Sec 8b -Root Locus

Embed Size (px)

Citation preview

  • 8/12/2019 Sec 8b -Root Locus

    1/19

    E&CE 380 Root Locus Analysis

    Root Locus and Lead Controllers Consider the previous example

    )

    2

    1)(

    2

    1(

    )

    4()

    (js

    js

    s

    s

    Ks

    GH-

    ++

    +

    +=

    X O

    jw

    sX

    4

    X

    O2

    2j

    2j

    +1

    p2

    p3

    p1

    z1

    X

    Angle of departure fromp2is

    7.1

    + 90

    tan

    -1

    (2/5) =75.3

    The new asymptote intersects

    the real axis at

    [(0116)(41)]/(42) =1.5

    Add a pole/zero combination

    ats=6 ,1.

  • 8/12/2019 Sec 8b -Root Locus

    2/19

    E&CE 380 Root Locus Analysis

    jw

    sXX

    24

    4j

    4j

    8

    Root Locus Lead Design

    Consider again the

    system defined by

    )2()(

    +=

    ssKsGH s

    1Design Point

    s-4

    settling time 1.0 s

    0.707

    Control design

    specifications:

  • 8/12/2019 Sec 8b -Root Locus

    3/19

    E&CE 380 Root Locus Analysis

    jw

    sXX

    24

    4j

    4j

    8

    Root Locus Lead Design

    Can we force the root

    locus to go through the

    design point,s1?s

    1

    Design Point

    Consider the effect of

    adding apoleand zero

    combination (a leadcompenstor).

    X

  • 8/12/2019 Sec 8b -Root Locus

    4/19

    E&CE 380 Root Locus Analysis

    Root Locus Lead Design

    Three effects of the pole

    zero combination:

    modifies the real axis

    segments

    shifts the asymptote real

    axis intersection to the

    left

    modifies the angle

    criterion by

    =z-p

    jw

    sXX

    24

    4j

    4j

    8

    s1

    Design Point

    X

    zp

  • 8/12/2019 Sec 8b -Root Locus

    5/19

    E&CE 380 Root Locus Analysis

    Root Locus Lead Design

    Design steps:

    place the zero below the

    design point,s1(approx.)

    jw

    sXX

    24

    4j

    4j

    p

    s1

    Design Point

    X

    p

    locate the pole location

    from the angle, pandthe location of the zero

    determine the angle

    difference,=90 -pthat will satisfy the angle

    criterion for the design

    point,s1 .

  • 8/12/2019 Sec 8b -Root Locus

    6/19

    E&CE 380 Root Locus Analysis

    Root Locus Lead Design

    calculate p

    tan(18.4) =4 / (-4 -p)

    p =-4/0.333 -4 =-16

    X

    jw

    sXX

    24

    4j

    4j

    8

    s1

    Design Point

    -135 -116.6 =180

    =431.6 or 71.6

    p=90 -71.6 =18.4135116.618.4

    calculate the pole location

    16

  • 8/12/2019 Sec 8b -Root Locus

    7/19

    E&CE 380 Root Locus Analysis

    Root Locus Lead Design The asymptote intersection:

    K=5.56 4.47 12.65 / 4 = 78.6

    Determine the gain at thedesign point:

    X

    jw

    sXX

    24

    4j

    4j

    8

    s1Design Point

    16

    sa=(-0 -2 -16) -(-4)

    3 -1

    sa = -7

  • 8/12/2019 Sec 8b -Root Locus

    8/19

    E&CE 380 Root Locus Analysis

    Root Locus Lead Design The final compensator is

    The compensated open-

    loops system is

    16

    46.78

    +

    +=

    s

    sGc

    )2(

    1

    16

    46.78

    ++

    +=

    sss

    sGG pc

    4.3146.11018

    46.78

    23 +++

    +=

    sss

    sG

    The final closed-loop

    systems isNote: the lead compensator

    =16/4 =4

  • 8/12/2019 Sec 8b -Root Locus

    9/19

    E&CE 380 Root Locus Analysis

    Time (sec.)

