86
Semiconductor Fundamentals 卢朓 北京大学数学科学学院 [email protected] 主页 :http://dsec.pku.edu.cn/~tlu 博客 :http://hi.baidu.com/motioo

Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Semiconductor Fundamentals

卢朓北京大学数学科学学院

[email protected]主页 :http://dsec.pku.edu.cn/~tlu博客 :http://hi.baidu.com/motioo

Page 2: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

IntroductionTo understand the fundamental concepts of semiconductors, one must apply modern physics to solid materials. More specifically, we are interested in semiconductor crystals. Crystals are solid materials consisting of atoms, which are placed in a highly ordered structure called a lattice. Such a structure yields a periodic potential throughout the material.

Page 3: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

IntroductionTwo properties of crystals are of particular interest, since they are needed to calculate the current in a semiconductor. First, we need to know how many fixed and mobile charges are present in the material. Second, we need to understand the transport of the mobile carriers through the semiconductor.

Page 4: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

IntroductionIn this chapter we start from the atomic structure of semiconductors and explain the concepts of energy band gaps, energy bands and the density of states in an energy band. We also show how the current in an almost filled band can more easily be analyzed using the concept of holes. Next, we discuss the probability that energy levels within an energy band are occupied. We will use this probability density to find the density of electrons and holes in a band.

Page 5: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Introduction

Two transport mechanisms will be considered. The drift of carriers in an electric field and the diffusion of carriers due to a carrier density gradient will be discussed. Recombination mechanisms and the continuity equations are then combined into the diffusion equation. Finally, we present the drift­diffusion model, which combines all the essential elements discussed in this chapter.

Page 6: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 7: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 8: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

晶体和非晶体

● amorphous material ( 非晶体 )● crystalline material  ( 晶体 )● polycrystalline material  ( 多晶 )● single crystals ( 单晶 )

Page 9: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 10: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

半导体的特征

● 导电性介于导体与绝缘体之间的材料

● 由周期表第 IV 族、 III­V 族及 II­VI 族● 组成能带结构中,能隙宽度宽约在 1 至 2eV左右

● 可以用掺杂 (Doping) 的技术改变传导特性

Page 11: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 12: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

能带结构

● Recall the eigen­energy of the electron of the hydrogen atom

● the electron can take only the discrete values of the energy

● what is the property of the electrons in a crystal lattice?

Page 13: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

能级分裂

● 两个原子带的电子在原子距离很远的时候,电子具有同样的能级结构,当两个原子靠近

时,电子的能级将会改变,称为 energy splitting.

● 一个类比,两辆汽车速度一样,发动机提供的功率相同,靠近时,要保持同样的速度前者和后者需要提供的功率不同。

● 类比不是很合适。 Don't take it seriously.

Page 14: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

能级分裂示意图

Page 15: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Introduction to Bloch's Theorem● Simplify Schroedinger equation (assume 

that nuclei of atoms are static)● translational symmetry of a crystal● An electron in the crystal sees primarily the 

Coulomb potential energy of interaction with the atomic nuclei of the crystal, the Coulomb potential energies of interaction with other electrons

Page 16: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Mariam González DebsCourse: ECE 745

Professor: W.N.Hitchon

Band Structure Group Schrödinger Equation: Calculations of 

Energy Bandgap using Periodic Potentials

Page 17: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

例子 :  分片常数的周期势

● Solution to the Schrödinger wave equation using the different potential energy expression:– Square­Well potential (Kronig­Penney 

Model)

Page 18: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Wavefunction for nth state:

