 224.

75. Srivastava A, Prasad R ,2000. Triglycerides-based diesel fuels.  Renew Sustain

 Energy Rev, 4: 111 – 133.

76. Sukenik A., Bennett J., Falkowski P.G, 1987. Light saturated photosynthesis

limitation by electron transport or carbon fixation?   Biochim. Biophys. Acta,

891: 205-15.

77. Sukenik A., Carmeli Y., 1989. Regulation of fatty acid composition by

irradiance level in the Eutigmatophyte Nannochloropsis sp. J. Phycol, 25: 686-

692.

78. Takagi M., Karseno, Yoshida T., 2006. Effect of salt concentration on intra

cellular accumulation of lipids and triacylglyceride in marine microalgae

 Dunaliella cells. J. Biosci. Bioeng, 101: 223 – 226.

79. Takagi M., Watanabe K., Yamaberi K., Yoshida T., 2000. Limited feeding of 

potassium nitrate for intracellular lipid and triglyceride accumulation of  Nannochloris sp. UTEX LB1999. Appl. Microbiol. Biotechnol, 54: 112-117.

80. Teresa M.Mata, António A.Martins, Nidia. S., 2009. Caetano, Microalgae for

biodiesel production and other application: A review.   Renewable and 

Sustainable Energy Reviews, 757.

81. Thompson P.A., Guo M., Harrison P.J., 1992a. Effects of variation of 

temperature: I. On the biochemical composition of eight species of marine

phytoplankton. J. Phycol, 28: 481-488.

82. Vicente G, Martinez M, Aracil J, 2004. Integrated biodiesel production: acomparison of different homogeneous catalysts systems.   Bioresour Technol,

92: 297 – 305.

83. Vonshak A, 1990. Recent advances in microalgal biotechnology. Biotech Adv,

8: 709 – 27.

84. Warabi Y, Kusdiana D, Saka S, 2004. Reactivity of triglycerides and fatty

acids of rapeseed oil in supercritical alcohols.  Bioresource Technology, 91 (3):

283 – 7.

Page 68: SẢN XUẤT LIPID TỪ VI TẢO

8/7/2019 SẢN XUẤT LIPID TỪ VI TẢO

http://slidepdf.com/reader/full/san-xuat-lipid-tu-vi-tao 68/68

 

85. Watanabe Y, Hall DO, 1996. Photosynthetic CO2 conversion technologies

using a photobioreactor in corporating microalgae-energy and material

balances. J Energy Convers Manage, 37(6 – 8): 1321 – 6.

86. Wen ZY, Chen F, 2000. Optimization of nitrogen sources for heterotrophicproduction of eicosapentaenoic acid by the diatom  Nitzschialaevis.  Enzyme

 Microbiol Techno, 29: 341 – 7.

87. Xu H, Miao XL, Wu QY, 2006. High quality biodiesel production from a

microalga Chlorella protothecoides by heterotrophic growth in fermenters.  J 

 Biotechnol, 126: 499 – 507.

88. Xu N., Zhang X., Fan X., Han L., Zeng C., 2001. Effects of nitrogen source

and concentration on growth rate and fatty acid composition of  Ellipsoidion sp.

(Eustigmatophyta). J. Appl. Phycol, 13: 463 – 469.

89. Yang C, Hua Q, Shimizu K, 2000. Energetics and carbon metabolism during

growth of microalgal cells under photoautotrophic, mixotrophic and cyclic

light-autotrophic/dark-heterotrophic conditions. Biochem Eng J , 6:87 – 102.

90. Yung K.H., Mudd J.B., 1966. Lipid synthesis in the presence of nitrogenous

Compounds in Chlorella pyrenoidosa. Plant Physiol, 41: 506 – 509.

91. Zhu CJ, Lee YK, Chao TM, 1997. Effect of temperature and growth phase on

lipid and biochemical composition of  Isochrysis galbana TK1. J. Appl. Phycol,9: 451 – 457.

92. Oilgae. Algal oil yields. http://www.oilgae.com/algae/oil/yield/yield.html .

ww1