240
7/25/2019 siae_ALS_SDH http://slidepdf.com/reader/full/siaealssdh 1/240 ALS  Access Link Series SDH radio family User manual MN.00164.E - 001 Volume 1/1

siae_ALS_SDH

  • Upload
    duomixx

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 1/240

ALS

 Access Link SeriesSDH radio family 

User manual

MN.00164.E - 001Volume 1/1

Page 2: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 2/240

The information contained in this handbook is subject to change without notice.

Property of Siae Microelettronica S.p.A. All rights reserved according to the law and according to the inter-

national regulations. No part of this document may be reproduced or transmitted in any form or by any

means, electronic or mechanical, without written permission from Siae Microelettronica S.p.A.

Unless otherwise specified, reference to a Company, name, data and address produced on the screen dis-

played is purely indicative aiming at illustrating the use of the product.

MS-DOS®, MS Windows® are trademarks of Microsoft Corporation

HP®, HP OpenView NNM and HP–UX are Hewlett Packard Company registered trademarks.

UNIX is a UNIX System Laboratories registered trademark.

Oracle® is a Oracle Corporation registered trademark.

Linux term is a trademark registered by Linus Torvalds, the original author of the Linux operating system.

Linux is freely distributed according the GNU General Public License (GPL).

Other products cited here in are constructor registered trademarks.

Page 3: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 3/240

 ALS - MN.00164.E - 001 1

ALS

Section 1.USER GUIDE 7

1 DECLARATION OF CONFORMITY ............................................................................... 7

2 PURPOSE AND STRUCTURE OF THE MANUAL............................................................10

2.1 PURPOSE OF THE MANUAL.................................................................................10

2.2 AUDIENCE BASIC KNOWLEDGE ..........................................................................10

2.3 STRUCTURE OF THE MANUAL .............................................................................10

Section 2.INSTALLATION 13

3 LIST OF ABBREVIATIONS.........................................................................................13

4 EQUIPMENT INTRODUCTION ...................................................................................15

4.1 SYSTEM OVERVIEW ..........................................................................................15

4.2 APPLICATION ...................................................................................................15

4.3 SYSTEM ARCHITECTURE....................................................................................15

4.3.1 IDU.......................................................................................................16

4.3.1.1 IDU SDH modular.....................................................................16

4.3.1.2 IDU SDH compact ....................................................................17

4.3.2 ODU......................................................................................................17

4.3.3 Frequency reuse systems (with XPIC) ........................................................17

4.4 MANAGEMENT SYSTEM......................................................................................17

4.4.1 Hardware platform ..................................................................................18

4.4.2 Management ports..................................................................................18

5 INSTALLATION AND PROCEDURES FOR ENSURING THE ELECTROMAGNETIC COMPAT-

IBILITY25

5.1 ALS SYSTEM ....................................................................................................25

5.2 MECHANICAL INSTALLATION..............................................................................25

5.2.1 IDU installation.......................................................................................25

5.2.1.1 Connections for 1+0 frequency reuse systems..............................25

5.2.1.2 Connections for 1+1 frequency reuse systems..............................255.2.2 ODU installation......................................................................................26

Page 4: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 4/240

2 ALS - MN.00164.E - 001

5.2.2.1 ODU installation for AS version...................................................26

5.2.2.2 ODU installation for ALS version .................................................26

5.3 ELECTRICAL WIRING.........................................................................................26

5.4 GROUNDING CONNECTION ................................................................................28

6 IDU SDH USER CONNECTIONS .................................................................................29

6.1 IDU SDH MODULAR CONNECTORS ......................................................................29

6.2 IDU SDH COMPACT CONNECTORS ......................................................................31

7 INSTALLATION ONTO THE POLE OF THE ODU AS WITH SEPARATED ANTENNA ........33

7.1 INSTALLATION KIT ...........................................................................................33

7.2 REQUIRED TOOLS FOR MOUNTING (NOT SUPPLIED) .............................................33

7.3 INSTALLATION PROCEDURE...............................................................................34

7.4 GROUNDING....................................................................................................36

8 INSTALLATION ONTO THE WALL OF THE ODU AS WITH SEPARATED ANTENNA .......47

8.1 INSTALLATION KIT ...........................................................................................47

8.2 REQUIRED TOOLS FOR MOUNTING (NOT SUPPLIED) .............................................47

8.3 INSTALLATION PROCEDURE...............................................................................47

8.4 GROUNDING....................................................................................................49

9 INSTALLATION ONTO THE POLE OF THE ODU AS WITH INTEGRATED ANTENNA ......59

9.1 FOREWORD .....................................................................................................59

9.2 INSTALLATION KIT ...........................................................................................59

9.3 REQUIRED TOOLS FOR MOUNTING (NOT SUPPLIED) .............................................59

9.4 INSTALLATION PROCEDURE...............................................................................60

9.4.1 Installation onto the pole of the support system and the antenna..................60

9.4.2 Installation of ODU..................................................................................60

9.4.3 ODU installation......................................................................................61

9.5 ANTENNA AIMING.............................................................................................62

9.6 COMPATIBILITY................................................................................................62

9.7 GROUNDING....................................................................................................62

10 INSTALLATION ONTO THE POLE OF THE ODU AS WITH INTEGRATED ANTENNA (KIT

V32307, V32308, V32309)79

10.1 FOREWORD .....................................................................................................79

10.2 INSTALLATION KIT ...........................................................................................79

10.3 REQUIRED TOOLS FOR MOUNTING (NOT SUPPLIED) .............................................80

10.4 INSTALLATION PROCEDURE...............................................................................80

10.5 1+0 MOUNTING PROCEDURES ...........................................................................81

10.5.1 Setting antenna polarization.....................................................................81

10.5.2 Installation of the centring ring on the antenna...........................................81

10.5.3 Installation of 1+0 ODU support ...............................................................81

10.5.4 Installation onto the pole of the assembled structure ...................................81

10.5.5 Installation of ODU (on 1+0 support).........................................................81

10.5.6 Antenna aiming ......................................................................................82

10.5.7 ODU grounding.......................................................................................82

10.6 1+1 MOUNTING PROCEDURES ...........................................................................82

10.6.1 Hybrid/circulator installation.....................................................................82

10.6.2 Installation of ODUs ................................................................................83

11 INSTALLATION ON POLE OF ODU ALS WITH SEPARATED ANTENNA.........................93

Page 5: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 5/240

 ALS - MN.00164.E - 001 3

11.1 TOOLS REQUIRED FOR INSTALLATION ................................................................93

11.2 INSTALLATION PROCEDURE...............................................................................93

12 INSTALLATION ON POLE OF THE ODU ALS WITH INTEGRATED ANTENNA..............105

12.1 FOREWORD ...................................................................................................105

12.2 NEEDED TOOLS..............................................................................................105

12.3 INSTALLATION PROCEDURE.............................................................................105

12.4 ANTENNA ALIGNMENT.....................................................................................106

12.5 INSTALLATION NOTE ON FREQUENCY REUSE SYSTEMS.......................................122

13 INSTALLATION NOTE ON FREQUENCY REUSE SYSTEMS .........................................124

13.1 Frequency reuse.............................................................................................124

13.2 Characteristics ...............................................................................................124

14 ODU AS SUBSTITUTION FOR 1+1 FREQUENCY DIVERSITY SYSTEM .......................127

14.1 1+1 FREQUENCY DIVERSITY SYSTEM: SUBSTITUTION OF ODU ............................127

Section 3.LINE-UP AND MAINTENANCE 129

15 PROGRAMMING AND SUPERVISION.......................................................................129

15.1 GENERAL.......................................................................................................129

16 LINE-UP OF THE RADIO HOP..................................................................................13016.1 LINE-UP OF THE RADIO HOP ............................................................................130

16.1.1 Antenna alignment and received field measurement ..................................130

16.1.2 Network element configuration ............................................................... 130

16.2 LASER FUNCTIONALITY TEST ...........................................................................132

16.2.1 Switch-on procedure .............................................................................132

16.2.2 Automatic laser shut-down check ............................................................ 132

16.3 LINE-UP OF RADIO HOP FOR FREQUENCY REUSE SYSTEMS WITH XPIC (SDH IDU MOD-

ULAR)132

16.3.1 Additional line-up operations for XPIC ...................................................... 132

16.4 NOTES ON MANUAL OPERATIONS ON ALS WITH XPIC (SDH IDU MODULAR)...........133

16.4.1 Management of automatic manual operations ...........................................133

16.4.2 Automatically activated manual operations ...............................................134

17 PERIODICAL CHECKS .............................................................................................138

17.1 GENERAL.......................................................................................................138

17.2 CHECKS TO BE CARRIED OUT ..........................................................................138

18 TROUBLESHOOTING...............................................................................................139

18.1 GENERAL.......................................................................................................139

18.2 TROUBLESHOOTING PROCEDURE .....................................................................139

18.2.1 Loop facilities ....................................................................................... 139

18.2.2 Alarm messages processing....................................................................140

18.3 FAULT MANAGEMENT PROCEDURE FOR FREQUENCY REUSE SYSTEMS WITH XPIC ...14118.3.1 Manual operations activated by FMP ........................................................141

Page 6: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 6/240

4 ALS - MN.00164.E - 001

19 EQUIPMENT CONFIGURATION UPLOAD/SAVE/DOWNLOAD. PARAMETER MODIFICA-

TION AND CREATION OF VIRTUAL CONFIGURATIONS142

19.1 SCOPE ..........................................................................................................142

19.2 PROCEDURE...................................................................................................142

19.2.1 General equipment configuration............................................................. 142

19.2.2 Addresses and routing table ................................................................... 143

19.2.3 Remote Element Table........................................................................... 144

20 BACK UP FULL EQUIPMENT CONFIGURATION WITHOUT POSSIBILITY OF MODIFYING

THE PARAMETERS145

20.1 SCOPE ..........................................................................................................145

20.2 CONFIGURATION UPLOAD ...............................................................................145

20.3 CONFIGURATION DOWNLOAD ..........................................................................145

21 ALS - FIRMWARE UPDATE ......................................................................................147

21.1 INTRODUCTION..............................................................................................147

21.2 SYSTEM VERSION OF FIRMWARE......................................................................14721.3 PRELIMINARY CHECKS ....................................................................................148

21.4 FIRMWARE UPGRADE ......................................................................................148

21.4.1 N90485 - Equipment controller application download .................................148

21.4.2 N90487 - Radio application download (first branch)...................................150

21.4.3 N90489 (ALS6U-ALS18-ALS23)/N90543 (ALS13) - Radio FPGA download (first

branch)151

21.4.4 N90486 or N90530 - Modem download (first branch) .................................151

21.4.5 Radio branch switch (1+1 systems only) ..................................................152

21.4.6 N90487 - Radio application download - second branch (1+1 system only) ....153

21.4.7 N90489 (ALS6U-ALS18-ALS23)/N90543 (ALS13) - Radio FPGA download - second

branch (1+1 system only)153

21.4.8 N90486 or N90530 - Modem download - second branch (1+1 system only) ..15321.4.9 N90486 or N90508 - Baseband download.................................................154

21.5 FINAL CHECK .................................................................................................154

21.5.1 Downgrade procedure ...........................................................................155

Section 4.CHARACTERISTICS AND DESCRIPTIONS SPECIFICATION 157

22 SYSTEM CHARACTERISTICS ...................................................................................157

22.1 GENERAL.......................................................................................................157

22.2 SYSTEM CHARACTERISTICS.............................................................................158

23 CHARACTERISTICS OF THE INDOOR UNIT .............................................................162

23.1 GENERAL.......................................................................................................162

23.2 STM-1 ELECTRICAL INTERFACE ........................................................................162

23.3 STM-1 OPTICAL INTERFACE .............................................................................162

23.4 2 Mbit/s WAYSIDE INTERFACE..........................................................................163

23.5 64 kbit/s CONTRA-DIRECTIONAL INTERFACE V.11 ..............................................163

23.6 ALARM INTERFACE..........................................................................................164

23.7 NETWORK MANAGEMENT INTERFACE................................................................16423.8 MODULATOR/DEMODULATOR ...........................................................................165

Page 7: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 7/240

 ALS - MN.00164.E - 001 5

23.9 CABLE INTERFACE ..........................................................................................165

23.10 AVAILABLE LOOPS..........................................................................................166

23.11 BATTERY INTERFACE.......................................................................................166

23.12 POWER SUPPLY CURRENT................................................................................166

24 CHARACTERISTICS OF OUTDOOR UNIT..................................................................167

24.1 GENERAL.......................................................................................................167

25 DESCRIPTION OF THE SDH IDU .............................................................................168

25.1 GENERAL.......................................................................................................168

25.2 DESCRIPTION OF IDU SDH MODULAR ...............................................................168

25.2.1 Description of the LIM ...........................................................................168

25.2.1.1 STM-1 interface .....................................................................168

25.2.1.2 2xSTM-1 interface ..................................................................170

25.2.1.3 4xSTM-1 interface ..................................................................170

25.2.1.4 Up to 4xSTM-1 synchronisation ................................................171

25.2.2 Description of the RIM ........................................................................... 171

25.2.2.1 Modem .................................................................................171

25.2.2.2 Power supply and cable interface..............................................172

25.2.3 Description of RIM with XPIC .................................................................. 172

25.2.4 Description of the controller ................................................................... 173

25.2.4.1 Interface ports.......................................................................173

25.2.4.2 Equipment firmware ...............................................................173

25.2.5 IDU telemetry ...................................................................................... 174

25.2.6 IDU loops ............................................................................................ 174

25.2.6.1 Line loop...............................................................................174

25.2.6.2 Baseband loop .......................................................................175

25.2.6.3 IDU loop ...............................................................................17525.2.7 Front panel of SDH IDU modular ............................................................. 175

25.3 DESCRIPTION OF IDU SDH COMPACT................................................................175

25.3.1 General ............................................................................................... 175

25.3.1.1 STM-1 interface .....................................................................176

25.3.1.2 2xSTM-1 interface ..................................................................177

25.3.1.3 Modem .................................................................................177

25.3.1.4 Power supply and cable interface..............................................178

25.3.2 Controller ............................................................................................ 178

25.3.2.1 Interface ports.......................................................................179

25.3.2.2 Equipment firmware ...............................................................179

25.3.3 IDU telemetry ...................................................................................... 179

25.3.4 IDU loops ............................................................................................ 180

25.3.4.1 Line loop...............................................................................180

25.3.4.2 Baseband loop .......................................................................180

25.3.4.3 IDU loop ...............................................................................180

25.3.5 Front panel of SDH IDU compact............................................................. 180

26 ODU AS DESCRIPTION ...........................................................................................200

26.1 GENERAL.......................................................................................................200

26.2 TRANSMIT SECTION........................................................................................200

26.3 RECEIVE SECTION ..........................................................................................200

26.4 CABLE INTERFACE ..........................................................................................201

26.5 ATPC OPERATION ...........................................................................................201

26.6 1+1 HOT STAND-BY AND FREQUENCY DIVERSITY Tx SYSTEM ............................201

Page 8: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 8/240

6 ALS - MN.00164.E - 001

26.7 POWER SUPPLY ..............................................................................................202

26.8 FREQUENCY REUSE.........................................................................................202

27 ODU ALS DESCRIPTION .........................................................................................206

27.1 GENERAL.......................................................................................................206

27.2 TRANSMITTER SECTION ..................................................................................206

27.3 RECEIVER SECTION ........................................................................................207

27.4 CABLE INTERFACE ..........................................................................................207

27.4.1 Power supply........................................................................................207

27.5 BRANCHING UNIT...........................................................................................208

27.6 ATPC.............................................................................................................208

27.7 RF LOOP (OPTION) .........................................................................................209

27.8 FREQUENCY REUSE.........................................................................................209

Section 5.COMPOSITION 217

28 IDU COMPOSITION ................................................................................................217

28.1 GENERAL.......................................................................................................217

28.2 COMPOSITION OF IDU SDH MODULAR ..............................................................217

28.3 COMPOSITION OF IDU SDH COMPACT...............................................................218

29 COMPOSITION OF THE OUTDOOR UNIT .................................................................219

29.1 GENERAL.......................................................................................................219

29.2 ODU AS COMPOSITION ...................................................................................219

29.3 ALS ODU COMPOSITION..................................................................................220

Section 6.SAFETY RULES AND EQUIPMENT DISPOSAL 223

30 FIRST AID FOR ELECTRICALSHOCK AND SAFETY RULES ........................................223

30.1 FIRST AID FOR ELECTRICAL SHOCK..................................................................22330.1.1 Artificial respiration ............................................................................... 223

30.1.2 Treatment of burns ............................................................................... 223

30.2 SAFETY RULES ...............................................................................................225

30.3 CORRECT DISPOSAL OF THIS PRODUCT (WasteElectrical & Electronic Equipment)...226

31 LIST OF FIGURES ...................................................................................................227

32 LIST OF TABLES .....................................................................................................233

33 ASSISTANCE SERVICE............................................................................................235

33.1 RQ.00961 MODULE .........................................................................................235

Page 9: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 9/240

 ALS - MN.00164.E - 001 7

Section 1.USER GUIDE

1 DECLARATION OF CONFORMITY

SIAE Microelettronica S.p.AVia Buonarroti, 21 - Cologno (MI) - Italy

DECLARES

THAT THE PRODUCTS

Digital Radio Relay Systems model ALS

comply with the essential requirements of article 3 of the

R&TTE Directive (1999/05/EC)

and therefore are marked:

The following standards have been applied:

EN 60950:2000

"Safety of information technology equipment"

EN 301 489-4 v. 1.3.1 (2002-8)

"Electromagnetic compatibility and Radio spectrum Matters (ERM); ElectroMag-

netic Compatibility (EMC) standard for radio equipment and services; Part 4: Specific conditions for fixed

radio links and ancillary equipment and services"

ETSI EN 301 751 V1.2.1 (2002-11)

"Fixed Radio Systems; Point-to-Point equipments and antennas;Generic harmonized standard for Point-to-

Point digital fixed radio systems and antennas covering the essential requirements under article 3.2 of the

1999/5/EC Directive."