Energy for nth state

Periodic Potential EnergyKinetic Energy

Schrödinger Wave Equation

One example of periodic potentials, V(x):

nx =unx eiknx

V x = {V , axab0 , 0xa

− ℏ2

2md2

dxV x nx =Ennx

是周期函数unx

V x在一个最小周期中的取值

V xab=V x

Page 19: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Kronig­Penney Model

Bloch 由 定理, 特征函数 x 可以写成

上面给出的分片常数周期势V x Schroedinger 场中的单电子的 方程−ℏ

2

2m ' 'x V xx =Ex

V xab=V x

kx =uk xeik x

ukx 也是周期函数,周期和V x 相同

kxab=ukxabeikxab

ukx的周期性

kxab=ukx ei k xab

=kx eikab

特别的, k−b=k aeikab

Page 20: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

如何求解上面方程的特征值问题 I给定一个能量 E −ℏ

2

2m ' 'x V xx =Ex

就成了常微分方程,更加特别的,在 有0xa

V x =0 , 这时上面的方程就成了常系数的二次方程,这时方程的求解有成熟的理论,可以通过求解特征方程 根据根的情况得出上面方程的通解。

−ℏ2

2m

2=E

我们得出特征方程的两个纯虚根 记作=±i 2mEℏ

2

=±i K

Page 21: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

求解上面方程的特征值问题 II给定一个能量 E −ℏ

2

2m ' 'x V xx =Ex

就成了常微分方程,更加特别的,在 有−bxa

V x =V 0 , 这时上面的方程就成了常系数的二次方程,这时方程的求解有成熟的理论,可以通过求解特征方程 −ℏ2

2m

2=E −V 0

这时我们假设 ,方程有两实根 记作=±2mV 0−E

ℏ2

=±iQ

E−V 00

Page 22: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

In the region –b<x<0 within the   barrier, the solution is: 

   with energy:

● In the region 0<x<a in which V=0, the eigenfunction is: 

   with energy:

Kronig­Penney Model

V(x)

     ­(a+b)  ­b    0     a     a+b       x

V0

Square­well periodic potential 

E=ℏ

2 K2

2mV 0−E=

ℏ2Q2

2m

ax =AeiKxBe−iKx bx =CeQx

−De−Qx

Page 23: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

如何把两个区间的解拼起来

上面的方法,我们得到 Schroedinger 方程分别在两个区间上的通解,我们把两个解拼起来构成方程在整个区间上的解。

首先, Schrodinger 方程的含有二次导数,因此特征函数

x 和它的导数应该处处连续,我们只需要使 x=a处的左右函数极限和左右导数的极限相等

limx a− x =limxa x limxa− 'x =limx a 'x

其次,由 Bloch  定理,我们还要求 ,  存在一个波数 使得k

k−b=k aeikab

x =k x=uk x eik x

Page 24: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Kronig­Penney Model● At x=0 

● At x=a

● Solving for a vanishing determinant, the following equation is obtained:

( )

( )

( )( ) ( )

iKa iKa Qb Qb ik a b

iKa iKa Qb Qb ik a b

Ae Be Ce De eiK Ae Be Q Ce De e

− − +

− − +

+ = +− = −

( )2 2

sinh( )sin( ) cosh( )cos( ) cos( ( ))2

Q KQb Ka Qb Ka k a b

QK

�� −�� + = +����

. 上面给出了上面的两个要求得到的方程 四个方程,四个未知数 A,B ,C ,D要想得到一个非零的解,必须让次线性方程组的行列式为零

函数值相等 AB=CD , 导数值相等 iK A−B=Q C−D

Page 25: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Kronig­Penney Model● Representing the potential by the periodic delta 

function obtained when we pass to the limit b=0 and    , the result simplifies to: 

      where,

V 0∞

PK

sinKacos Ka=coska

bV 0=Pℏ

2

mP is a constant极限过程保持 乘积不变 .

分片常数的势的极限称为 函数

上面的方程中的 P , , 是常数 反应电势的强度 K 是和能量相关的,在能量确定后也是常数K=2mE/ℏ2

红色的小写k Bloch 是 定理中的波数,此波数是实数才表示了一个传播的波可是不难发现,不是对于任意的K都能找到一个实数的k 使得上面的方程成立。也就是说,能量不能任意选取。

(forbidden gap) 这就引入禁带 的概念。禁带中的能量不能使得上面的方程保证能找到一个实数的k。

Page 26: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

求极限的过程可以用 maximaV 0=P

ℏ2

m1b

Q=2mℏ V 0−E

K=2mℏ

E

K2−Q2

2KQsinhQb

spell error in i32

limit is equal to PK

Page 27: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Kronig­Penney Model● Plots for P=3/2.● Allowed values of E lie 

between ±1.● For other values of E 

there are either no traveling wave or no Block­like solutions to the wave equation.

