seminar07_EnergeticStability

Embed Size (px)

Citation preview

  • 8/13/2019 seminar07_EnergeticStability

    1/6

    7. Seminar Energy Methods, FEM Class of 2013

    Topic Energetic Stability 28.11.2013

    A c c e s s

    1 Recapitulation - energetic stability

    energy of basic state

    0= 0,i+ 0,e

    energy of neighbouring state

    I= 0+0+1

    220

    disturbance energy

    = I 0

    case differentiation

    a) 20> 0 stable (energy needed to disturb system)

    b) 20= 0 indifferent (no energy needed)

    c) 20< 0 unstable (energy is released)

    equilibrium in neighbouring state

    I= 0 = 00

    +

    0

    0

    +1

    22

    0

    (with(.)as specific variation of basic state which leads to equilibrium)

    criteria for branching of equilibrium state

    I= 0 =

    2

    0

    2 Example 1

    I(x1) = I0

    1

    2+

    x12L1

    I(x2) = I0

    1

    x22L2

    E = const.

    p (x) = p0

    1

  • 8/13/2019 seminar07_EnergeticStability

    2/6

    potential energy in neighbouring state (negligence of strains in basic state)

    IN = 1

    2E

    L10

    I(x1) v (x1)

    2dx1+

    1

    2E

    L20

    I(x2) v (x2)

    2dx2

    1

    2P

    L10

    v

    (x1)2

    dx1+

    L20

    v

    (x2)2

    dx2

    1

    2p0

    L1

    0

    x10

    v (x1)2

    dx1dx1+

    L20

    x20

    v (x2)2

    dx2dx2

    ansatz functionsboundary conditions

    v (x1 = 0) =v (x1= L1) = 0

    v (x2 = 0) =v (x2= L2) = 0

    v (x1= 0)= 0; v (x2 = L2)= 0

    v (x1= L1) =v (x2= 0) =(2)= 0

    Fourier Series

    vN(x1) = a sin

    x1L1

    vN(x1) = a

    L1 cos

    x1L1

    vN(x2) = b sin

    x2L2

    vN(x2) = b

    L2 cos

    x2L2

    vN(x1= L1) = v

    N(x2 = 0)

    a

    L1= b

    L2

    b = L2L1

    a

    v

    N(x1) =a 2

    L21 sinx1L1

    vN(x2) = a

    L1 cos

    x2L2

    v

    N(x2) = a 2

    L1L2 sinx2

    L2

    alternative : Hermite-polynoms

    vN(x1) = a

    x1L1

    +

    x1L1

    2

    vN(x1) = a

    1

    L1+ 2

    x1L2

    1

    vN(x2) = b

    x2L2

    +

    x2L2

    2

    vN(x2) = b

    1

    L2+ 2

    x2L2

    2

    2

  • 8/13/2019 seminar07_EnergeticStability

    3/6

    insertion into potential

    IN = 1

    2EI0

    4

    L41

    a2L10

    1

    2+

    x12L1

    sin2

    x1L1

    dx1

    +12

    EI0 4

    L21L2

    2

    a2

    L20

    1 x22L2

    sin2x2L2

    dx2

    1

    2P

    2

    L21

    a2

    L1

    0

    cos2

    x1L1

    dx1+

    L20

    cos2

    x2L2

    dx2

    1

    2p0

    2

    L21

    a2

    L1

    0

    x10

    cos2

    x1L1

    dx1dx1+

    L20

    x20

    cos2

    x2L2

    dx2dx2

    integrationL0

    sin2x

    L

    dx =

    1

    2x

    L

    4sin

    2

    x

    L

    L0

    =1

    2L

    L0

    x sin2x

    L

    dx =

    L0

    x 1

    2

    1 cos

    2

    x

    L

    dx

    = 1

    4x2

    1

    2

    L2

    42cos

    2

    x

    L

    1

    2

    L

    2x sin

    2

    x

    L L

    0

    =1

    4L2

    L0

    cos2x

    L

    dx =

    1

    2x+

    L

    4sin

    2

    x

    L

    L0

    =1

    2L

    L0

    x0

    cos2x

    L

    dxdx =

    L0

    1

    2x+

    L

    4sin

    2

    x

    L

    dx=

    1

    4x2

    L2

    82cos

    2

    x

    L

    L0

    = 1

    4L2

    L2

    82cos (2) +

    L2

    82cos (0) =

    1

    4L2

    insertion into potential

    IN = 1

    2EI0

    4

    L41

    a2

    1

    4L1+

    1

    2L1

    1

    4L2

    1

    +

    1

    2EI0

    4

    L21L2

    2

    a2

    1

    2L2

    1

    2L2

    1

    4L2

    2

    1

    2P

    2

    L21

    a2

    1

    2L1+

    1

    2L2

    1

    2p0

    2

    L21

    a2

    1

    4L2

    1+

    1

    4L2

    2

    = 1

    2EI0

    4

    L21

    a2

    3

    8L1+

    3

    8L2

    1

    2

    2

    L21

    a2

    1

    2P(L1+L2) +

    1

    4p0

    L21+L2

    2

    3

  • 8/13/2019 seminar07_EnergeticStability

    4/6

    equilibrium condition

    INa

    = 0

    =

    1

    2EI0

    4

    L21

    3

    8L1+

    3

    8L2

    1

    2

    2

    L21

    1

    2P(L1+L2) +

    1

    4p0

    L2

    1+L2

    2

    2a

    = K a

    determination of critical load forL1= L2 and Pcrit= fcrit P andpcrit= fcritp0

    K = 0

    = 3

    8EI0

    4

    L3

    1

    2

    2

    L2

    fcritP L+

    1

    2fcritp0L

    2

    fcrit = 3

    4

    2

    L2EI0

    P+ 12p0L

    3 Example 2

    EI = const.

    p (x) = p0

    k = const.

    k . . . spring constant/

    spring stiffness [N/m]

    spring in general

    spring force (Hookes law)

    F =k s

    potential of internal energy

    i = Wi=

    s0

    F ds=

    s0

    k s ds=1

    2k s2

    here additional part of internal potential due to spring

    I(spring) =1

    2k v (x1= L1)

    2 =1

    2k v2

    2

    boundary conditions for ansatz functions

    v (x1 = 0) = 0 v (x1= L1) =v (x2= 0)= 0 v(x2= L2) = 0

    v (x1= 0)= 0 v (x1 = L1) =v

    (x2 = 0)= 0 v(x2 = L2)= 0

    4

  • 8/13/2019 seminar07_EnergeticStability

    5/6

  • 8/13/2019 seminar07_EnergeticStability

    6/6

    insertion into potential, integration and application of equilibrium condition yields systemof equations in form of

    INa

    = C11 a+C12 v2= 0

    IN

    v2= C21 a+C22 v2= 0

    withC11, . . . , C 22 containing P andp0

    coefficient matrix K C11 C12

    C21 C22

    K

    a

    v2

    =

    0

    0

    a= 0 and v2 = 0 ifdetK = 0

    detK =C11 C22 C12 C21= 0 Pcrit

    6