ETSI EN 302 217-2-2 V1.1.3 (2004-12)

"Fixed Radio Systems; Characteristics and requirements for point-to-point equipment and antennas; Part2-2: Harmonized EN covering essential requirements of Article 3.2 of R&TTE Directive for digital systems

operating in frequency bands where frequency co-ordination is applied."

The equipment makes use of non-harmonized frequency bands.Following the requirements of the R&TTE Directive (article 12)

and the relevant decision of the EC, in term of classification of Ra-dio Equipment and Telecommunications Terminal Equipment andassociated identifiers, the ALS shall carry the 'class 2' identifier:

Cologno Monzese, 16/05/2005 On behalf of SIAE Microelettronica S.p.A.

Chairman and Executive Officer

Alberto Mascetti

Page 10: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 10/240

8ALS - MN.00164.E - 001

Page 11: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 11/240

 ALS - MN.00164.E - 001 9

Page 12: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 12/240

10ALS - MN.00164.E - 001

2 PURPOSE AND STRUCTURE OF THE MANUAL

2.1 PURPOSE OF THE MANUAL

The purpose of this manual consists in providing the user with information which permit to operate and

maintain the ALS radio family.

Warning: This manual does not include information relevant to the SCT/LCT management program win-

dows and relevant application. They will be provided by the program itself as help-on line.

2.2 AUDIENCE BASIC KNOWLEDGE

The following knowledge and skills are required to operate the equipment:

• a basic understanding of SDH transmission

• installation and maintenance experience on digital radio system

• knowledge of IP/OSI networking.

2.3 STRUCTURE OF THE MANUAL

The manual is subdivided in sections, each one developing a subject pointed out as title of the section.

Each section consists of a set of chapters, which describe more in detail the main subject.

Section 1 - User Guide

It expounds the purpose and the structure of the manual.

Section 2 - Installation

The mechanical installation procedures are herein set down as well as the user electrical connections. The

content of the tool kit (if supplied) is also listed.

Section 3 - Line-up and maintenance

Line-up procedures are described as well as checks to be carried out for the equipment correct operation.

The list of the instruments to be used and their characteristics are also set down.The routine maintenance

actions are described as well as fault location procedures in order to identify the faulty unit and to re-es-

tablish the operation after its replacement with a spare one.

Page 13: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 13/240

 ALS - MN.00164.E - 001 11

Section 4 - Characteristics and description

It traces the broad line of equipment operation and lists the main technical characteristics. List of abbre-

viation meaning is also supplied.

Section 5 - Composition

Position, part numbers of the components the equipment consist of, are shown in this section.

Section 6 - Safety rules and equipment disposal

It provides the information about the main safety rules and the equipment disposal (electrical and elec-

tronical wastes).

Section 7 - Lists and assistance

The section contains the lists of the figures and the tables of the manual and the information relevant to

the assistance service.

Page 14: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 14/240

12ALS - MN.00164.E - 001

Page 15: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 15/240

 ALS - MN.00164.E - 001 13

Section 2.INSTALLATION

3 LIST OF ABBREVIATIONS

- ATPC Automatic Transmit Power Control

- BB Baseband

- BBER Background Block Error Ratio

- BCM Block Coded Modulation

- BER Bit Error Ratio

- CC Co-channel

- C/I Carrier to Interference (ratio)

- DCC Data Communication Channel

- DRRS Digital Radio Relay Systems

- ECC Embedded Control Channel

- EMC Electromagnetic Compatibility

- ERC European Radiocommunications Committee

- HDLC High-level Data Link Control

- IDU Indoor Unit

- IF Intermediate Frequency

- LED Light Emitted Diode

- LAPS Link Access Procedure SDH

- LAN Local Area Network

- LIM Line Interface Module

- LO Local Oscillator

- LOS Loss Of Signal

- LOF Loss Of Frame

- LCT Local Craft Terminal

- MIB Management Information Base

Page 16: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 16/240

14 ALS - MN.00164.E - 001

- MSOH Multiplex Section Overhead

- MST Multiplex Section Termination

- MTBF Mean Time Between Failure

- NE Network Element

- NMI Network Management Interface

- ODU Outdoor Unit

- PDH Plesiochronous Digital Hierarchy

- PPI Plesiochronous Physical Interface

- PPP Point to Point Protocol

- RFC Radio Frequency Channel

- RFCOH Radio Frame Complementary OverHead

- RIM Radio Interface Module

- RPS Radio Protection Switching

- RST Regenerator Section Termination

- RTPC Remote Transmission Power Control

- RSL Received Signal Level

- RSOH Regenerator Section OverHead

- RSPI Radio Synchronous Physical Interface

- RST Regenerator Section Termination

- RTPC Remote Transmission Power Control

- SDH Synchronous Digital Hierarchy

- SETS SDH Equipment Timing Source

- SETG SDH Equipment Timing Generator

- SNMP Simple Network Management Protocol

- SOH Section OverHead

- SPI Synchronous Physical Interface

- STM-1 Synchronous Transport Module Level 1(155.52 Mbit/s)

- TCP/IP Transmission Control Protocol/Internet Protocol

- TMN Telecommunications Management Network

- TU Tributary Unit

- VC Virtual Container

- XPIC XPIC Interference Canceller

- XIF XPIC Improvement Factor

- VLAN Virtual LAN

Page 17: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 17/240

 ALS - MN.00164.E - 001 15

4 EQUIPMENT INTRODUCTION

4.1 SYSTEM OVERVIEW

Access Link Series (ALS) radio family, is radio link family designed and developed by SIAE Microelettronica

S.p.A. for high capacity transmission.

The equipment offers scalable data rates from STM-1 up to 4xSTM-1 making use of 32 QAM or 128QAM

software programmable modulation.

Crosspolar Interference Canceller (XPIC) facility allows the frequency reuse of the radio channel thus per-

mitting to double the transmission capacity.

Cost-effective, high reliability, fast installation, commonalities and fully programmability are the most out-

standing performances that permits the ALS radio family to cope with success the very demanding tele-

communication market.

4.2 APPLICATION

The equipment finds application in the following fields:

• urban and regional network

• media diversity protection

• Gigabit ethernet extension

• SDH ring

• high capacity interconnection among GSM/UMTS cellular infrastructures

• spur route from backbone network.

4.3 SYSTEM ARCHITECTURE

The ALS equipment is split mount type. It consists of two separate units called IDU and ODU available in

different versions:

• IDU is 19” wired mechanical structure for indoor rack mounting. The unit height depends on the

different assembly versions.

It contains circuitry for in/out tributary interfacing and management of the whole equipment.

• ODU is a light, waterproof metallic body for pole or wall mounting. The internal circuitry makes up

the RF head interfacing the antenna. The two units are interconnected via a single coaxial cable.

Page 18: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 18/240

16 ALS - MN.00164.E - 001

4.3.1 IDU

The IDU unit is available in two versions:

• IDU SDH modular, for STM-1 and Gigabit traffic

• IDU SDH compact, for STM-1 traffic.

4.3.1.1 IDU SDH modular

The IDU SDH is available in the following capacities:

• 1+0 version; 1 unit high, up to 2xSTM-1 capacity

• 1+1 version; 1 unit high, up to 2xSTM-1 capacity

• 1+0 version; 1 unit high, up to 2xSTM-1 capacity with frequency reuse

• 1+1 version; 2 unit high, up to 2xSTM-1 capacity with frequency reuse

• 1+0 version; 1 unit high, up to 4xSTM-1 capacity with frequency reuse

• 1+1 version; 2 unit high, up to 4xSTM-1 capacity with frequency reuse

• 1+0/1+1 Gigabit version, under development

STM-1 interfaces can be electrical or optical. With plug-in modules the electrical or optical interface can be

selected by the user for each STM-1 interface.

The IDU consists of LIM, CONTROLLER, RIM modules inserted into a wired shelf. The LIM interface contains

tributaries and processes the STM-n frames in RST operating mode.

Fig.1, Fig.2, Fig.3 and Fig.4 show equipment layouts, pointing out capacity and configuration with ODU AS

as example (these configurations can support ODU ALS too).

1xSTM-1 transmission: as shown in Fig.5 the STM-1 after the RSOH termination, along with 1x2 Mbit/s

wayside and 1x64 kbit/s V.11 service channel is sent to an SOH insert circuit to generate an aggregate

frame to be sent to the modulator within the RIM. The opposite is done at the receive side.

2xSTM-1 transmission: as shown in Fig.6 and Fig.7 two STM-1 after the RSOH termination, along with

the 2x2 Mbit/s waysides and 1x64 kbit/s service channel, is sent to a 2xSTM-1 multiplexer. These latter

generates an aggregate frame to be sent to the modulator within the RIM. The opposite is done at the

receive side.

4xSTM-1 transmission: as shown in Fig.8, the four STM-1, after the SOH termination, are two by two

grouped. The achieved 2x2 STM-1 signals are one by one sent to a 2xSTM-1 multiplexer along with the

2x2 Mbit/s waysides and the 1x64 kbit/s V.11 service signal. The aggregate signals, available at the output

of each 2x2 Mbit/s multiplexer, are sent to two independent RIMs and then to two independent ODUs con-

nected to a double polarised antenna.

Gigabit transmission: under development.

In 1+1 configuration the LIM duplicates the aggregate frames at Tx side and performs the changeover at

Rx side.

The RIM is supplied with the following:

• all the circuitry for the 32/128QAM programmable modemodulation including FEC corrector. In case

of cochannel operation the XPIC circuit option is used

• the power supply unit that supplies power to the IDU circuits and sends the battery voltage to the

ODU. Protection against cable short/open is also supplied.

• the cable interface for the bidirectional communication between IDU and ODU via interconnecting

cable.

The Controller:

• contains the equipment software that permits to control and to manage all the equipment function-

ality through a main controller and associated peripherals distributed within IDU and ODU

• interfaces the management system through Ethernet, RS232 and USB ports

• receives external alarms and sends to relay contacts along the internal alarms generated by the

equipment.

Page 19: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 19/240

 ALS - MN.00164.E - 001 17

4.3.1.2 IDU SDH compact

IDU SDH compact is available for 1xSTM-1/2xSTM-1 capacity and 1+0 configuration. The unit description

is included in the homonymous paragraph.

4.3.2 ODU

The ODU unit contains circuits that permits to interface from one side one IDU and the antenna from the

other side.

The QAM modulated carrier is shifted to RF frequency bands through a double conversion. Similarly it oc-

curs at the receive side to send the IF converted carrier to the demodulator within the IDU.

It is possible to join two ODU units on one single supporting plate (pole or wall). In the support system

there is the hybrid for 1+1 hot stand-by configuration or the circulator for 1+1 frequency diversity config-

uration.

ODU unit is available for ODU AS and ODU ALS versions.

4.3.3 Frequency reuse systems (with XPIC)

The frequency reuse systems permit to double the link capacity. It is possible to transmit one carrier on

vertical polarization and one on horizontal polarization.

A cross polar interference canceller (XPIC) is necessary to reduce the effects of cross polar interference.

The idea is that, with XPIC, the receiver re-constructs the wanted signal and deletes the interference.

The interference is unknown and it is obtained in function of received signal on other polarization.

The XPIC circuits are housed into indoor unit.

4.4 MANAGEMENT SYSTEM

The ALS family radio equipment can be managed by the following:

• SCT/LCT for the management of subnetworks. The two programs are running on the PC under win-

dows platform.

• NMS5UX for the management of large networks. The program is running on workstation under Unix

platform and Linux platform.

Both tools use SNMP as management protocol along with IP or IPoverOSI as communication protocol. Themain management functionalities implemented are:

• fault management (alarms, events, date, time, type, address, severity, etc...)

• equipment configuration and test: configuration parameters, loopback, manual forcing of 1+1

switching, mapping of relay alarms and user input

• software management: software release management and software downloading

• performance management: all performance according with ITU-T G.828 are supported, BER meas-

urements, Rx level measurements etc...

• security management: management of security levels for operator access.

Page 20: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 20/240

18 ALS - MN.00164.E - 001

4.4.1 Hardware platform

The hardware/software platform used by SCT/LCT is based on personal computer having at least following

characteristics:

• microprocessor Pentium 133 MHz or more

• 64 Mbyte RAM

• windows compatible graphic monitor

• NIC interface

• HD with 50 Mbyte of free space

• Windows 95/Windows NT/Windows 98/Windows 2000/Windows XP.

4.4.2 Management ports

The SCT/LCT program is connected to the equipment via the following communication ports:

• Ethernet LAN, 10BaseT, 10Base2, AUI

• Asynchronous RS232 serial line

• USB port

• Radio via DCC (Data Communication Channel embedded into the SOH of STM-n frame).

Fig.1 – 1xSTM-1 and 2xSTM-1 unprotected version

2xSTM-1

1U IDU

Page 21: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 21/240

 ALS - MN.00164.E - 001 19

Fig.2 – 1xSTM-1 and 2xSTM-1 protected version

Fig.3 – 2xSTM-1, 4xSTM-1 unprotected version

2xSTM-1

1U IDU

Branching

1U IDU

4xSTM- 1

Page 22: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 22/240

20 ALS - MN.00164.E - 001

Fig.4 – 4xSTM1 optical interface protected version

Branching Branching

Page 23: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 23/240

 ALS - MN.00164.E - 001 21

Fig.5 – 1+0, up to 1xSTM-1 equipment block diagram, with ODU AS

   R   S   O   H

   d  r  o  p

   R   S   O   H

   i  n  s  e  r  t

   S   O   H

   i  n  s  e  r  t

   S   O   H

   i  n  s  e  r  t

   L   I   M

   E  n  c  o   d  e  r

   M   O   D

   D  e  c  o   d  e  r

   D   E   M

   I  n  t  e  r   f .

  c  a  v  o

   G  e  s  t .

   O   D   U

   P   S   U

   R   I   M   1

   A   l   i  m .

   I   D   U

   B  a  t  t .

   R   T   1

   I  n  t  e  r   f .

  c  a  v  o

   T  x

   R  x

  +

  -

   C  o  n  t  r .

   O   D   U

   A   l   i  m .

   O   D   U

   C  o  n  t  r  o

   l   l  e  r

  p  r   i  n  c

 .   C   O   N   T   R   O   L   L   E   R

   C  o  n  t  r .   I   D   U

   G  e  s  t .

   O   D   U

   V   i  s  u  a   l .

  a   l   l  a  r  m   i

   S   C   T   /

   L   C   T

   O   D   U   A   S

   1  x   2   M   b   i  t   /  s

   1  x   2   M   b   i  t   /  s

   1  x   S   T   M  -   1

   1  x   S   T   M  -   1

   I   D   U

   6   4   k   b   i  t   /  s

   6   4   k   b   i  t   /  s

Page 24: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 24/240

22 ALS - MN.00164.E - 001

Fig.6 – 1+0, up to 2xSTM-1 equipment block diagram, with ODU AS

   E   l  a   b

 .

   S   D   H

   E   l  a   b

 .

   S   D   H

   2  x   S   T   M  -   1

   M   U   X

   2  x   S   T   M  -   1

   D   E   M   U   X

   L   I   M

   E  n  c  o   d  e  r

   M   O   D

   D  e  c  o   d  e  r

   D   E   M

   I  n  t  e  r   f .

  c  a  v  o .

   G  e  s  t .

   O   D   U

   P   S   U

   R   I   M   1

   A   l   i  m .

   I   D   U

   B  a  t  t .