● Forbidden gaps in the energy spectrum are formed at ka=n for integer n.

10 5 0 5 102

0

2

4

65.712

1.557−

PKa

sin Ka( )⋅ cos Ka( )+

1

1−

1010− Ka

这里Pa相当于我们用的常数 P

实数 k 应使得 coska的值在−1 和 1之间PKa

sin KacosKa=coska

不是任意 Ka -1 +1取值使得方程左边的值在 和 之间

Page 28: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Bloch's Theorem for 1D lattice−ℏ

2

2m∂

2x ∂ x2 V x x =Ex

V x is the periodic potential energy. V xa=V xa is the lattice spacing

The wave function x has the form of x=eikxux

ux has the periodicity of the lattice.

Bloch Theorem: 

Page 29: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Bloch's Theorem for 3D Lattice

Periodic Potential V xr =V x Wave function of the form

x =eik⋅xu x

The fact that the wavefunction takes this simpleform allows many calculations to be performed in a relatively simple fashion.

Page 30: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

energy band

Page 31: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Brillouin zone−

ak≤

a

Page 32: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

32

Reduced Zone

Page 33: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

33

Extended zone

Page 34: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

34

Repeated Zone

Page 35: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Effective mass in a bandFree particle E=

12

p2

mp : momentum, m : mass

If a minimum or maximum occurs at k=k0 for the elctron energyin a crystal band, then when k is near this minimum or maximumthe energy in the band as a function of k−k0 may be approximated with

E k≈E0k−k02

where E0 and are constants

Rewrite the energy expression into

E k≈E0ℏ

2k−k0

2

2m*

Comparison iwth the energy expressionforthe free particle leads one to the idea of an enffective mass,

m*=

ℏ2

2

Page 36: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

1D Density of StatesWave equation in a in a infinit quantum well

−ℏ2∂2

2m∂xx =Ex

Boundary Conditions :0=L , '0= ' LThe solutions are

x=ei kx , k=n2

L, n=0,±1,±2,⋯

A factor of two is added to account for the two possible spins of each solution.

Number of states N k denotes the number of states with a wave number less than k

N k=2kL

DOS in k -space :D k=∂N k∂k

=2 L

Page 37: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

One dimensional DOS

Density of state in energy space D E

D E=∂N E k

∂E=∂N k∂k

∂k∂E

=2L

mℏ2E

=L

2mℏE

relation between energy and wave number

E=ℏ

2k2

2m∂k∂E

=m

ℏ 2 E

Page 38: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

3D Density of states

k=nx ,ny ,nz

L, nx ,ny ,nz=0,1,2,⋯

The solutions of 3D Schroedinger equation of 3D quantum well are

x=sink⋅x

k=∣k∣=kx2ky

2kz

2

N k denotes the number of the states with the wave number less than k

N k=218

43k3

/ L 3

=13k3 L

3

The density of states in wave number space :

D k=∂N k∂k

=k2 L 3

Page 39: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

3D Density of states

Density of states in energy space

D E=∂N k∂E

=∂N k∂k

∂k∂E

= L 3

k2 mℏ2 E

= L 3m3/22 E

ℏ3

Relation between energy and wave vector

E=ℏ

2

2mkx

2ky

2kz

2=

ℏ2

2mk2

DOS per unit volume and per unit energy

gE =1L3

dNdE

= 1 3m3 /22E

ℏ3

Page 40: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Density of states of electrons in a semiconductor

● The same analysis also applies to electrons in a semiconductor. The effective mass takes into account the effect of the periodic potential on the electron. The minimum energy of the electron is the energy at the bottom of the conduction band,        , so that the density of states for electrons in the conduction band is given by:

Ec

gc E=1

Volume∂N∂E

= 1 3

2m*3 /2 1ℏ

3 E−Ec , for EEc

Page 41: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Carrier Distribution Functions● The distribution or probability density functions describe 

the probability with which one can expect particles to occupy the available energy levels in a given system. 