    Amplitude

    Closed-Loop System Step Responses

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    0

    0.5

    1

    1.5

    )2(

    1)(

    sssGH

    )2(20)(ss

    sGH

    )2(

    1

    )16(

    )4(6.78)(

    sss

    ssGH

  • 8/12/2019 Sec 8b -Root Locus

    10/19

    E&CE 380 Root Locus Analysis

    Root Locus Lag Design

    Pole/zero placement:

    The lag compensator is

    represented by a pole nearthe imaginary axis and a

    zero further to the left.

    jw

    s

    1X

    pz

    Lag compensator

    ps

    zs

    +

    +

    ||

    ||

    p

    z=

    Low frequency gain:

    The compensator lowfrequency gain is

  • 8/12/2019 Sec 8b -Root Locus

    11/19

    E&CE 380 Root Locus Analysis

    s1

    jw

    sX

    1 pz

    Lag compensator

    ps

    zs

    +

    +

    2

    Root Locus Lag Design

    Desired effects of the lag:

    increase the low frequency gain

    to achieve desired steady-stateerror specifications, the gain

    increase is .

    2)()( 11 +-+ pszs

    Introduce very little effect onthe path of the root locus, ie.

  • 8/12/2019 Sec 8b -Root Locus

    12/19

    E&CE 380 Root Locus Analysis

    Root Locus Lag Design

    Relate the angle requirement

    and low frequency gain: (note

    2 = 0.035 rad.)By similar triangles

    2

    jw

    sX

    s1

    s1

    pz

    jw1

    L

    1035.0

    ||||

    w

    L

    L

    pz

    -

    1

    2035.0)1(||

    w

    L

    p =-

    )1(

    )(035.0||

    1

    2

    1

    2

    1

    -

    +=

    w

    wsp

    then

  • 8/12/2019 Sec 8b -Root Locus

    13/19

    E&CE 380 Root Locus Analysis

    Root Locus Lag Design

    Design steps:

    Determine a point,s1on the

    uncompensated loci that

    satisfies the dynamicrequirements.

    Find the gain at s1and then

    the low frequency gainof the

    system.

    Determine the low frequency

    gain, of the compensator

    required to meet the system

    steady-state error requirement.

    )1(

    )(035.0||

    1

    2

    1

    2

    1

    -

    +=

    w

    wsp

    Calculate the compensator

    pole location usings1 and

    in the relationship

    Finally, calculate the

    compensator zero from

    ||

    ||

    p

    z=

  • 8/12/2019 Sec 8b -Root Locus

    14/19

    E&CE 380 Root Locus Analysis

    60

    Root Locus Lag Design Example

    Consider again the

    system defined by

    )2()(

    +=

    ssKsGH

    ess5% for a ramp

    input.

    0.50

    Control design

    specifications:

    K= 1

    jw

    sXX

    2

    1.73j

    s1

    K = 2 2 /1 = 4

    K= 4

  • 8/12/2019 Sec 8b -Root Locus

    15/19

    E&CE 380 Root Locus Analysis

    Root Locus Lag Design Example

    The velocity steady-

    state error constant is

    Foress0.05,Kv20

    2)2(

    4

    lim0 =+= sssK sv

    Therefore the compensatorlow-frequency gain must

    be 10 .

    The compensator pole

    magnitude is

    )1()(035.0||

    2

    -

    +=

    101.731.731p

    = 0.0128

    The compensator zero

    magnitude is

    |z| = |p| = 0.128

  • 8/12/2019 Sec 8b -Root Locus

    16/19

    E&CE 380 Root Locus Analysis

    Root Locus Lag Design Example The final compensator is

    The compensated open-

    loops system is

    0.0128

    0.1280.4

    +

    +=

    s

    sGc

    The final closed-loop

    systems is

    )2(

    1

    0128.0

    128.0

    0.4 ++

    +=

    sss

    s

    GG pc

    512.0026.4013.2128.04 23 ++

    +=sss

    sG

    The roots of the final

    closed-loop systems ares= -0.9386 1.7000i

    s= -0.1358

  • 8/12/2019 Sec 8b -Root Locus

    17/19

    E&CE 380 Root Locus Analysis

    -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    Real Axis

    ImagAxis

    Root Locus of Final System

    x

    -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    Real Axis

    ImagAxis

    x x

  • 8/12/2019 Sec 8b -Root Locus

    18/19

    E&CE 380 Root Locus Analysis

    Step Responses

    Time (sec.)

    Amplitude

    Step Response

    0 2 4 6 8 10 12 14 16 18 20

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    uncompensated

    compensated

  • 8/12/2019 Sec 8b -Root Locus

    19/19

    E&CE 380 Root Locus Analysis

    Ramp Response

    Time (sec.)

    Amplitude

    Ramp Response

    0 1 2 3 4 5 6 7 8 9 10

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    uncompensated

    compensatedunit ramp