   R   T   1

   I  n  t  e  r   f .

  c  a  v  o

   T  x

   R  x

  +

  -

   C  o

  n  t  r .

   O

   D   U

   A   l   i  m .

   O   D   U

   C  o  n  t  r  o   l   l  e  r

  p

  r   i  n  c .   C

   O   N   T   R   O   L   L   E   R

   C  o

  n  t  r .

   I

   D   U

   G  e  s  t .

   O   D   U

   V   i  s  u  a   l .

  a   l   l  a  r  m   i

   S   C   T   /

   L   C   T

   O   D   U

   2  x   2   M   b   i  t   /  s

   2  x   2   M   b   i  t   /  s

   2  x   S   T   M  -   1

   2  x   S   T   M  -   1

   I   D   U

   6   4   k   b   i  t   /  s

   6   4   k   b   i  t   /  s

Page 25: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 25/240

 ALS - MN.00164.E - 001 23

Fig.7 – 1+1, up to 2xSTM-1 equipment block diagram, hot stand-by or

frequency diversity versions with ODU AS

   E   l  a   b .

   S   D   H

   E   l  a   b .

   S   D   H

   2

  x   S   T   M  -   1

   M   U   X

   2  x   S   T   M  -   1

   D

   E   M   U   X

   L   I   M

   C  o   d  e  r

   M   O   D

   D  e  c  o   d  e  r

   D   E   M

   I  n  t  e  r   f .

  c  a  v  o

   O   D   U

  m  a  n  a  g

   P   S   U

   R   I   M   1

   A

   l   i  m .

   I   D   U

   B  a  t  t .

   R   T   1

   I  n  t  e  r   f .

  c  a  v  o

   T  x

   R  x

  +  -

   C  o  n  t  r .

   O   D   U

   A   l   i  m .

   O   D   U

   C  o  n  t  r  o   l   l  e  r

  p  r   i  n  c .   C

   O   N   T   R   O   L   L   E   R

   C  o  n  t  r .

   I   D   U

   G  e  s  t .

   O   D   U

   V   i  s  u  a   l .

  a   l   l  a  r  m   i

   S   C   T   /

   L   C   T

   O   D   U

   2  x   2   M   b   i  t   /  s

   C  o   d  e  r

   M   O   D

   D  e  c  o   d  e  r

   D   E   M

   I  n  t  e  r   f .

  c  a  v  o

   G  e  s  t .

   O   D   U

   P   S   U

   R   I   M   2

   A

   l   i  m .

   I   D   U

   B  a  t  t .

   R   T   2

   I  n  t  e  r   f .

  c  a  v  o

   T  x

   R  x

  +

  -

   C  o  n  t  r .

   O   D   U

   A   l   i  m .

   O   D   U

   I   D   U

   2  x   2   M   b   i  t   /  s

    2  x   S   T   M  -   1

    2  x   S   T   M  -   1

   6   4   k   b   i  t   /  s

   6   4   k   b   i  t   /  s

   F  r  e

  q .

   D   i  v  e  r  s   i  t  y

   H  o  t   S  t  a  n   d  -   b  y

Page 26: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 26/240

24 ALS - MN.00164.E - 001

Fig.8 – 1+0, 4xSTM-1 equipment block diagram, with ODU AS

   E   l  a   b .

   S   D   H

   E   l  a   b .

   S   D   H

   2  x   S

   T   M  -   1

   M

   U   X

   2  x   S   T   M  -   1

   D   E   M

   U   X

   L   I   M

   C  o   d  e  r

   M   O   D

   D  e  c  o   d  e  r

   D   E   M

   I  n  t  e  r   f .

  c  a  v  o

   G  e  s  t .

   O   D   U

   P   S   U

   R   I   M   1

   A   l   i  m

 .   I   D   U

   B  a  t  t .

   I  n  t  e  r   f .

  c  a  v  o

   T

  x

   R

  x

  +

  -

   C  o  n  t  r .

   O   D   U

   A   l   i  m .

   O   D   U

   C  o  n  t  r  o   l   l  e  r

  p  r   i  n  c .   C

   O   N   T   R   O   L   L   E   R

   C  o  n  t  r .

   I   D   U

   G  e  s  t .

   O   D   U

   V   i  s

  u  a   l .

  a   l   l  a  r  m   i

   S   C   T   /

   L   C   T

   O   D   U   1

   2  x   S   T   M  -   1

   C  o   d  e  r

   M   O   D

   D  e  c  o   d  e  r

   D   E   M

   I  n  t  e  r   f .

  c  a  v  o

   G  e  s  t .

   O   D   U

   P   S   U

   R   I   M   2

   A   l   i  m

 .   I   D   U

   B  a  t  t .

   I  n  t  e  r   f .

  c  a  v  o

   T

  x

   R

  x

  +

  -

   C  o  n  t  r .

   O   D   U

   A   l   i  m .

   O   D   U

   I   D   U

   O   D   U   2

   E   l  a   b .

   S   D   H

   E   l  a   b .

   S   D   H

   2  x   S

   T   M  -   1

   M

   U   X

   2  x   S   T   M  -   1

   D   E   M   U   X

   2  x   S   T   M  -   1

   X   P   I   C

   4  x   S   T   M  -   1

   X   P   I   C

Page 27: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 27/240

 ALS - MN.00164.E - 001 25

5 INSTALLATION AND PROCEDURES FOR ENSUR-

ING THE ELECTROMAGNETIC COMPATIBILITY

5.1 ALS SYSTEM

The equipment consists of IDU and ODU(s) units and is mechanically made up of a wired 19" subrack (IDU)

and a weather proof metallic container (ODU).

After unpacking, mechanical installation takes place followed by electrical connections as described in the

following paragraphs.

5.2 MECHANICAL INSTALLATION

5.2.1 IDU installation

On their sides the subracks making up the several IDU versions are provided with two holes for the M6

screws fastening the subracks to a rack or to a mechanical 19" structure. The front of the IDU mechanicalstructure is provided with two holes at the sides. This permits to fasten the subrack to a 19” rack by means

of 4 M6 screws.

Other close equipment have to be spaced by 1/2 unit (22 mm).

5.2.1.1 Connections for 1+0 frequency reuse systems

The frequency reuse systems require interconnections between the RIMs.

They make use of cables with SMA-SMA male connectors.

Fig.9 shows the interconnections for 1+0 version.

5.2.1.2 Connections for 1+1 frequency reuse systems

The frequency reuse systems require interconnections between the RIMs.

They make use of cables with SMA-SMA male connectors.

Fig.10 shows interconnections for 1+1 version.

Page 28: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 28/240

26 ALS - MN.00164.E - 001

5.2.2 ODU installation

The description of installation procedures are different depending on ODU versions, As or ALS.

5.2.2.1 ODU installation for AS version

Refer to following procedures:

• Installation onto the pole of the ODU AS with separated antenna (see chapter 7)

• Installation onto the wall of the ODU AS with separated antenna (see chapter 8)

• Installation onto the pole of the ODU AS with integrated antenna (see chapter 9)

• Installation onto the pole of the ODU AS with integrated antenna (KIT V32307, V32308, V32309)

(see chapter 10)

5.2.2.2 ODU installation for ALS version

Refer to following procedures:

• Installation onto the pole of the ODU ALS with separated antenna (see chapter 11)

• Installation onto the pole of the ODU AS with integrated antenna (see chapter 12)

Fig.9 – Interconnections for frequency reuse - 1+0 version

Fig.10 – Interconnections for frequency reuse - 1+1 version

5.3 ELECTRICAL WIRING

The electrical wiring must be done using appropriate cables thus assuring the equipment responds to the

electromagnetic compatibility standards.

The cable terminates to flying connectors which have to be connected to the corresponding connectors on

the equipment front.

Position and pin-out of the equipment connectors are available in this section.

Tab.1 shows the characteristics of the cables to be used and the flying connector types.

STM1-4STM1-3STM1-2STM1-1

FAIL

V11W.S.2W.S.1

IDU ODU

REM

TEST

LCT RS232 USER IN/OUT

Q3

XX

+-

RIM

RIM

1

2

2

1

RIM

RIM

-+

X X

XX

+-

RIM

RIM

1

2

2

1

RIM

RIM

-+

X X

XX

+-

RIM

RIM

1

2

2

1

RIM

RIM

-+

X X

IDU ODU

REM

TEST

LCT RS232 USER IN/OUT

Q3

V11W.S.2W.S.1

STM1-4STM1-3STM1-2STM1-1

Page 29: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 29/240

 ALS - MN.00164.E - 001 27

Tab.11 - Cable and connector characteristics

Interconnecting pointsType of connector terminating

the cableType of cable/conductor

Battery Polarised SUB-D 3W3 female con-nector

Section of each wire  2.5 sqmm 1

Tributary signals

1.0/2.3 male connector

– 75 ohm coaxial cable with double

shield diameter 4.5 mm dielectric

in expanded polyethylene type

2YCC 0.4/2.5 or equivalent

– Alternatively to the above op-

tion, 75 ohm coaxial cable with

double shield, diameter 3.1 mm

dielectric in Teflon type RG179 B/U

DS or equivalent

SUB-D 25 pin male connector

–120 Ohm balanced four symmet-

ric pairs with shield–75 Ohm unbalanced four coaxial

cable pairs with the shield connect

to ground pin (see “6 IDU SDH

USER CONNECTIONS” document

for pin details)

1.0/2.3 male connector- 75 ohm coaxial cable with double

shield

User inputs/alarms outputFemale type D connector with 9

pins and shielded holder

9 conductor cable with double

brass sheath type interconductor

DB 28.25 or equivalent

RS232Female type D connector with 9

pins and shielded holder

9 conductor cable with double

brass sheath type interconductor

DB 28.10 or equivalent

GND Faston male type Section area  6 sq. mm.

LCT USB Female USB type B Cable USB 1.1

1 For power cable length longer than 20 m. a section of 4 mm is required.

Page 30: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 30/240

28 ALS - MN.00164.E - 001

5.4 GROUNDING CONNECTION

Fig.11 and annexed legend show how to perform the grounding connections.

Legend

(1) IDU grounding point, fast type. The cross section area of the cable used must be  4 sq. mm. The

faston is available on the IDU both sides.

(2) ODU grounding bolt. The cross section area of the cable used must be  16 sq. mm.

(3) IDU-ODU interconnection coax cable terminated with N-type male (ODU side) and SMA male (IDU

side).

(4) Grounding kit type Cabel Metal or similar to connect the shield of interconnection cable.

(5) Matching cable (tail) terminated with N male and N female connectors.

(6) Battery grounding point of IDU to be connected to earth by means of a cable with a section area

2.5 sq. mm. Length  10 m.

(7) Grounding cords connected to a real earth internal of station. The cross section area of the cable

must be  16 sq. mm.

Fig.11 - Grounding connection

IDUunit

ODUunit

2

6(+) (-)

4

Localground

Rack

ground

Indoor

Stationground

7

1 5

3 4 3

Page 31: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 31/240

 ALS - MN.00164.E - 001 29

6 IDU SDH USER CONNECTIONS

6.1 IDU SDH MODULAR CONNECTORS

The user connections are performed through connectors on RIM/LIM/CONTROLLER modules. Fig.12 shows

the connectors position.

Warning: The connector position are the same for all the IDU version.

The connectors are the following:

LIM module

• STM-1 in/out: electrical interface with connectors 1.0/2.3 75 Ohm female type; plug-in with elec-

trical interface 1.0/2.3 connector module; plug-in with optical interface LC connector module

• WS1/WS2: connectors RJ45 female for 2 Mbit/s way side: refer to Tab.2 for connector pin-out.

• V11: connector RJ45 female for 64 kbit/s contradirectional. Refer to Tab.3 fro connector pin-out.

CONTROLLER module

• LCT: connector USB type B male. For pin-out refer to USB standards

• USER IN/OUT: connector SUB-D, 9 pins male type. Refer to Tab.4 for connector pin-out.

• RS232: connector SUB-D, 9 pins male type. Refer to Tab.5 for connector pin-out.

• Q3: connector BNC or connector RJ45. Refer to Tab.6 for connector RJ45.

RIM module

• Connector SMA/50 Ohm female for connection to ODU

• Connector SUB-D, 3 pin male for connection to battery

• Connector SMA/50 Ohm female for connection to other RIM for XPIC correction (only for XPIC equip-

ment).

Fig.12 – Typical connector position

W.S.1 W.S.2 V11

FAIL

STM1-1 STM1-2

Q3

USER IN/OUTRS232LCT

TEST

REM

ODUIDU

2

1

RIM

RIM-

+

Page 32: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 32/240

30 ALS - MN.00164.E - 001

Tab.2 – WS1/WS2 connector pin-out for 2 Mbit/s

Tab.3 – V11 connector pin-out for 64 kbit/s channel - V.11 interface

Tab.4 – User in/out connector pin-out for external alarm input and alarm transfer to outside

Pin Description

1 Tx–C

2 Tx–F

3 GND

4 ––

5 Rx–C

6 Rx–F

7 GND

8 ––

Pin Description

1 D–V11–Tx

2 D+V11–Tx

3 C–V11–Tx

4 C+V11–Tx

5 D–V11–Rx

6 D+V11–Rx

7 C–V11–Rx

8 C+V11–Rx

Pin Description

1 Realy 1 common

2 NA/NC relay 1 contact

3 Realy 2 common

4 NA/NC relay 2 contact

5 User input 04

6 User input 03

7 User input 02

8 User input 01

9 GND

Page 33: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 33/240

 ALS - MN.00164.E - 001 31

Tab.5 – RS232 connector pin-out for connection to/from supervision system (modular IDU)

Tab.6 – RJ45 connector pin-out for 10BaseT Ethernet connection

6.2 IDU SDH COMPACT CONNECTORS

The user connections are performed through connectors on the unit front. Fig.13 shows the connectors

position.

The connectors are the following:

• STM-1 in/out: electrical interface with connectors 1.0/2.3 75 Ohm female type; plug-in with elec-

trical interface 1.0/2.3 connector module; plug-in with optical interface LC connector module

• WS1/WS2: connectors RJ45 female for 2 Mbit/s way side: refer to Tab.2 for connector pin-out.

• V11: connector RJ45 female for 64 kbit/s contradirectional. Refer to Tab.3 for connector pin-out.

• LCT: connector USB type B male. For pin-out refer to USB standards

• USER IN/OUT: connector SUB-D, 9 pins male type. Refer to Tab.4 for connector pin-out.

• RS232: connector RJ45 type. Refer to Tab.7 for connector pin-out.

• Q3: double connector RJ45. Refer to Tab.6 for connector RJ45.

• Connector SMA/50 Ohm female for connection to ODU

• Connector SUB-D, 3 pin male for connection to battery

Pin Description

1 Not to be connected

2 Rx D (IN)

3 Tx D (OUT)

4 Not to be connected

5 GND

6/7/8/9 ––

Pin Description

1 Tx+

2 Tx–

3 Rx+

4 ––

5 ––

6 Rx–

7 ––

8 ––

Page 34: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 34/240

32 ALS - MN.00164.E - 001

Tab.7 - Pin out of IDU compact RS232 connector

Fig.13 - Connectors position

Pin Description

1 RTS

2 TxD

3 DTR  

4 DSR  

5 Gnd

6 RxD

7 CTS

8 n.c.

LCT

      +   -

IDU

ON

ODU

 TEST

USER IN/OUT

RS232V11

Q 3/ 1 Q 3/ 2

1

2

21

2Mb/s WAYS IDE

STM1-2STM1-1

Page 35: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 35/240

 ALS - MN.00164.E - 001 33

7 INSTALLATION ONTO THE POLE OF THE ODU AS

WITH SEPARATED ANTENNA

7.1 INSTALLATION KIT

Following installation kits are supplied with the equipment:

• 1+0 system

- antisliding strip (see Fig.14)

- supporting plate plus 60–114 mm pole fixing bracket and relevant nuts and bolts (see Fig.15)

- adapting tools and relevant bolts and nuts for 219 mm pole

- antenna side flange, variable as function of RF frequency (see Fig.17)

- support with ODU fast locking mechanism (see Fig.15)

- connection to the antenna with flexible wave guide and possible use of a rigid elbow (optional)

(see Fig.17)

- kit for ground connection making part of ODU

• 1+1 system

- antisliding strip (see Fig.14)

- supporting plate plus pole fixing bracket and relevant nuts and bolts (see Fig.15)

- adapting tools and relevant bolts and nuts for 219 mm pole

- hybrid/circulator with ODU fast locking mechanism (see Fig.19), (hybrid for 1+1 hot stand-by

configuration, circulator for 1+1 frequency diversity configuration)

- flexible waveguide trunk for connection to antenna (optional) (see Fig.17)

- kit for ground connection making part of the two ODUs.