● Of particular interest is the probability density function of electrons, called the Fermi function. 

● The derivation of such probability density functions belongs in a statistical thermodynamics course. 

● Carrier density = DOS times PDF

Page 42: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Carrier DensitiesThe density of occupied states per unit volume and energy

Electrons nE=gc E f E

Holesp E=gv E[1− f E]

gv E is the density of states in the valence band

gv E=82

h3 m*3 /2Ev−E , for E≤Ev

Planck constant h=2ℏ

Page 43: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Carrier Density n(E)

Page 44: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 45: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 46: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 47: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 48: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 49: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 50: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 51: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Calculation of Fermi Integral

Ec : bottom of the conduction band

no=∫Ec

gcE f EdE

=∫Ec

∞ 82

h3 me*3 /2E−Ec

1

1eE−EF

kT

dE

The density of electrons in a semiconductor :   unit(cm−3 )

Holes Ev : top of the valley band

po=∫−∞

Ev

gv E1− f E dE

=∫−∞

Ev 82

h3 mh*3 /2Ev−E

1

1eEF−E

kT

d E

Page 52: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Carrier density at T=0KFermi function at T = 0 K :

f E ={1, E≤EF

0, EEF

no=∫Ec

EF

gc EdE at T=0 K

no=223

2 m*

ℏ2

3/2

EF−Ec 3 /2 , for EF≥Ec

This expression can be used to approximate the carrier density in heavily degenerate semiconductors provided EF−Ec≫kT

Page 53: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Non­degenerate semiconductorsNon­degenerate semiconductors are defined as semiconductors for which the Fermi energy is at least 3kT away from either band edge. 

no≈∫Ec

∞ 82h3 me

*3 /2E−EceEF−E

kT dE=NceEF−Ec

kT

Where Nc=2 2me* kT

h2 3/2

Page 54: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

the hole density

po≈∫−∞

Ec 82h3 mh

*3 /2Ev−EeE−EF

kT dE=NveEv−EF

kT

Where Nv=2 2mh* kT

h2 3 /2

Nc is the effective density of states in the conduction bandNv is the effective density of states in the valence band

Page 55: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Degenerate semiconductors A useful approximate expression applicable to degenerate semiconductors was obtained by Joyce and Dixon and is given by:

for electrons and by:

for holes. 

EF−Ec

kT≈ln

no

Nc

1

8

no

Nc

− 316

−39 no

Nc2

Ev−EF

kT≈ln

po

Nv

1

8

po

Nv

− 316

−39 po

Nv2

Page 56: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

上一页的公式有错误?网上搜索得到的公式很多给出的是上一页给出的形式

但是原始文献给出的公式却有符号的差别

给出的公式如下:J 相当于

n0

Nc

相当于EF−Ec

kBT

Page 57: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Intrinsic carrier density● intrinsic semiconductors are usually non­

degenerate● labeling the Fermi energy      of intrinsic 

material as EF

Ei

ni=no∣EF=Ei=Nce

Ei−Ec /kT

pi=po∣EF=Ei=Nv e

Ev−Ei/kT

intrinsic material means no doping, so ni=pi

band gap Eg=Ec−Ev

ni=Nc Nve−Eg /2kT

Page 58: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Intrinsic Fermi energy● The above equations for the intrinsic electron and 

hole density can be solved for the intrinsic Fermi energy, yielding:

Ei=EcEv

2

12

kT ln Nv

Nc

Ei=EcEv

2

34

kT ln mh*

me*

Page 59: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

 Intrinsic material as referencecarrier density of non-intrinsic non-degerate material

no=nieEF−E i/KT

po=nieEi−EF /KT

Fermi energy

EF=EikT lnno

ni

EF=Ei−kT lnpo

ni

Page 60: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Doped semiconductors● Dopants and impurities

Shallow impurities require around the thermal energy, kT, or less - to ionize.Deep impurities reuqire more than five times the thermal energy away from either band edge, are very unlikely to ionize.