Warning: in order to avoid damages to flexible waveguides, don’t fold or twist them more than values

specified as limit in installation instructions of the waveguide supplier.

7.2 REQUIRED TOOLS FOR MOUNTING (NOT SUPPLIED)

• N.2 13mm torque wrench

• N.1 15 mm torque wrench

• N.1 17 mm torque wrench

• N.1 3 mm Allen wrench

Page 36: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 36/240

34 ALS - MN.00164.E - 001

7.3 INSTALLATION PROCEDURE

Installation procedure proceeds according to the following steps:

• 1+0 system: installation onto the pole of the supporting plate 2

• 1+0 system: installation onto the pole of the supporting plate by Band-it

• 1+1 system: installation onto the pole of the supporting plate 2

• Installation of the ODU (common to both 1+0 and 1+1 system)

• ODU grounding

1+0 system – Installation onto the pole of the supporting plate

Fig.14 – Mount antislide strip around the pole. The position of the plastic blocks depends on the position

of the supporting plate (see next step)

Fig.15 – Adhere the supporting plate to the antisliding strip plastic blocks and then secure it to the pole

through the fixing bracket for 60–114 mm pole (see Fig.15). Bolts and nuts are available on the supportingplate. Tightening torque must be 32 Nm.

Warning: As shown in Fig.16 an adapting kit must be used for the 219 mm pole. It consists of an additional

plate to enlarge the standard supporting plate dimension and relevant U–bolt for 219 mm pole fixing.

Fig.17 – Fix the flexible waveguide to the antenna side flange. Four fixing screws are available the dimen-

sions of which depend on the waveguide type. Tighten progressively and alternatively the four screws with

the following torque:

Tab.8 - Torques for tightening screws

Fig.17 – Fix the antenna side flange to the support with ODU fast locking mechanism. The flange can be

mounted horizontally (as shown in Fig.17) or vertically as function of convenience.

Fig.18 – Fix the support with ODU fast locking mechanism to the supporting plate making use of available

bolts and nuts. Fig.18 shows the possible positions. Tightening torque must be 18 Nm.

1+0 system - Installation onto the pole of the supporting plate by Band-it

In case of installation of an ODU 1+0 with separated antenna, the pole fixing system Band-it can be used:

through the holes (see Fig.21) on the base of the ODU support two metallic strips are placed tightening

the pole. Two clips close the strips.

The characteristics of the strip are:

• thickness = 0,76 mm

• width = 19 mm

• material = steel AISI 201/304

Clip characteristics are:

• material = steel AISI 201/304,

2 In case of 219 mm pole, an adapting kit is supplied for the purpose.

Frequencies Screw Tool Torque

from 18 to 38 GHz Allen screw M3 Allen key 2.5 mm 1 Nm

up to 15 GHz Allen screw M4 Allen key 3 mm 2 Nm

Page 37: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 37/240

 ALS - MN.00164.E - 001 35

1+1 versions – Installation onto the pole of the supporting plate

Fig.14 – Mount antislide strip around the pole. The position of the plastic blocks depends on the position

of the supporting plate (see next step)

Fig.15 – Position the supporting plate to the antisliding strip plastic blocks and then secure it to the pole

through the fixing bracket for 60–114 mm pole. Bolts and nuts are available on the supporting plate kit.Tightening torque must be 32 Nm.

Fig.19 – Secure the hybrid/circulator with ODU fast locking mechanism to the supporting plate using bolt

and nuts available on the support plate. Tightening torque must be 18 Nm.

Remove the plastic cover from the hybrid flange sides.

Warning: Do not remove the foil from the hybrid flange sides.

Fig.19 – Fix the flexible waveguide to the antenna side flange. Four fixing screws are available the dimen-

sions of which depend on the waveguide type. Tighten progressively and alternatively the four screws with

the following torque:

Tab.9 - Torques for tightening screws

Warning: It is advisable to shape the waveguide flexible trunk, connecting ODU flange with antenna flange

as shown in Fig.23. This avoids possible condensate to be channelled towards the ODU flange.

Installation of the ODU

1 Bring the ODU with the two hands and position the ODU handle at the bottom side.

2 Remove the plastic cover from the ODU flange side.Warning: Do not remove the foil from the flange. Apply silicon grease e.g. type RHODOSIL PATE

4 to the O–ring of Fig.22.

3 Position the ODU body close to the support with ODU fast locking mechanism and align the corre-

spondent flanges:

- 1+0, align ODU side flange (see Fig.22) to antenna side flange (ODU position depends on the

polarization) see Fig.17

- 1+1 hot stand-by, align ODU side flange (see Fig.22) to hybrid side flange (see Fig.19)

- 1+1 frequency diversity, align ODU side flange (see Fig.22) to circulator side flange (see Fig.19)

Note: Hybrid and circulator differ for waveguide orientation. Circulator is shown in Fig.20.

4 After flange alignment, turn the ODU body approx. 30° anti–clockwise and then insert it into the

support and search for alignment between reference tooth on the support (see Fig.17 – 1+0 version

or Fig.19 – 1+1 version) and ODU body reference tooth (see detail Fig.22)

5 When alignment is achieved, turn the ODU body clockwise until “clack” is heard and the ODU rota-

tion stops.

6 Secure ODU body on the support by tightening bolts (1) (see Fig.17 – 1+0 version or Fig.19 – 1+1

version). Tightening torque must be 6 Nm.

Final assembly of 1+1 hot stand-by version is shown in Fig.23.

Final assembly of 1+1 frequency diversity version is shown in Fig.24.

A parasol mounting is optionally possible.

Frequencies Screw Tool Torque

from 18 to 38 GHz Allen screw M3 Allen key 2.5 mm 1 Nm

up to 15 GHz Allen screw M4 Allen key 3 mm 2 Nm

Page 38: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 38/240

36 ALS - MN.00164.E - 001

7.4 GROUNDING

The ODU must be connected to ground making reference to details of Fig.25.

Fig.14 - Antisliding strip

Antisliding stripPlastic blocks

Page 39: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 39/240

 ALS - MN.00164.E - 001 37

Fig.15 - 60–114 mm pole supporting plate fixing

Supporting plate

Use 15 mm wrench(32Nm torque)

Use 17 mm wrench(32Nm torque)

Page 40: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 40/240

38 ALS - MN.00164.E - 001

Fig.16 - Adapting kit for 219 mm pole

Page 41: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 41/240

 ALS - MN.00164.E - 001 39

*: The flexible waveguides must not be bent more than their limit bending radius (see technical charac-

teristics attached to the waveguide itself)

Fig.17 - Possible mounting position

Antenna side flange

Support with ODU fastlocking mechanism

Reference tooth

Position of antennaside flange

Reference tooth

1

1

13 mm wrench6 Nm torque

Page 42: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 42/240

40 ALS - MN.00164.E - 001

Fig.18 - Possible positions of the support with ODU fast locking mechanism

Adapting kit for 219 mm pole

13 mm key (Torque = 18)

Support plate

Support with ODUfast lockingmechanism

A

B

C

Page 43: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 43/240

 ALS - MN.00164.E - 001 41

*: The flexible waveguides must not be bent more than their limit bending radius (see technical charac-

teristics attached to the waveguide itself)

Fig.19 - Installation onto the pole of the supporting plate

Use 13 mm wrench(18 Nm torque)

Reference toothReference tooth

Hybrid with ODU fastlocking mechanism

1

1

RT1 RT2

Optional vaweguide

Flexiblewaveguide *

Use 13 mm wrench(6 Nm torque)

Page 44: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 44/240

42 ALS - MN.00164.E - 001

Fig.20 - Circulator for 1+1 frequency diversity systems

Polarization disk

Page 45: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 45/240

 ALS - MN.00164.E - 001 43

Fig.21 - Band-it pole fixing

Fig.22 - ODU reference tooth

"N"

"BNC"

Ground bolt

O-ring

Tooth

Page 46: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 46/240

44 ALS - MN.00164.E - 001

Fig.23 - Final ODU assembly of 1+1 hot stand-by version

Page 47: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 47/240

 ALS - MN.00164.E - 001 45

Fig.24 - Final assembly of 1+1 frequency diversity system

Page 48: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 48/240

46 ALS - MN.00164.E - 001

1 Bolt2 Grounding collar

Fig.25 - ODU grounding

1

2

Page 49: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 49/240

 ALS - MN.00164.E - 001 47

8 INSTALLATION ONTO THE WALL OF THE ODU AS

WITH SEPARATED ANTENNA

8.1 INSTALLATION KIT

Following installation kits are supplied with the equipment depending on different versions:

• 1+0 system

- wall supporting plate with additional contact surface extension plates (see Fig.26)

- antenna side flange, variable as function of RF frequency (see Fig.27)- support with ODU fast locking mechanism (see Fig.27)

- connection to the antenna with flexible wave guide and possible use of a rigid elbow (optional)

(see Fig.27)

- kit for ground connection making part of ODU

• 1+1 system

- supporting plate with additional contact surface extension tools (see Fig.26)

- hybrid/circulator with ODU fast locking mechanism (see Fig.29), (hybrid for 1+1 hot stand-by

configuration, circulator for 1+1 frequency diversity configuration)

- connection to the antenna with flexible wave guide and possible use of a rigid elbow (optional)

(see Fig.27)

- kit for ground connection making part of the two ODUs.

8.2 REQUIRED TOOLS FOR MOUNTING (NOT SUPPLIED)

• N.2 13mm torque wrench

• N.1 15 mm torque wrench

• N.1 17 mm torque wrench

• N.1 3 mm allen wrench.

8.3 INSTALLATION PROCEDURE

Installation procedure proceeds according to the following steps:

• 1+0 system: installation onto the wall of the supporting plate

• 1+1 system: installation onto the wall of the supporting plate

• installation of the ODU (common to both 1+0 and 1+1 system)

• ODU grounding.

Page 50: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 50/240

48 ALS - MN.00164.E - 001

1+0 system – Installation onto the wall of the supporting plate

Fig.26 – Fix on the supporting plate the two supplied extension plates to increase the wall contact surface.

Fig.26 – Secure the supporting plate on the wall using the more suitable screws.

Fig.27 – Fix the flexible waveguide to the antenna side flange. Four fixing screws are available the dimen-

sions of which depend on the waveguide type. Tighten progressively and alternatively the four screws with

the following torque:

Tab.10 - Torques for tightening screws

Fig.27 – Fix the antenna side flange to the support with ODU fast locking mechanism. The flange can be

mounted horizontally (as shown in Fig.27) or vertically as function of convenience.

Fig.28 – Fix the support with ODU fast locking mechanism to the supporting plate making use of available

bolts and nuts. Fig.28 shows three possible positions. Tightening torque must be 18 Nm.

1+1 system – Installation onto the wall of the supporting plate

Fig.26 – Fix on the supporting plate the two supplied extension plates to increase the wall contact surface.

Fig.26 – Secure the supporting plate on the wall using the more suitable screws.

Fig.29 – Secure the hybrid with ODU fast locking mechanism to the supporting plate using bolt and nuts

available on the support plate. Tightening torque must be 18 Nm.

Remove the plastic cover from the hybrid flange sides.

Warning: Do not remove the foil from the hybrid flange sides.

Fig.29 – Fix the flexible waveguide to the antenna side flange. Four fixing screws are available the dimen-

sions of which depend on the waveguide type. Tighten progressively and alternatively the four screws withthe following torque:

Tab.11 - Torques for tightening screws

Warning: It is advisable to shape the waveguide flexible trunk, connecting ODU flange with antenna flange

as shown in Fig.33 This avoids possible condensate to be channelled towards the ODU flange.

Installation of the ODU

1 Bring the ODU with the two hands and position the ODU handle at the bottom side.

2 Remove the plastic cover from the ODU flange side.

Warning: Do not remove the foil from the flange. Apply silicon grease e.g. type RHODOSIL PATE

4 to the O–ring of Fig.32.

3 Position the ODU body close to the support with ODU fast locking mechanism and align the corre-

spondent flanges:

- 1+0, align ODU side flange (see Fig.32) to antenna side flange (ODU position depends on the

polarization) see Fig.27.

- 1+1 hot stand-by, align ODU side flange (see Fig.32) to hybrid side flange (see Fig.29)

- 1+1 frequency diversity, align ODU side flange (see Fig.32) to circulator side flange (see Fig.29)

Note: Hybrid and circulator differ for waveguide orientation. Circulator is shown in Fig.30.

Frequencies Screw Tool Torque

from 18 to 38 GHz Allen screw M3 Allen key 2.5 mm 1 Nm

up to 15 GHz Allen screw M4 Allen key 3 mm 2 Nm

Frequencies Screw Tool Torque

from 18 to 38 GHz Allen screw M3 Allen key 2.5 mm 1 Nm

up to 15 GHz Allen screw M4 Allen key 3 mm 2 Nm

Page 51: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 51/240

 ALS - MN.00164.E - 001 49

4 After flange alignment, turn the ODU body approx. 30° anti–clockwise and then insert it into the

support and search for alignment between reference tooth on the support (see Fig.27 – 1+0 version

or Fig.29 – 1+1 version) and ODU body reference tooth (see detail Fig.32)

5 When alignment is achieved, turn the ODU body clockwise until “clack” is heard and the ODU rota-

tion stops.

6 Secure ODU body on the support by tightening bolts (1) (see Fig.27 – 1+0 version or Fig.29 – 1+1version). Tightening torque must be 6 Nm.

Final assembly of 1+1 hot stand-by system is shown in Fig.33.

Final assembly of 1+1 frequency diversity system is shown in Fig.34.

A parasol mounting is optionally possible.

8.4 GROUNDING

The ODU must be connected to ground making reference to details of Fig.35.

Page 52: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 52/240

50 ALS - MN.00164.E - 001

Fig.26 - Wall supporting plate

Extension plate

Supporting plate

M8 bolt and nut

Another possible fixation

Page 53: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 53/240

 ALS - MN.00164.E - 001 51

Fig.27 - Support with ODU fast locking mechanism

Antenna side flange

Support with ODU fastlocking mechanism

Reference tooth

Position of antennaside flange

Reference tooth

1

1

13 mm wrench6 Nm torque

Page 54: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 54/240

52 ALS - MN.00164.E - 001

Fig.28 - Possible mounting positions

Page 55: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 55/240

 ALS - MN.00164.E - 001 53

Fig.29 - Installation onto the wall of the supporting plate

Use 13 mm wrench(18 Nm torque)

Reference toothReference tooth

Hybrid with ODU fastlocking mechanism

1

1

RT1 RT2

Optional waveguide

Flexiblewaveguide

Page 56: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 56/240

54 ALS - MN.00164.E - 001

Fig.30 - Circulator of 1+1 frequency diversity system

Page 57: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 57/240

 ALS - MN.00164.E - 001 55

Fig.31 - Position of the ODU body:

1+0 system - depending on the polarisation.

1+1 hot stand-by system - polarisation is always vertical (handle always at the left side)

1+1 frequency diversity system - polarisation is always horizontal (handle always at the right

side)

Fig.32 - ODU body reference tooth

Vertical Horizontal

"BNC"

Ground bolt

"N"

O-ring

Page 58: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 58/240

56 ALS - MN.00164.E - 001

Fig.33 - Final assembly of 1+1 hot stand-by version

Suncover (optional)

Page 59: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 59/240

 ALS - MN.00164.E - 001 57

Fig.34 - Final assembly of 1+1 frequency diversity version

Page 60: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 60/240

58 ALS - MN.00164.E - 001

1 Bolt

2 Earth cable collar

Fig.35 - ODU grounding

1

2

Page 61: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 61/240

 ALS - MN.00164.E - 001 59

9 INSTALLATION ONTO THE POLE OF THE ODU AS

WITH INTEGRATED ANTENNA

9.1 FOREWORD

The installation onto the pole of the ODU with integrated antenna concerns both 1+0 and 1+1 systems.

9.2 INSTALLATION KIT

Following installation kits are supplied with the equipment depending on different systems:

1+0 system

• 60 to 114 mm pole mounting kit consisting of:

- centering ring and relevant screws (see Fig.36)

- antislide strip (see Fig.37)

- pole support system and pole fixing brackets (see Fig.38)

- ODU with O–ring and devices for ground connection

1+1 system

• pole mounting kit from 60 to 114 mm for 1+1 consisting of:

- centering ring and relevant screws (see Fig.36)

- antislide strip (see Fig.37)

- pole support system and pole fixing brackets (see Fig.38)

• hybrid for hot stand-by version (see Fig.47) or circulator for frequency diversity version (see Fig.48)

• polarization twist disk (see Fig.50)

• 2 ODUs with O–rings and devices for ground connection.

9.3 REQUIRED TOOLS FOR MOUNTING (NOT SUPPLIED)

• N.2 13 mm torque wrench

• N.1 15 mm torque wrench

• N.1 17 mm torque wrench

• N.1 3 mm allen wrench.

Page 62: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 62/240

60 ALS - MN.00164.E - 001

9.4 INSTALLATION PROCEDURE

Installation procedure proceeds according with the following steps:

1+0 system

1 installation onto the pole of the support system

2 installation of the antenna

3 installation of ODU

4 antenna aiming

5 ODU grounding

1+1 system

1 installation onto the pole of the support system

2 installation of the antenna

3 installation of hybrid/circulator circuit

4 installation of the two ODUs

5 antenna aiming

6 ODU grounding.

9.4.1 Installation onto the pole of the support system and the antenna

Fig.36 – Set the antenna in such a position as to be able to operate on its rear side. Locate the five threaded

holes around antenna flange. Mount centering ring onto antenna flange and tight it with 3 calibrated bolts.

Caution: centering ring should be mounted so that the screws do not stick out.

Define if the antenna will be mounted with vertical or horizontal polarization. Check that free drain holes

stay at bottom side. Mount bolt type M10x30, in position A leaving it loose of 2 cm approx. With horizontal

polarization mount bolt type M10x30 in position D, leaving it loose of 2 cm approx.

Fig.37 – Mount antislide strip onto the pole. Place blocks as in Fig.37 following antenna aiming direction.

Tighten the strip with screwdriver.

Fig.38 – Mount pole supporting system with relevant pole fixing brackets following antenna aiming direc-

tion as indicated by arrow. Antislide strip should result at the center of supporting plate. Supporting system

should lean against antislide clamp with the tooth as in Fig.39.

Position the antenna in such a way that bolt in position A or D of Fig.36 cross through hole E of Fig.40.

Secure the support system to the pole by means of the pole fixing brackets and relevant fixing bolts.

Fig.41 – Rotate the antenna body until the remainder three antenna holes coincide with the three support

holes. Secure the antenna to the support by thightening the relevant passing through bolts.

9.4.2 Installation of ODU

1+0 system

1 Apply silicon grease e.g. RHODOSIL PATE 4” to the O–ring (4) of Fig.44 by protecting finger hands

with gloves.

Page 63: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 63/240

 ALS - MN.00164.E - 001 61

2 Bring the ODU with the two hands and position the ODU handle at the bottom side. The ODU handle

can assume position of Fig.42 depending on the polarization.

3 Position the ODU body near the support system and align ODU side flange to antenna side flange

(see Fig.43).

With respect to the flange alignment, turn the ODU body approx. 30° anti–clockwise and then insert

the ODU body into the support and search for alignment between reference tooth on the support

(see Fig.43) and ODU body reference tooth (see detail of Fig.44).

4 When alignment is achieved, turn the ODU body clockwise until “clack” is heard and the ODU rota-

tion stops.

Fig.45 and Fig.46 show ODU housing final position for vertical and horizontal polarization respec-

tively.

5 Secure ODU body on the support system by tightening bolts (1) of Fig.43.

1+1 system

Fig.47 (hot stand-by) or Fig.48 (frequency diversity) – Apply silicon grease, type “RHODOSIL PATE 4” to

O–rings (1). Insert O–rings (1) and (6) into twist polarization disk (2).

Vertical polarization

Fix the disk on hybrid flange placing marker (4), on disk, close to V mark.

Horizontal polarization

Fix the disk on hybrid flange placing reference (4), on disk, close to H mark.

Caution: Twist disk has two planes. Take care of position marker (4) on twist disk. The position of marker

(4) plane should be in contact to hybrid like in figure. Tighten progressively and alternatively four screws

(7) with four spring washers (8) with the following torque:

Tab.12 - Torques for tightening screws

Fig.50 – Fix hybrid to support system with four bolts (1) taking care of RT1/RT2 position shown by labels

of Fig.50. Tighten progressively and alternatively four bolts (1).

In 13 and 15 GHz ODU the polarization disk is fixed to hybrid flange by means of three screws, as shown

in Fig.49.

9.4.3 ODU installation

1 Bring the ODU with the two hands and position the ODU handle at the bottom side.

2 Remove the plastic cover from the ODU flange side.

Warning: Do not remove the foil from the flange. Apply silicon grease e.g. type RHODOSIL PATE

4 to the O–ring of Fig.44.

3 Position the ODU body close to the support with ODU fast locking mechanism and align the corre-

spondent flanges:

- 1+0, align ODU side flange (see Fig.44) to antenna side flange (ODU position depends on the

polarization) see Fig.43.

- 1+1 hot stand-by, align ODU side flange (see Fig.44) to hybrid side flange (see Fig.47)

- 1+1 frequency diversity, align ODU side flange (see Fig.44) to circulator side flange (see Fig.48)

Note: Hybrid (see Fig.47) and circulator (see Fig.48) differ for waveguide orientation.

Frequencies Screw Tool Torque

from 18 to 38 GHz Allen screw M3 Allen key 2.5 mm 1 Nm

up to 15 GHz Allen screw M4 Allen key 3 mm 2 Nm

Page 64: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 64/240

62 ALS - MN.00164.E - 001

4 After flange alignment, turn the ODU body approx. 30° anti–clockwise and then insert it into the

support and search for alignment between reference tooth on the support (see Fig.43 – 1+0 version

or Fig.47 and Fig.48 – 1+1 version) and ODU body reference tooth (see detail Fig.44)

5 When alignment is achieved, turn the ODU body clockwise until “clack” is heard and the ODU rota-

tion stops.

6 Secure ODU body on the support by tightening bolts (1) (see Fig.43 – 1+0 version or Fig.47 andFig.48 – 1+1 version). Tightening torque must be 6 Nm.

Final assembly of 1+1 hot stand-by version is shown in Fig.51.

Final assembly of 1+1 frequency diversity version is shown in Fig.52.

A parasol mounting is optionally possible.

9.5 ANTENNA AIMING

Antenna aiming for 1+0 version and 1+1 version is the same. The antenna aiming devices allow to perform

the following adjustments with respect to the starting aiming position:

- Horizontal ± 15° operating on the nut (3) shown in Fig.53, only after having loosen

the nuts (7), (8), (9), (10) of Fig.54.

- Vertical ± 15° operating on vertical adjustment worm screw (2) shown in Fig.53 only

after having loosen nuts (1), (2), (11) of Fig.54 and (4) and (5) of Fig.53.

For adjustment from 0° to +30° extract nut (1) Fig.54 and position it in hole

(4), extract nut (2) Fig.54 and position it in hole (6). Operate on vertical

adjustment worm screw (2) after having loosen nuts (1), (2), (11) of Fig.54

and (4) of Fig.53.

For adjustment from 0° to –30° extract nut (1) of Fig.54 and position it in hole

(3), extract nut (2) of Fig.54 and position it in hole (5). Operate on vertical

adjustment worm screw (2) after having loosen nuts (1), (2), (11) of Fig.54

and (4) of Fig.53.

For vertical adjustment some markers, every 10°, are available on support.

The bigger marker gives 0° starting aiming position. Once the optimum aiming

position is obtained, tighten firmly the four nuts (1), (2), (11) of Fig.54 and

(4) and (5) of Fig.53 for vertical adjustment and the four nuts (7), (8), (9),

(10) of Fig.54 for horizontal adjustment. Tighten with 15 mm wrench and

32 Nm torque.

9.6 COMPATIBILITY

The pole installation kit of the ODU unit in 1+0 and 1+1 configuration is compatible with integrated antenna

complying with SIAE standard with measures 0.2 m, 0.4 m, 0.6 m, 0.8 m of diameter.

9.7 GROUNDING

See Fig.55. On ODU grounding can be connected with the available bolt spring washer and flat washers as

shown.

Page 65: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 65/240

 ALS - MN.00164.E - 001 63

1 Antenna

2 Calibrated Allen screw

3 Centering ring

Fig.36 - Centering ring position

A

B C

D D

A B

C

A

B

C1

2

3

Horizontal polarizationVertical polarization

3 mm Allen key2,5 Nm torque

Page 66: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 66/240

64 ALS - MN.00164.E - 001

1 Steel belt

2 Plastic blocks

Fig.37 - Antislide strip

1

2

Page 67: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 67/240

 ALS - MN.00164.E - 001 65

1 Pole fixing brackets

2 Tooth

3 Bolt

4 Pole support system

Fig.38 - Support mount on pole

2

3Antenna aiming direction

15 mm wrench32 Nm torque

1

3

1

3

3 3

3

Page 68: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 68/240

66 ALS - MN.00164.E - 001

1 Tooth

Fig.39 - Supporting system position

Fig.40 - Hole E

1

Antenna aiming direction

E

Page 69: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 69/240

 ALS - MN.00164.E - 001 67

A, B, C, D Bolt slots

Fig.41 - Antenna installation on pole support

Fig.42 - Position of the ODU handle depending on the polarisation for 1+0. For 1+1 the polari-

sation is always horizontal. Handle at the right side.

DA

B C

15 mm wrench32 Nm torque

Vertical Horizontal

Page 70: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 70/240

68 ALS - MN.00164.E - 001

H: Reference tooth

Fig.43 - Support system for ODU housing and reference tooth in evidence

1

1

1

V

V

H

H

13 mm wrench6 Nm torque

1 13 mm wrench6 Nm torque

Verticalpolarization

Horizontalpolarization

Page 71: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 71/240

 ALS - MN.00164.E - 001 69

Fig.44 - ODU body reference tooth

Fig.45 - ODU housing final position for vertical polarization

"N"

"BNC"

Ground bolt

ODU side flange

Reference tooth

O-ring

30°

Page 72: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 72/240

70 ALS - MN.00164.E - 001

Fig.46 - ODU housing final position for horizontal polarization

30°

30°

Page 73: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 73/240

 ALS - MN.00164.E - 001 71

1 O–ring

2 Polarization twist disk

3 Hybrid mechanical body

4 Position marker of twist disk

5 Reference label for twist disk

6 O–ring

7 Allen screws

8 Spring washer

Fig.47 - Hybrid and polarization disk

2

1

3

4

5

6

7

8

Page 74: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 74/240

72 ALS - MN.00164.E - 001

1 O-Ring

2 Polarizer disk

3 Circulator mechanical body

4 Disk position indication

5 Disk reference

6 O-Ring

7 Allen screws with spring washers

Fig.48 - Circulator and polarization disk

7

1

2

46

5

3

Page 75: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 75/240

 ALS - MN.00164.E - 001 73

Fig.49 - Fixing of the polarization disk (only for 13 GHz and 15 GHz)

Horizontal polarization

Vertical polarization

Page 76: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 76/240

74 ALS - MN.00164.E - 001

1 Bolts

2 Spring washer

Fig.50 - Hybrid mount on pole support

2

1

1

13 mm wrench18 Nm torque

RT2

RT1

Page 77: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 77/240

 ALS - MN.00164.E - 001 75

Fig.51 - ODU final position for 1+1 version

Fig.52 - Final ODU assembly of 1+1 frequency diversity version

Page 78: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 78/240

76 ALS - MN.00164.E - 001

1 Marker

2 Vertical adjustment

3 Horizontal adjustment

4 Bolt

5 Fixing nut

Fig.53 - Vertical and horizontal adjustments

12

3 4

5

Page 79: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 79/240

 ALS - MN.00164.E - 001 77

1., 2., 3., 4. Horizontal aiming block bolts5., 6., 7. Vertical aiming block bolts

8., 11. Threaded hole for vertical aiming up to –30°

9., 10. Threaded hole for vertical aiming up to +30°

Fig.54 - Antenna aiming block

2

13

5

4

69

10

87

11

15 mm wrench32 Nm torque

15 mm wrench32 Nm torque

15 mm wrench32 Nm torque

15 mm wrench32 Nm torque

Page 80: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 80/240

78 ALS - MN.00164.E - 001

1 Bolt

2 Earth cable collar

Fig.55 - ODU grounding

1

2

Page 81: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 81/240

 ALS - MN.00164.E - 001 79

10 INSTALLATION ONTO THE POLE OF THE ODU AS

WITH INTEGRATED ANTENNA (KIT V32307,

V32308, V32309)

10.1 FOREWORD

The description concerns pole mounting of ODU, in 1+0 and 1+1 system, using following installation kits:

- V32307 for ODU with frequency from 10 to 13 GHz

- V32308 for ODU with frequency from 15 to 38 GHz

- V32309 for ODU with frequency from 7 to 8 GHz

Differences regard the dimensions and the presence of the centring ring (see Fig.56):

- V32307 centring ring for antenna flange from 10 to 13 GHz

- V32308 centring ring for antenna flange from 15 to 38 GHz

- V32309 no centring ring (and relevant screws).

10.2 INSTALLATION KIT

Following installation kits are supplied with the equipment depending on different systems.

1+0 system

• 60 to 129 mm pole mounting kit:

- centring ring and relevant screws

- pole support system plus antenna (already assembled) and pole fixing brackets

- 1+0 ODU support and relevant screws

- ODU with O–ring and devices for ground connection

1+1 system

• 60 to 129 mm pole mounting kit:

- centring ring and relevant screws

- pole support system plus antenna (already assembled) and pole fixing brackets

- 1+0 ODU support

- hybrid and relevant screws

- polarization twist disk and relevant screws- 2 ODUs with O–rings and devices for ground connection.

Page 82: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 82/240

80 ALS - MN.00164.E - 001

10.3 REQUIRED TOOLS FOR MOUNTING (NOT SUPPLIED)

• N.1 2.5 mm Allen wrench

• N.1 3 mm Allen wrench

• N.1 6 mm Allen wrench

• N.1 13 mm spanner

• N.2 17 mm spanner.

10.4 INSTALLATION PROCEDURE

Installation procedure is listed below:

1+0 system

1 antenna polarization

2 installation of the centring ring on the antenna

3 installation of 1+0 ODU support

4 installation onto the pole of the assembled structure

5 installation of ODU

6 antenna aiming

7 ODU grounding

1+1 system

1 antenna polarization

2 installation of the centring ring on the antenna

3 installation of 1+0 ODU support

4 installation onto the pole of the assembled structure

5 installation of hybrid (hot stand-by version) or circulator (frequency diversity version)

6 installation of ODUs

7 antenna aiming

8 ODU grounding.

Page 83: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 83/240

 ALS - MN.00164.E - 001 81

10.5 1+0 MOUNTING PROCEDURES

10.5.1 Setting antenna polarization

Fig.56 – Set the antenna in such a position to operate on its rear side. Locate the four M3 Allen screws

around the antenna flange. Unscrew them (use 2.5 mm Allen wrench) and position the antenna flange ac-

cording on: horizontal wave guide –> vertical polarization, vertical wave guide –> horizontal polariza-

tion. Screw again the four Allen screws (torque = 1 Nm).

10.5.2 Installation of the centring ring on the antenna

Fig.56 – Set the antenna in such a position to operate on its rear side. Locate the three holes around the

antenna flange. Mount the centring ring onto antenna flange and tight it with the 3 Allen screws M4 (use3mm Allen wrench, torque 2 = Nm).

10.5.3 Installation of 1+0 ODU support

Fig.56 – Mount the support onto assembled structure (pole support system plus antenna) using the four

M8 Allen screws (use 6 mm Allen wrench, torque 18 = Nm). Two of the four screws, diagonally opposed,

must be mounted with the two bushes around.

10.5.4 Installation onto the pole of the assembled structure

Fig.56 – Mount the assembled structure on the pole using the two pole fixing brackets and the four M10

screws (use 17 mm spanner, torque = 13 Nm); the heads of the screws are inserted on the antenna side,

the four nuts and the springs between nut and brackets are inserted on bracket side.

10.5.5 Installation of ODU (on 1+0 support)

Fig.57 – Apply silicon grease (e.g. RHODOSIL PATE 4”) on the O–ring by protecting fingers with gloves.Fig.58 – Bring the ODU with the two hands and position the ODU handle at the bottom side. The handle

can assume the positions shown in the figure depending on the polarization. Position the ODU body near

the support and align the wave guide of the ODU to the Wave guide of the antenna: respect to the position

of wave guide alignment, turn the ODU body approx. 30° counter–clockwise into the support and search

for matching between reference tooth on the support (see Fig.59) and reference tooth on the ODU body.

Fig.60 – When alignment of the references teeth is achieved, turn the ODU body clockwise until rotation is

stopped. In figure are shown ODU final position for both polarisations.

Fig.59 – When ODU positioning is over, secure ODU body on the support by tightening bolts (use 13mm

spanner, torque = 6Nm).

Page 84: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 84/240

82 ALS - MN.00164.E - 001

10.5.6 Antenna aiming

Antenna aiming procedure for 1+0 version or 1+1 version is the same.

Horizontal aiming: ±5° operating on the 17 mm nut shown in Fig.61 with a 17 mm spanner, only after

having loosen the two 17 mm nut on the pivot.