Ionized donors provide free electrons in a semiconductor, which is then called n­type, while ionized acceptors provide free holes in a semiconductor, which we refer to as being a p­type semiconductor.

Page 61: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 62: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 63: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 64: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 65: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,
Page 66: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Dopant and impurities● Ionized donors provide free electrons in a semiconductor, 

which is then called n­type, while ionized acceptors provide free holes in a semiconductor, which we refer to as being a p­type semiconductor.                                                                                                                                                                                                                                                                               

● While for shallow acceptors the hole density equals the acceptor concentration

Nd+≈Nd

Na-≈Na

Page 67: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Analysis of non­degenerately doped semiconductors 

● assumption that the semiconductor is neutral 

noNa-=poNd

+

Page 68: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Non­equilibrium carrier densities● constant temperature is not a sufficient condition for 

thermal equilibrium● quasi­Fermi energy ● For a non­degenerate semiconductor

n=non=niexp Fn−Ei

kT p=pop=niexp Ei−Fp

kT

Fn and Fp are quasi Fermi energy for electrons and holes, respn and p are excess electron density and hole density, resp

Page 69: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

● Example: A piece of germanium doped with 10E16  cm­3 shallow donors is illuminated with light generating 10E15 cm­3 excess electrons and holes. Calculate the quasi­Fermi energies relative to the intrinsic energy and compare it to the Fermi energy in the absence of illumination.

● Solution:  The carrier densities when illuminating the semiconductor are: 

● and the quasi­Fermi energies are:

● In comparison, the Fermi energy in the absence of light equals

● which is very close to the quasi­Fermi energy of the majority carriers.

n=non=10161015

=1.1×1016cm−3

p=pp≈1015cm−3

Fn−Ei=kT ln nni

=0.0259×ln 1.1time1016

2×1013=163 meV

F p−Ei=−kT lnpni

=0.0259×ln1 time1015

2×1013 =−101 meV

EF−Ei=kT lnno

ni

=0.0259×ln1016

2×1013=161 meV

Page 70: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Carrier Transport● A motion of free carriers in a 

semiconductor leads to a current.● carrier drift and carrier diffusion● mobility  and the diffusion constant● Einstein relation

Page 71: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Carrier drift● The motion of a carrier drifting in a 

semiconductor due to an applied electric field.

● we define the mobility as the velocity to field ratio

=∣v∣

∣E∣=

q

m

where is the collision time

电子受力 −Eq

动量改变量是 m∣v∣

两次碰撞之间的时间∣E∣q冲量

冲量 = 动量改变量

Page 72: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

ExampleElectrons in undoped gallium arsenide have a mobility of

8800 cm2s/V . Calculate the average time between collisions.

Calculate the distance traveled between two collisions(also called the mean free path). Use an average velocity of 107cm/s.

The collision time, c , is obtained from:

c=nme

*

q=

0.88×0.067×9.1×10−31

1.6×10−19 =0.34 ps

The mean free path, l , equals:l=vaveragec=107

×0.34×10−12=34 nm

Page 73: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Conductivity and ResistivityThe current due to eletrons and holes

J=qnveqpvh=qnnpe E

The conductivity due to electrons and holes

=∣J∣

∣E∣=qnnpp

The resistivity is defined as

=1=

1qnnpp

Page 74: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

The sheet resistance concept is used to characterize both wafers and thin doped layers, since it is typically easier to measure the sheet resistance rather than the resistivity of the material. The sheet resistance of a uniformly­doped layer with resistivity,    , and thickness, t, is given by their ratio: 

While the unit of the sheet resistance is Ohms, one refers to it as Ohms per square. This nomenclature comes in handy when the resistance of a rectangular piece of material with length, L, and width W must be obtained. It equals the product of the sheet resistance and the number of squares or: 

where the number of squares equals the length divided by the width. 