Vertical aiming: ±20° operating on the 13 mm nut shown in Fig.61 with a 13 mm spanner, only after having

loosen the three 13 mm nut on the pole support.

Once optimum position is obtained, tighten firmly all the nuts previously loosen.

10.5.7 ODU grounding

ODU grounding is achieved with:

• M8 screw without washers

• M6 screw with washeras shown in Fig.62.

10.6 1+1 MOUNTING PROCEDURES

In further page are explained all the mounting step not already discussed in paragraph ” 10.5 1+0 MOUNT-

ING PROCEDURES” 

10.6.1 Hybrid/circulator installation

Fig.63 (hybrid for hot stand-by version) or Fig.64 (circulator for frequency diversity version) – The polar-

ization twist disk must be always fixed on hybrid/circulator flange.

Apply silicon grease (e.g. RHODOSIL PATE 4”) on the O–rings by protecting fingers with gloves. Bring the

polarization twist disk with the position marker down. Insert the O–ring into polarization twist disk.

Vertical polarization: fix the twist disk on hybrid/circulator flange placing the marker of the disk towards V

mark.

Horizontal polarization: fix the twist disk on hybrid/circulator flange placing the marker of the disk towards

H mark.Tighten progressively and alternatively the four screws and spring washer with following torque:

Tab.13 - Torques for tightening screws

Fig.66 – Fix hybrid body to 1+0 support with four M8 bolts (use 13 mm spanner, torque = 18 Nm), tighten

progressively and alternatively the bolts.

In case of installation of ODU at the frequency of 13 or 15 GHz, the polarizer disk joins the flange of the

hybrid with only three screws, as displayed in Fig.65.

Frequencies Screw Tool Torque

from 18 to 38 GHz Allen screw M3 Allen key 2.5 mm 1 Nm

up to 15 GHz Allen screw M4 Allen key 3 mm 2 Nm

Page 85: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 85/240

 ALS - MN.00164.E - 001 83

10.6.2 Installation of ODUs

For both ODUs.

Fig.57 – Apply silicon grease e.g. RHODOSIL PATE 4” to the O–ring by protecting fingers with gloves.

Fig.58 – Bring the ODU with the two hands and position the ODU handle at the bottom side. The handle

can assume the positions shown in the figure depending on the polarization. Position the ODU body near

the support and align the wave guide of the ODU to the wave guide of the hybrid/circulator: respect to the

position of wave guide alignment, turn the ODU body approx. 30° counter–clockwise and then insert the

ODU body into the support. For 1+1 system the handle of the ODU is always positioned on the right. The

polarization twist disk on the hybrid/circulator matches the antenna polarization.

Fig.67 – When alignment of the reference teeth is achieved, turn the ODU body clockwise until the rotation

stops. In figure are shown ODUs final position.

Fig.59 – When ODU positioning is over, secure ODU body on the support by tightening bolts (use 17 mm

spanner, torque = 6 Nm).

WARNING: Internal codes (e.g. installation items, antennas, PCB) are here reported only as example. The

Manufacturer reserves the right to change them without any previous advice.

At the end of the installation the system will be as in Fig.67 for hot stand-by version or as in Fig.68 for

frequency diversity version.

Fig.56 - 1+0 pole mounting

Four 13mm

screws

Two bushes

1+0 support

Three 3mm Allen screws

(not present in V32309)

Centring ring(not present in V32309)

Antenna

Page 86: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 86/240

84 ALS - MN.00164.E - 001

Fig.57 - ODU body reference tooth

Fig.58 - Position of the ODU body:

1+0 system - depending on the polarisation.

1+1 hot stand-by system - polarisation is always horizontal (handle always at the right side)

1+1 frequency diversity system - polarisation is always vertical (handle always at the left side)

Vertical Horizontal

Page 87: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 87/240

 ALS - MN.00164.E - 001 85

1 6 mm Allen screw

2 Bush (diagonally placed)

3 17 mm Tightening bolts (max torque = 6 Nm)

4 Reference point for horizontal polarization

5 Reference point for vertical polarization

Fig.59 - 1+0 support

1

1

2

2

3

1

1

3

4

5

4

5

Page 88: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 88/240

86 ALS - MN.00164.E - 001

Fig.60 - ODU final position

Fig.61 - Antenna aiming

Right handle for horizontal polarizationLeft handle for horizontal polarization

Horizontal aiming: two17mm block screws

Vertical aiming: three13mm block screws

Pole support

17mm nut for horizontaladjustment of antenna

Internal 5mm Allenscrew for vertical

adjustment of antenna

Page 89: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 89/240

 ALS - MN.00164.E - 001 87

1 Bolt

2 Earth cable collar

Fig.62 - ODU grounding

1

2

Page 90: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 90/240

88 ALS - MN.00164.E - 001

1 O–ring

2 Polarization twist disk

3 Hybrid mechanical body

4 Position marker of twist disk

5 Reference label for twist disk

6 O–ring

7 Allen screws

8 Spring washer

Fig.63 - Hybrid and polarization disk

2

1

3

4

5

6

7

8

Page 91: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 91/240

 ALS - MN.00164.E - 001 89

1 O–ring

2 Polarization twist disk

3 Hybrid mechanical body

4 Position marker of twist disk

5 Reference label for twist disk

6 O–ring

7 Allen screws

8 Spring washer

Fig.64 - Circulator and polarisation disk

7

1

2

46

5

3

8

Page 92: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 92/240

90 ALS - MN.00164.E - 001

Fig.65 - Fixing of the polarization disk (only for 13 GHz and 15 GHz)

Horizontal polarization

Vertical polarization

Page 93: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 93/240

 ALS - MN.00164.E - 001 91

Fig.66 - Hybrid/circulator installation

Page 94: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 94/240

92 ALS - MN.00164.E - 001

Fig.67 - Installation of 1+1 hot stand-by ODUs

Fig.68 - Installation of 1+1 frequency diversity ODUs

Page 95: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 95/240

 ALS - MN.00164.E - 001 93

11 INSTALLATION ON POLE OF ODU ALS WITH SEP-

ARATED ANTENNA

11.1 TOOLS REQUIRED FOR INSTALLATION

Herebelow is the list of tools required for installation:

• pole supporting kit for 219 mm pole V46000

• pole supporting kit for 114 mm pole V46002

• pole supporting kit for 90 mm pole V46003

• 17 mm open–ended spanner (not supplied)

• 13 mm open–ended spanner (not supplied)

• 10 mm torque wrench (not supplied)

11.2 INSTALLATION PROCEDURE

According with pole diameter use the following pole supporting kit:

• 218 mm pole V46000

• 114 mm pole V46002

• 90 mm pole V46003

Refer to Fig.72 and Fig.73 (1+1), Fig.74 and Fig.75 (1+0).

1 See Fig.69 – Fix the antenna bend at 90° to the ODU antenna flange of branching inserting the

greased O–ring with silicon grease in small quantity (torque wrench 3 mm, screw M4, 2.5 Nm)

2 See Fig.70 – Install the two brackets to branching with two bolts for brackets A and B, without fix-

ing.

3 Mount the collar with the self–locking unit (see Fig.71) on bracket and pole, position them perpen-

dicular to the pole and fix them (M10 32 Nm). Fix correctly the three bolts of branching too (M10

32 Nm). See Fig.72 and Fig.73 (1+1); Fig.74 and Fig.75 (1+0).

Install bracket (1) on the pole through collar (2). The collar passes through holes (6) of the bracket.

The bracket is secured to the pole by means of plain washer (3), spring washer (4) and hexagonal

bolt (5). Fix second bracket (16) on ODU branching projection (7) through plain washer (3), spring

washer (4) and hexagonal bolt (8).

4 Lean pre–assembled structure as per point 3. on the bracket (1) already installed on the pole.

5 Secure bracket (16) on the pole by using second collar (10).

6 Secure the whole ODU body on the pole by fixing bracket (1) to two projections (9) (one for 1+0)

of the branching body through plain washer (3), spring washer (4) and bolt (8).

7 Take transceivers (13) (one in the 1+0 system) and put them in place on the branching shell by

aligning two coupling pins on the transceiver shell to coupling holes (16) of Fig.76.

Fast coupling levers (14) (see Fig.74) move in such a way to facilitate the correct mechanical cou-pling.

Page 96: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 96/240

94 ALS - MN.00164.E - 001

8 Screw knobs (15) first by hands and then using 10 mm torque wrench to tighten the two mechanical

bodies (branching and transceiver).

Warning: set torque wrench to 4 Nm.

9 If equipment has a frequency > 10 GHz the antenna bend at 90° to connect the antenna is fixed to

branching with quick lock flange connection. You may insert it also later after the final connection

to the pole (see Fig.77).

Installation of two ODU 1+0 using the two antenna polarizations may be done in the way shown in

Fig.78.

10 Connect the grounding cord to projection (25 mm2) (15) of Fig.73 or Fig.75 from bolt (M8 18 Nm)

provided from the branching. Use a proper bug, adequate to the cable section and with fixing hole

Ø 8.2 mm. Insert bolt, washer and bug in the proper order.

See Fig.79.

11 See Fig.80, Fig.81 and Fig.82.

Use the six calibrated screws of pole supporting kit to connect the wave guide between ODU and

antenna in the proper polarization. Verify that flange O–ring are inserted correctly, a bit greased

without making dirty the flanges. Don’t damage them by fixing.

12 Fix the flexible wave guide to the pole with the proper locks.

13 Insert on ODU–IDU connecting cable the proper connector for outdoor use (N male).

14 Connect the N female connector of ODU to the above–said cable.

15 Insert the coax cable into a grounding kit near to the ODU.

16 Connect the grounding kit cable to the ground centre of the structure.

17 Label the cable with carefulness.

18 Mount the sun–screen with the four screws and relevant bushes (see Fig.83).

19 Check ODU operation using local loops.

20 After checking on both stations proceed to antenna aiming.

Page 97: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 97/240

 ALS - MN.00164.E - 001 95

Fig.69 - ODU 1+1 and 1+0

O-ring

N. 4 screw M4 2.5 NmAllen wrench 3 mm

Antenna bend at90°

O-ring

N. 4 screw M4 2.5 NmAllen wrench 3 mm

Antenna bend at90°

Page 98: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 98/240

96 ALS - MN.00164.E - 001

Fig.70 - ODU 1+0 and 1+1

17 mm open-endedspanner

Bolt M10 32Nm

ODU grounding point

Bracket A

Bracket B

17 mm open-endedspanner

Bolt M10 32Nm

Bracket A

Bracket B

ODU grounding point

Page 99: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 99/240

 ALS - MN.00164.E - 001 97

Fig.71 - Collar mounting ODU 1+0 and 1+1

Page 100: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 100/240

98 ALS - MN.00164.E - 001

Fig.72 - Side view (1+1)

Fig.73 - Rear view (1+1)

1514

13 1 2

3 4 5

1016

12

7

6

1

15

9

3 4 8

3 4 8

11

Page 101: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 101/240

 ALS - MN.00164.E - 001 99

Fig.74 - Side view (1+0)

Fig.75 - Rear view (1+0)

131

2

3 4 5

15

14

10

16

12

7

11

9

6 15

3 4 8

3 4 8

Page 102: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 102/240

100 ALS - MN.00164.E - 001

Fig.76 - Details for transceiver mounting on the branching shell

Fig.77 - Antenna bend

16

16

Page 103: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 103/240

 ALS - MN.00164.E - 001 101

Fig.78 - ODU installation (top view and front view)

Fig.79 - Grounding cord connection

 Pole Φ 114 mm

 n.1 ODU 1+0

 n.1 ODU 1+0

 Plain washer

 Lug

 Plain washer

 Spring washer

13 mm open-ended spanner

Page 104: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 104/240

102 ALS - MN.00164.E - 001

Fig.80 - Wave guide fixing, cable connection

13 mm open-endedspanner

Grounding cable ≥ 25 mm2

Cellflex 1/4"

Grounding kit for cable cellflex 1/4"Ground

Wave guide

Page 105: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 105/240

 ALS - MN.00164.E - 001 103

Fig.81 - Installation on pole of the outdoor unit (1+0)

Grounding cable ≥ 25 mm2.

Ground

Ground lug

Cellflex 1/4"

Grounding kit for cable Cellflex

Guide lock

Wave guide

Pol. VPol. H

Antenna tie-rods(if provided)

Page 106: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 106/240

104 ALS - MN.00164.E - 001

Fig.82 - Installation on pole of 3 m antenna of two ODU using two polarization

Fig.83 - Sun–screen

Ground lug

Cellflex 1/4"

Ground kit Cellflex cable

 Grounding cable ≥ 25 mm2

Ground

Guide lock

Wave guide

Pol. V Pol. HAntenna tie-rods

(if provided)

Page 107: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 107/240

 ALS - MN.00164.E - 001 105

12 INSTALLATION ON POLE OF THE ODU ALS WITH

INTEGRATED ANTENNA

12.1 FOREWORD

The installation on pole of the ODU with integrated antenna concerns both 1+0 and 1+1 systems.

12.2 NEEDED TOOLS

Set of accessories supplied:

• pole supporting kit (V52000)

• alignment regulating kit (V00501)

• integrated antenna

• ODU to antenna connecting kit (V52004–V520093)

• 17 mm open–ended spanners (not supplied)

• 3 mm allen wrench (not supplied)

• 22 mm open–ended spanner (not supplied)

• 27 mm open–ended spanner (not supplied)

• 10 mm torque wrench (not supplied)

• n° 1 Phillips screwdriver (not supplied).

12.3 INSTALLATION PROCEDURE

Warning: If required each attached figure shows the maximum tightening torque for the screw tightening.

Proceed as listed below:

1 Fig.84 – Verify that the antenna is polarised according to the requirements, by comparing it to the

mentioned figure. Otherwise, unscrew the four screws (2) and rotate by 90 degrees the body of the

feed (1). The four screws (2) are to be fastened at the centre of the elliptic slot that allows the po-

larisation to be fine–adjusted within ± 3 degrees.

2 Fig.85 – Set the antenna in such a position as to be able of working on its rear side.

3 Fig.85 – Take out from the unit to antenna connection kit the mechanical details shown in the figure.

Apply the O–rings of the trunk (2) a small quantity of silicon grease N00706 and then mount the

trunk on the antenna feed body. In the case of horizontal polarisation mount the twisted wave–

guide trunk.

3 The code changes as function of operating frequency and antenna polarisation.

Page 108: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 108/240

106 ALS - MN.00164.E - 001

4 Fig.86 – Take out the pole supporting kit. Unscrew the screws (4) and remove the supporting brack-

et (3) from the supporting ones (1) and (2).

5 Fig.87 – Install the supporting bracket (5) on the antenna (1) rear side by means of the four screws

(2), the spring washers (3) into the holes (6).

6 Fig.88 – Install the antisliding collar on the pole.

7 Fig.88 – Install on the pole the supporting brackets (5) and (6) by means of two collars (4), a nut

(1), a washer (3) and a spring washer (2). Position the brackets (5) and (6) aligned with the direc-

tion (7) of the radio beam and then tighten them to the pole in a permanent way.

8 Fig.89 – Fix the antenna to the pole inserting the pin (4) of the supporting bracket (2) into the pivot

(8) of the supporting bracket (1) and tighten lightly by means of the screws (7), spring washers

(5), washers (6).

9 Fig.89 – Unscrew the nut (3) fixed on the plate (2). Take the pins (1) and position them as shown

in the mentioned figure. Screw again the nut (3) till to have the plate (2) at beating ready to be

clamped by means of the screw (4).

10 Fig.91 (for 1+1 branching); Fig.92 (for 1+0 branching) – Place the branching projections (11) on

the bracket (1). Insert the screws (4), the spring washers (5), washers (6) without tighten them to

the end. Conduct the branching so long as the two pins of the branching flange fit in the correspond-

ing holes of the antenna flange.Warning: Before securing the two flanges via coupling ring (7) it is compulsory to apply some sil-

icon grease N00706 on the ring thread. Terminate by tightening screws (4).

11 Fig.93 (1+1) and Fig.94 (1+0) – Take transceivers (1) and put them in place on the branching shell

by aligning two coupling pins on the transceiver shell to coupling holes (10) of Fig.91 (1+1) and

Fig.92 (1+0).

Fast coupling levers (2) move in such a way to facilitate the correct mechanical coupling.

12 Fig.93 (1+1) and Fig.94 (1+0) – Screw knobs (3) first by hands and then using 10 mm torque

wrench to tighten the two mechanical bodies (branching and transceiver).

13 Fig.91 – Tighten to end screws (4).

14 Fig.93 (1+1) and Fig.94 (1+0) – Connect the grounding cord to projection (4) accessible on the

branching body (5) rear side, and tights it through M8 bolt an relevant plain an spring-washers.

15 Fig.97 – Put the covering shield in place and secure it to the branching body through the four wingscrews making part of the covering.

Note: In case of transceiver removal to get access to transceiver fixing knobs it is necessary:

- loose the covering wing screws

- lift the covering up, pull it backward and then lower it down to put it in place.

12.4 ANTENNA ALIGNMENT

The antenna alignment devices allow to perform the following adjustments with respect to the starting aim-ing position:

- horizontal: ± 15°, operating on the nut (3) shown in Fig.95, only after having loosen

the screws (2)

- vertical ± 20°, operating on the nut (1) shown in Fig.96, only after having loosen

the screws (2)

- polarisation ± 3°, unscrewing the four screws (2) shown in Fig.98, remove the screw

(4) and loosen the other four screws (3). Turn then the antenna feed body

till to optimise the polarisation. Tighten the four screws (2) the four ones

(3) and the screw (4).

Once the optimum aiming position is obtained, tighten firmly the four nuts (3) shown in Fig.95 for the hor-

izontal adjustment and the four nuts (1) shown in Fig.96 for the vertical one.

After tightening the screws, it is possible to recover the fine alignment kit for further aims.

Page 109: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 109/240

 ALS - MN.00164.E - 001 107

1 Antenna feed

2 No. 4 M4x14 screws

a Vertical polarisation

b Horizontal polarisation

Fig.84 - Checking the antenna polarisation

a b

Page 110: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 110/240

108 ALS - MN.00164.E - 001

1 Antenna feed

2 Wave guide trunk straight or twisted

3 N° 5 M4x14 screws

4 N° 5 flat washers

5 N° 5 spring washers

6 Drain holes

Fig.85 - Rear view of the antenna

Page 111: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 111/240

 ALS - MN.00164.E - 001 109

1 Supporting bracket

2 Supporting bracket for pole installation

3 Supporting bracket

4 No. 4 screws

5 No. 4 spring washers

6 No. 4 flat washers

7 Teflon washer

Fig.86 - Pole supporting kit

7

Page 112: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 112/240

110 ALS - MN.00164.E - 001

1 Antenna

2 No. 4 M10x20 screws (max torque = 45 Nm)

3 No. 4 spring washers

4 Drain holes

5 Supporting bracket

6 Fixing holes

7 Wave–guide trunk

8 Quick–coupling flange

Fig.87 - Supporting bracket mounting on the antenna rear side

Page 113: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 113/240

 ALS - MN.00164.E - 001 111

1 Pole mounting collars

2 Supporting bracket

3 Pole mounting supporting bracket

4 Radio beam direction

5 Antisliding collar

Fig.88 - Supporting bracket mounting

5

43

2

1

Page 114: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 114/240

112 ALS - MN.00164.E - 001

1 Supporting bracket

2 Supporting bracket

3 Antenna

4 Pin

5 No. 4 spring washers

6 No. 4 flat washers

7 No. 4 M10x25 screws (max torque = 45 Nm)

8 Pivot

Fig.89 - Antenna fixing to the pole

Page 115: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 115/240

 ALS - MN.00164.E - 001 113

1 Pin

2 Plate

3 Alignment adjustment nut

4 M6 screws

Fig.90 - Alignment adjustment kit mounting

Page 116: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 116/240

114 ALS - MN.00164.E - 001

1 Supporting bracket

2 Wave–guide trunk

3 1+1 branching

4 No. 4 screws

5 No. 4 spring washers

6 No. 4 flat washers

7 Quick–coupling ring with hexagonal nut for tightening (f 15 Ghz, max torque = 25 Nm; f 18 Ghz,

max torque = 20 Nm)

8 O–ring

9 ODU flange

10 Coupling holes

11 Branching projections

Fig.91 - 1+1 branching mounting on supporting bracket

10

10

Page 117: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 117/240

 ALS - MN.00164.E - 001 115

1 Supporting bracket

2 Wave–guide trunk

3 1+0 branching

4 No. 3 screws

5 No. 4 spring washers

6 No. 4 flat washers

7 Quick–coupling ring with hexagonal nut for tightening (f 15 Ghz, max torque = 25 Nm; f 18 Ghz,

max torque = 20 Nm)

8 O–ring

9 ODU flange

10 Coupling holes

Fig.92 - 1+0 branching mounting on supporting bracket

10

Page 118: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 118/240

116 ALS - MN.00164.E - 001

1 Transceiver (number 1 on the left)

2 Fast coupling levers

3 Fixing knobs with hexagonal nut for tightening (max torque = 4 Nm)

Fig.93 - ODU mounting in 1+1 configuration

4

Page 119: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 119/240

 ALS - MN.00164.E - 001 117

1 Transceiver

2 Fixing knobs with hexagonal nut for tightening (max torque = 4 Nm)

Fig.94 - ODU mounting in 1+0 configuration

4

Page 120: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 120/240

118 ALS - MN.00164.E - 001

1 Fixed pin

2 Screws

3 Nut for horizontal alignment adjustment

Fig.95 - Horizontal alignment adjustment

Page 121: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 121/240

 ALS - MN.00164.E - 001 119

1 Nut for vertical alignment adjustment

2 Screws

Fig.96 - Vertical alignment adjustment

Page 122: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 122/240

120 ALS - MN.00164.E - 001

Fig.97 - Outdoor unit with covering

1

Shield

Page 123: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 123/240

 ALS - MN.00164.E - 001 121

1 Antenna feed

2 No. 4 screws

3 No. 4 screws

4 No. 1 screws

Fig.98 - Checking the antenna alignment

4

Page 124: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 124/240

122 ALS - MN.00164.E - 001

12.5 INSTALLATION NOTE ON FREQUENCY REUSE SYSTEMS

The ALS with frequency reuse is double carrier systems with one carrier on vertical path and one carrier

on horizontal path.

One carrier can have a traffic of one STM–1 for a total of 2xSTM–1 or 2xSTM–1 for a total of 4xSTM–1traffic.

For frequency reuse systems to assume the achievement of guaranteed performances of XPIC functional-

ities some care shall be taken for IDU–ODU cabling.

Antennas

The antennas will be double polarization antennas.

RF channel

RF channel shall be the same for vertical polarization path and horizontal polarization path.

J0

J0 SOH byte shall be different on vertical polarization path and horizontal polarization path.

ATPC

Low ATPC level shall be 15 dB higher than BER 10–6 threshold (see chapter “22 SYSTEM CHARACTERIS-

TICS”).

IDU–ODU cable

The IDU–ODU cable length difference shall be:

• Cable from RT1A to RIM1A and cable from RT1B to RIM1B (see Fig.99 and Fig.100) shall not differ

more than:

- 3 meters for 2xSTM1 links 32QAM

- 3 meters for 2xSTM1 links 128QAM

- 1,5 meters for 4xSTM1 links 128QAM

• IDU RIM to RIM cable. The cables RIM1A to RIM1B and RIM2A to RIM2B shall be SMA to SMA cables

– F01693 and connected as Fig.101 and Fig.102.

Additional notes

On ALS with XPIC some manual operations create other manual operation, for more information please

refer to chapter “16.4 NOTES ON MANUAL OPERATIONS ON ALS WITH XPIC (SDH IDU MODULAR)”.

On ALS with XPIC a fault management procedure is used to protect the not alarmed path, for more infor-

mation please refer to chapter “18.3 FAULT MANAGEMENT PROCEDURE FOR FREQUENCY REUSE SYSTEMS

WITH XPIC”.

Page 125: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 125/240

 ALS - MN.00164.E - 001 123

Fig.99 -

Fig.100 -

Fig.101 - XPIC SMA to SMA cables

Fig.102 - XPIC SMA to SMA cables

RIM1A

RIM1B

RIM2A

RIM2B

RT1A

RT1B

RT2A

RT2B

RIM1A

RIM1B

RT1A

RT1B

-+

X X

XX

+-

W.S .1 W.S. 2 V11

ONONONON

FAIL

1 2 3 4

REM

USER IN/OUTRS232LCT

TEST

ODUIDU

Q3

XX

+-

RIM

RIM

1

2

2

1

RIM

RIM-

+X X

XX

+-

RIM

RIM

1

2

2

1

RIM

RIM-

+X X

IDUODU

REMTEST

LCT RS232 USER IN/OUT

Q3

V11W.S.2W.S.1

STM1-4STM1-3STM1-2STM1-1

Page 126: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 126/240

124 ALS - MN.00164.E - 001

13 INSTALLATION NOTE ON FREQUENCY REUSE

SYSTEMS

13.1 Frequency reuse

The ALS with frequency reuse is double carrier systems with one carrier on vertical path and one carrier

on horizontal path.

One carrier can have a traffic of one STM-1 for a total of 2xSTM-1 or 2xSTM-1 for a total of 4xSTM-1 traffic.

For frequency reuse systems to assume the achievement of guaranteed performances of XPIC functional-

ities some care shall be taken for IDU-ODU cabling.

13.2 Characteristics

Antennas

The antennas will be double polarization antennas.

RF channel

RF channel shall be the same for vertical polarization path and horizontal polarization path.

J0

J0 SOH byte relevant to vertical polarization path shall be different from the one relevant to horizontal po-

larization path.

ATPC

Low ATPC level shall be 15 dB higher than BER 10-6 threshold (see chapter “ 22 SYSTEM CHARACTERIS-TICS”).

IDU-ODU cable

The IDU-ODU cable length difference shall be:

• Cable from RT1A to RIM1A and cable from RT1B to RIM1B (see Fig.103 and Fig.104) shall not differ

more than:

- 3 meters for 2xSTM1 links 32QAM

- 3 meters for 2xSTM1 links 128QAM

- 1,5 meters for 4xSTM1 links 128QAM

• IDU RIM to RIM cable. The cables:

Page 127: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 127/240

 ALS - MN.00164.E - 001 125

- RIM1A to RIM1B

- RIM2A to RIM2B

shall be SMA to SMA cables - F01693 and connected as Fig.105 and Fig.106.

Additional notes

On ALS with XPIC some manual operations create other manual operation, for more information please

refer to chapter “16.4 NOTES ON MANUAL OPERATIONS ON ALS WITH XPIC (SDH IDU MODULAR)”.

On ALS with XPIC a fault management procedure is used to protect the not alarmed path, for more infor-

mation please refer to chapter “18.3 FAULT MANAGEMENT PROCEDURE FOR FREQUENCY REUSE SYSTEMS

WITH XPIC”.

Fig.103 - IDU-ODU cables

Fig.104 - IDU-ODU cables

RIM1A

RIM1B

RIM2A

RIM2B

RT1A

RT1B

RT2A

RT2B

RIM1A

RIM1B

RT1A

RT1B

Page 128: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 128/240

126 ALS - MN.00164.E - 001

Fig.105 – Connection cables

Fig.106 – Connection cables

-+

X X

XX

+-

W.S.1 W.S.2 V11

ONONONON

FAIL

1 2 3 4

REM

USER IN/OUTRS232LCT

TEST

ODUIDU

Q3

XX

+-

RIM

RIM

1

2

2

1

RIM

RIM-

+X X

XX

+-

RIM

RIM

1

2

2

1

RIM

RIM-

+X X

IDUODU

REMTEST

LCT RS232 USER IN/OUT

Q3

V11W.S.2W.S.1

STM1-4STM1-3STM1-2STM1-1

Page 129: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 129/240

 ALS - MN.00164.E - 001 127

14 ODU AS SUBSTITUTION FOR 1+1 FREQUENCY

DIVERSITY SYSTEM

14.1 1+1 FREQUENCY DIVERSITY SYSTEM: SUBSTITUTION OF ODU

In 1+1 frequency diversity system the separation of an ODU from circulator support causes a service in-

terruption on the other ODU too.

The following procedure must be followed order to avoid this interruption (see Fig.107):

1 locate the ODU (1) to substitute, loose the bolts (4), insert the guillotine shutter (3) in the slot (2)until the end

2 rotate and extract the ODU (1) as usual (see “System Installation” chapter)

3 insert the new ODU as usual (see “System Installation” chapter)

4 extract the shutter (3) from slot (2), tighten the bolts (4).

Page 130: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 130/240

128 ALS - MN.00164.E - 001

1 ODU to be substituted

2 Slot

3 Guillotine shutter

4 Bolts (6 Nm torque)

Fig.107 - Substitution of ODU in 1+1 frequency diversity system

3

1

2

4

4

Page 131: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 131/240

 ALS - MN.00164.E - 001 129

Section 3.LINE-UP AND MAINTENANCE

15 PROGRAMMING AND SUPERVISION

15.1 GENERAL

The radio equipment was designed to be easily programmed and supervised.

The following tools are implemented to the purpose:

• SCT Subnetwork Craft Terminal + LCT Local Craft Terminal. They are used for remote and local con-

trol of a subnetwork consisted of a maximum of 100 equipment.

• NMS5-UX Network Management. It is used for the remote control of an entire network consisted of 

different SIAE equipment.

For details refer to relevant documentation. SCT/LCT documentation is available as help on-line.

Page 132: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 132/240

130 ALS - MN.00164.E - 001

16 LINE-UP OF THE RADIO HOP

16.1 LINE-UP OF THE RADIO HOP

The line-up consists of the following steps:

• on site radio terminal installation (perform user connections and ODU installation as described in

the relevant chapters)

• equipment switch-on (operate the ON/OFF switch on the IDU front)

• antenna alignment for maximum received RF signal level

• network element configuration

• check measurements.

16.1.1 Antenna alignment and received field measurement

Purpose of antenna alignment is to maximize the RF received signal level.

Proceed as follows:

• connect a multimeter to BNC connector on the ODU for AGC measurement

• adjust antenna pointing as soon as the maximum AGC voltage value is achieved.

16.1.2 Network element configuration

A factory default address is assigned to each network element that must normally be re-configurated on

site following the network administrator rules. To the purpose it is required to connect the PC, where the

SCT/LCT program has been installed, to the network interface port. This has to be done via serial cable

(connector RS232) or USB cable (connector LCT).

Warning: the checks that follow require a good knowledge of the program use.

The description of each menu and relevant windows are given by the program itself as help on line.

Run the program and perform the connection to equipment by choosing from menu “Option” the connec-

tion made via serial cable or via LAN.

Perform the login to the equipment by entering:

• Equipment IP address 4

• User ID (default: SYSTEM)

• Password (default: SIAEMICR)

Proceed to re-configurate the network element according with the following procedure:

4 If the Ethernet interface IP address is not known, select the serial cable connection where the IP ad-

dress is shown automatically.

Page 133: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 133/240

 ALS - MN.00164.E - 001 131

• IP Address: select menu “Equipment” from the menu bar and then Communication Setup->Port

Configuration. Enter the required port addresses in the available communication ports. Press ? for

details.

• Routing Table and Default Gateway: select menu “Equipment” from the menu bar and then Com-

munication Setup-> Routing Table: enter the routes or default gateway if necessary. Press ? for

details.

Warning:  the routing policy depends on the routing type: manual IP/OSPF/Is-IS. The relevant

routing rules must be normally given by network administrator.

• Remote Element Table: select menu “Tools” from menu bar and then Subnetwork Configuration

Wizard. Station name and remote element table must be assigned following description of the con-

textual help on-line (?).

• Agent IP Address: select menu “Equipment” and then “Properties”. Assign the address in accord-

ance to the address of the remote element you want to reach.

10.1.3Radio checks

It is advisable to perform the following measurements to check the correct operation of the radio hop.

To the purpose make use of the SCT/LCT program and relevant help on line.

The measurements list of the following:

• transmitted power

• received power

• RF frequency

• BER measurement.

All these checks make use of the SCT/LCT program.

• Transmitted power, received RF level, RF frequency

- Run SCT/LCT program and then perform the connection to the equipment you want to check.

- Make double click on the select equipment until main RADIO window is shown.

- On top of the window Tx/Rx power and frequency values are displayed. In case of Tx power and

frequency setup proceed to Branch 1/2 and Power/Frequencies submenus.

• BER measurement

- RUN SCT/LCT program and then perform the connection to the equipment you want to check.

- Make double click on the selected equipment until main RADIO window is shown.

- On the left side select BER 1/2 measure. In alternative it is possible to use the PRBS function if 

one line is free.

- Perform the BER measurement and check that values comply with the requirements.

Page 134: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 134/240

132 ALS - MN.00164.E - 001

16.2 LASER FUNCTIONALITY TEST

16.2.1 Switch-on procedure

• Connect input to output with a fibre optic cable

• Program and look for STM-1 East/West window

• Click on STM-1 West (East) of LCT program until relative window is displayed

• Set Automatic Shut-down to “auto” mode into SCT/LCT program

• Check that Led “ON" is ON.

In case of opposite situation is shown, wait for expiration of "x" time present in "Auto Restart Time" box

(range from 60 to 300 sec.).