Rs=

t

R=RsLW

Page 75: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Carrier diffusion

Jn=qDn∇nJp=−q Dp ∇p

diffusion current

Using the definition of the diffusion constant we then obtain the following expressions which are often referred to as the Einstein relations

Dn=nkTq

=nV tDn=p

kTq

=pV t

Page 76: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Total currentThe total electron current is obtained by adding the current due to diffusion to the drift current, yielding: 

and similarly for holes: 

The total current is the sum of the electron and hole current densities multiplied with the area, A, perpendicular to the direction of the carrier flow: 

Jn=qnn EqDndndx

Jp=qpp E−qDpdpdx

I total=A Jn Jp

Page 77: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Carrier recombination and generation

ece­www.colorado.edu/~bart/ecen3320/newbook/chapter2/ch2_8.htm

Page 78: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Continuity equationThe continuity equation describes a basic concept, namely that a change in carrier density over time is due to the difference between the incoming and outgoing flux of carriers plus the generation and minus the recombination.

∂nx ,t ∂t

=1q

∂ Jnx ,t

∂xGnx ,t −Rnx ,t

∂p x ,t ∂ t

=−1q

∂ Jpx ,t

∂xGp x ,t −Rpx ,t

Page 79: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

The diffusion equationIn the quasi­neutral region ­ a region containing mobile carriers, where the electric field is small ­ the current is due to diffusion only. In addition, we can use the simple recombination model for the net recombination rate. This leads to the time­dependent diffusion equations for electrons in p­type material and for holes in n­type material:

∂np x ,t

∂t=Dn

∂2npx ,t

∂x2 −np x ,t −np0

n

∂pnx ,t

∂ t=Dp

∂2pnx ,t

∂ x2 −pnx ,t −pn0

p

Page 80: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

The drift­diffusion modelThe assumptions of the simplified drift­diffusion model are:

● Full ionization: all dopants are assumed to be ionized (shallow dopants)

● Non­degenerate: the Fermi energy is assumed to be at least 3 kT below/above the conduction/valence band edge.

● Steady state: All variables are independent of time● Constant temperature: The temperature is constant 

throughout the device.

Page 81: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

ten variables used in DD model , the charge densityn, the electron densityp , the hole density

E , the electric field , the potentialEi , the intrinsic energyFn , the electron quasi-Fermi energyFp , the hole quasi-Fermi energyJn , the electron current densityJp , the hole current density

Page 82: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Ten equations of the DD modelCharge density equation

=q p−nNd+−Na

-

Electric field and potential equations∂E∂ x

=

dx=−E

∂Ei

dx=qE

Page 83: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Drift and diffusion current equations

Jn=qnn EqDndndx

Jp=qpp EqDp

dpdx

Continuity equation in steady state with SHR recombination

0=1q

∂ Jn

∂x−

np−ni2

np2nicosh Et−Ei

kT 1

0=1q

∂ Jp

∂x−

np−ni2

np2nicosh Et−Ei

kT 1

Page 84: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Numerical computation  可参考

●  Gummel, H.K. ,   A self­consistent iterative scheme for one­dimensional steady state transistor calculations, Electron Devices, IEEE Transactions on, 1964,Volume: 11, Issue: 10 On page(s): 455­ 465

Page 85: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

半导体器件基础

/home/tlu/apde/Lecture 3 (Semiconductor principles).pdf

Page 86: Semiconductor Fundamentals - PKUdsec.pku.edu.cn/~tlu/apde/apde4-5.pdf · 2017-04-03 · Semiconductor Fundamentals ... , one must apply modern physics to solid materials. More specifically,

Reference● Donald A. Neamen, Semiconductor 

physics and devices: basic principles, 3rd ed., McGraw­Hill, New York, 2003.

● http://ece­www.colorado.edu/~bart/3230.htm● ecow.engr.wisc.edu/cgi­

bin/get/ece/745/hitchon/pres1_ece_745a.ppt● www.mse.nsysu.edu.tw/~kyhsieh/solid2/new/042

1.ppt