Note: The laser is switched on every "x" seconds for 2 seconds thus permitting the opposite side laser to

receive and consequently the two transmitters to be switched on.

If faster laser switch-on is required, set "automatic shut down" to "manual" mode and then press "restart"

to send immediately the switch-on control.

Note: if laser power measurement is required, set "automatic shut-down" to "test" mode, preset test time

from 2 to 100 sec. and then press "Restart" to activate the test.

16.2.2 Automatic laser shut-down check

• Set automatic shut-down to “auto” mode

• Remove the optical cable from Rx West (East) side the optical cable and check that Led “ON” goes

off.

16.3 LINE-UP OF RADIO HOP FOR FREQUENCY REUSE SYSTEMSWITH XPIC (SDH IDU MODULAR)

Line-up consists of the following steps:

• Line-up of radio hop (as described in relevant chapter)

• Additional line-up operations for XPIC

16.3.1 Additional line-up operations for XPIC

Additional line-up steps are:

1 Check fade margin on both paths (horizontal or vertical) while making the fade margin on one path

the other should be switched off. Measurements shall be done both ends.

2 Verify decoupling between Tx vertical and receiver horizontal and vice-versa, switching off the

transmitter relative to Rx, see Fig.108.

- Step 1: Tx (H) off into side B, verify Tx (V) into side B decoupling to Rx (H) into site A

- Step 2: Tx (V) off into site B, verify Tx (H) into site B decoupling to Rx (V) into site A

Page 135: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 135/240

 ALS - MN.00164.E - 001 133

- Step 3: Tx (H) off into side A, verify Tx (V) into side A decoupling to Rx (H) into site B

- Step 4: Tx (V) off into side A, verify Tx (H) into side A decoupling to Rx (V) into site B.

3 Connect everything to have normal operation with XPIC

4 Start from everything perfectly running:

- set ATPC off on all Tx

- set Tx maximum power in all transceiver

- insert an attenuation equal to antenna XPD. Practically decrease output power of 17 dB on a

transmitter by SCT/LCT. Verify that in this situation the corresponding receiver doesn’t have er-

rors. To verify XPIC functionality, disconnect XPIC Rx cable and verify that there are errors in

the receiver. Restore output power of Tx. Do the same on all receivers.

Fig.108 – Decoupling verify - Step 1

16.4 NOTES ON MANUAL OPERATIONS ON ALS WITH XPIC (SDHIDU MODULAR)

On ALS with XPIC some manual operations create automatically other manual operations. The purpose is

to give a correct functionality of loop IF, loop RF and save traffic on the other path where there is no forcing.

16.4.1 Management of automatic manual operations

The manual operations discussed into this document are:

• loop RF

• loop IF

• carrier only

• Tx off  

• RT PSU off.

Tx

Rx

Tx

Rx

Tx

Rx

Tx

Rx

V

H

V

H

 Site A Site B

Page 136: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 136/240

134 ALS - MN.00164.E - 001

16.4.2 Automatically activated manual operations

For configuration with XPIC in systems 1+0 the Tab.14 details for any manual operation which are the au-

tomatically activated manual operations in local equipment and remote equipment.

Tab.14 – Configuration: XPIC 1+0

Local terminal Remote terminal

Manual operationAutomatically activated manual

operation

Automatically activated manu-

al operation

Radio-1A

Loop RF

Rim 1A Xpic Input Disable

Rim 1B Xpic Input DisableRadio -1A transmitter off 

Radio-1BLoop RF

Rim 1A Xpic Input DisableRim 1B Xpic Input Disable

Radio -1B transmitter off 

Radio-1A

Loop IF

Rim 1A Xpic Input Disable

Rim 1B Xpic Input DisableRadio -1A transmitter off 

Radio-1B

Loop IF

Rim 1A Xpic Input Disable

Rim 1B Xpic Input DisableRadio -1B transmitter off 

Radio-1A

Carrier onlyRim 1B Xpic Input Disable

Radio-1B

Carrier only

Rim 1A Xpic Input Disable

Radio-1A

Tx off Rim 1B Xpic Input Disable

Radio-1B

Tx off Rim 1A Xpic Input Disable

Radio-1A

RT PSU off Rim 1B Xpic Input Disable

Radio-1A transmitter off 

Rim 1B Xpic Input Disable

Radio-1B

RT PSU off Rim 1A Xpic Input Disable

Radio-1B transmitter off 

Rim 1A Xpic Input Disable

Page 137: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 137/240

 ALS - MN.00164.E - 001 135

Tab.15 – Configuration: XPIC, 1+1, Hot stand-by/Hot stand-by, Space Diversity

Local termination Remote terminal

Manual operationAutomatically activated manual

operation

Automatically activated manu-

al operation

Radio-1A

Loop RF

Rim 1A Xpic Input Disable

Rim 2A Xpic Input Disable

Rim 1B Xpic Input Disable

Rim 2B Xpic Input Disable

Radio-1A transmitter off 

Radio-2A transmitter off 

Radio-2A

Loop RF

Rim 1A Xpic Input Disable

Rim 2A Xpic Input Disable

Rim 1B Xpic Input Disable

Rim 2B Xpic Input Disable

Radio-1A transmitter off 

Radio-2A transmitter off 

Radio-1B

Loop RF

Rim 1A Xpic Input Disable

Rim 2A Xpic Input Disable

Rim 1B Xpic Input Disable

Rim 2B Xpic Input Disable

Radio-1B transmitter off 

Radio-2B transmitter off 

Radio-2B

Loop RF

Rim 1A Xpic Input Disable

Rim 2A Xpic Input Disable

Rim 1B Xpic Input Disable

Rim 2B Xpic Input Disable

Radio-1B transmitter off 

Radio-2B transmitter off 

Radio-1A

Loop IF

Rim 1A Xpic Input Disable

Rim 1B Xpic Input Disable

Radio-2A

Loop IF

Rim 2A Xpic Input Disable

Rim 2B Xpic Input Disable

Radio-1B

Loop IF

Rim 1A Xpic Input Disable

Rim 1B Xpic Input Disable

Radio-2B

Loop IF

Rim 2A Xpic Input Disable

Rim 2B Xpic Input Disable

Radio-1ACarrier only

If Tx 1A local is active:Rim 1B Xpic Input Disable

Rim 2B Xpic Input Disable

Radio-2A

Carrier only

If Tx 2A local is active:

Rim 1B Xpic Input Disable

Rim 2B Xpic Input Disable

Radio-1B

Carrier only

If Tx 1B local is active:

Rim 1A Xpic Input Disable

Rim 2A Xpic Input Disable

Radio-2B

Carrier only

If Tx 2B local is active:

Rim 1A Xpic Input Disable

Rim 2A Xpic Input Disable

Radio-1ATx off 

If Tx 1A local is active:

Rim 1B Xpic Input DisableRim 2B Xpic Input Disable

Radio-2A

Tx off 

If Tx 2A local is active:

Rim 1B Xpic Input Disable

Rim 2B Xpic Input Disable

Radio-1B

Tx off 

If Tx 1B local is active:

Rim 1A Xpic Input Disable

Rim 2A Xpic Input Disable

Radio-2B

Tx off 

If Tx 2B local is active:

Rim 1A Xpic Input Disable

Rim 2A Xpic Input Disable

Radio-1A

RT PSU off  Rim 1B Xpic Input Disable

If Tx 1A local is active:

Rim 1B Xpic Input DisableRim 2B Xpic Input Disable

Page 138: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 138/240

136 ALS - MN.00164.E - 001

Radio-2A

RT PSU off Rim 1B Xpic Input Disable

If Tx 2A local is active:

Rim 1B Xpic Input Disable

Rim 2B Xpic Input Disable

Radio-1B

RT PSU off Rim 1A Xpic Input Disable

If Tx 1B local is active:

Rim 1A Xpic Input Disable

Rim 2A Xpic Input Disable

Radio-2B

RT PSU off Rim 2A Xpic Input Disable

If Tx 2B local is active:

Rim 1A Xpic Input Disable

Rim 2A Xpic Input Disable

Local termination Remote terminal

Manual operationAutomatically activated manual

operation

Automatically activated manu-

al operation

Page 139: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 139/240

 ALS - MN.00164.E - 001 137

Tab.16 – Configuration: XPIC, 1+1, Frequency Diversity/Frequency Diversity, Space Diversity

Local termination Remote terminal

Manual operationAutomatically activated manual

operation

Automatically activated manu-

al operation

Radio-1A

Loop RF

Rim 1A Xpic Input Disable

Rim 1B Xpic Input DisableRadio-1A transmitter off 

Radio-2A

Loop RF

Rim 2A Xpic Input Disable

Rim 2B Xpic Input DisableRadio-2A transmitter off 

Radio-1B

Loop RF

Rim 1A Xpic Input Disable

Rim 1B Xpic Input DisableRadio-1B transmitter off 

Radio-2B

Loop RF

Rim 2A Xpic Input Disable

Rim 2B Xpic Input DisableRadio-2B transmitter off 

Radio-1A

Loop IF

Rim 1A Xpic Input Disable

Rim 1B Xpic Input DisableRadio-1A transmitter off 

Radio-2A

Loop IF

Rim 2A Xpic Input Disable

Rim 2B Xpic Input Disable

Radio-2A transmitter off 

Radio-1B

Loop IF

Rim 1A Xpic Input Disable

Rim 1B Xpic Input DisableRadio-1B transmitter off 

Radio-2B

Loop IF

Rim 2A Xpic Input Disable

Rim 2B Xpic Input DisableRadio-2B transmitter off 

Radio-1A

Carrier onlyRim 1B Xpic Input Disable

Radio-2A

Carrier onlyRim 2B Xpic Input Disable

Radio-1B

Carrier onlyRim 1A Xpic Input Disable

Radio-2B

Carrier only Rim 2A Xpic Input Disable

Radio-1A

Tx off Rim 1B Xpic Input Disable

Radio-2A

Tx off Rim 2B Xpic Input Disable

Radio-1B

Tx off Rim 1A Xpic Input Disable

Radio-2B

Tx off Rim 2A Xpic Input Disable

Radio-1A

RT PSU off Rim 1B Xpic Input Disable

Radio-1A transmitter off 

Rim 1B Xpic Input Disable

Radio-2ART PSU off 

Rim 2B Xpic Input Disable Radio-2A transmitter off Rim 2B Xpic Input Disable

Radio-1B

RT PSU off Rim 1A Xpic Input Disable

Radio-1B transmitter off 

Rim 1A Xpic Input Disable

Radio-2B

RT PSU off Rim 2A Xpic Input Disable

Radio-2B transmitter off 

Rim 2A Xpic Input Disable

Page 140: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 140/240

138 ALS - MN.00164.E - 001

17 PERIODICAL CHECKS

17.1 GENERAL

Periodical checks are used to check correct operation of the radio equipment without the presence of any

alarm condition.

The SCT/LCT programs running on the PC are used for the purpose.

17.2 CHECKS TO BE CARRIED OUT

The following checks must be carried out:

• check of the transmitted power;

• check of the received field strength (the reading must match the value resulting from hop calcula-

tions);

• check of the bit error ratio and the hop performances.

For checking procedures, please refer to SCT/LCT program and relevant help-on line.

Page 141: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 141/240

 ALS - MN.00164.E - 001 139

18 TROUBLESHOOTING

18.1 GENERAL

The equipment consists of the following replaceable parts:

• ALS SDH with IDU SDH compact

- IDU

- ODU

• ALS SDH with IDU SDH modular

- LIM

- CONTROLLER 

- RIM

- ODU.

Purpose of the troubleshooting is to pinpoint the faulty part and replace it with spare.

Warning: the replacement of the faulty CONTROLLER module with spare causes the spare CONTROLLER 

to be re-programmed.

18.2 TROUBLESHOOTING PROCEDURE

Troubleshooting procedure is used both with IDU SDH modular equipment and IDU SDH compact equip-

ment. In case of IDU SDH compact equipment, replace the whole IDU if the troubleshooting detects a fail-

ure on one of the following modules:

• LIM

• CONTROLLER 

• RIM.

Troubleshooting starts as soon as one of the following alarm condition: alarm LED “ON” on the IDU front

panel or alarm messages are displayed by managers SCT/LCT.

Two methods are used to troubleshoot the cause of fault:

• loop facilities

• alarm message processing using the manager SCT/LCT

18.2.1 Loop facilities

The equipment is provided with different loops with the aid to locate the faulty equipment and then the

faulty module the equipment consists of.Warning: the majority of loops causes the traffic to be lost.

Page 142: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 142/240

140 ALS - MN.00164.E - 001

The available loops are the following:

• local tributary loops: usually used to test the cables interfacing the equipment upstreams

• remote tributary loops: usually used to test the two direction link performance making use of an

unused tributary (if available).

• baseband loop: it permits to test the LIM circuits• IDU loop: it permits to test the complete IDU

• RF loop: it permits to test the complete radio terminal

18.2.2 Alarm messages processing

When an alarm condition occurs, the equipment generates a number of alarm messages that appear on

the SCT windows ie: log history area and equipment view current alarm.

Investigation on the alarm message meaning permits to troubleshoot the faulty module.

Alarm message organisation

The alarms (traps) are organized as alarm grouping relevant to a specific functions performed by the equip-

ment.

The alarm grouping is available only in the view current alarm submenu.

What follows is the list of the alarm grouping:

• COMMON - alarms which are not related to a specific part of the equipment but relevant to the link

as DCC radio link alarm or link telemetry fail. If these alarms are ON the link is lost. Investigation

must be made on a possible bad propagation or equipment failure. See the condition of the others

alarm grouping.

• LIM - This grouping may generate alarms for the following causes:

- external fault: tributary signal loss

- LIM failure: i.e. loss of the power supply inside the module or clock loss

- alarm that can be propagated by RIM or ODU modules as baseband Rx alarm. The Baseband

loop permits to discover if the cause of this alarm activation is external or internal to the LIM.

If yes the module must be replaced.

• RIM - This grouping may generate alarms for the following causes:

- external fault: demodulator fail alarm and local ODU alarm are generated when the ODU be-

comes faulty.

- RIM failure - power supply alarm along with cable short/open alarms or modulator/demodulator

alarms are activated.

• RT - This grouping may generate alarms for the following causes:

- external fault: Rx power low alarm is generated given by a bad propagation or by a faulty remote

terminal.

- ODU failure: PSU fail alarm or RF VCO alarm or RT IF alarm is activated. If this happens, replace

the ODU.

• UNIT - This grouping generates alarms when one of the units, the equipment consists of, is faulty

or does not respond to the controller polling. Replace the faulty unit.

• CONTROLLER - There is not an alarm message relevant to a controller module failure. An alarm con-

dition causes Led IDU to steady lights up.

Warning: The replacement of controller module requires the spare to be realigned.

Page 143: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 143/240

 ALS - MN.00164.E - 001 141

18.3 FAULT MANAGEMENT PROCEDURE FOR FREQUENCY REUSESYSTEMS WITH XPIC

The Fault Management Procedure (FMP) is used into 1+0 systems with a vertical and an horizontal carriergiving a total traffic of 2xSTM-1 or 4xSTM-1.

Purpose of FMP is to identify a malfunction caused by equipment failure and protect radio path horizontal

or vertical where there is no problem.

FMP will distinguish between alarm coming from external causes (e.g. fading) and alarms coming from a

defect into equipment.

Tx Power Control can be in Automatic or Manual mode. Low ATPC threshold shall be 15 dB higher than BER 

= 10-6 Prx level. See chapter "System Characteristics ".

FMP is used into 1+0 systems in case of a single hardware failure.

In 1+1 systems a single hardware failure is protected by doubled configuration structure.

FMP switches off automatically the alarmed path protecting the not alarmed path.

Once the decision is taken it is permanent and only an operator with SCT/LCT program or NMSUX can resetthe status.

18.3.1 Manual operations activated by FMP

FMP can activate the following manual operations:

• remote Tx off 

• local Xpic disable

• disable FMP.

Page 144: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 144/240

142 ALS - MN.00164.E - 001

19 EQUIPMENT CONFIGURATION UPLOAD/SAVE/

DOWNLOAD. PARAMETER MODIFICATION AND

CREATION OF VIRTUAL CONFIGURATIONS

19.1 SCOPE

This chapter describes the procedure to create configuration files.

Equipment configuration files must be used in case of replacing a faulty CONTROLLER module with the

spare. To the purpose it is necessary to upload, from each equipment the network consists of, equipmentconfigurations and save them on three configuration files. It is advisable to do it upon the first installation.

Configuration file download on the spare CONTROLLER permits to restore previous operating condition. It

is also possible to create virtual configuration without being connected to equipment.

19.2 PROCEDURE

To configure the spare CONTROLLER the following must be uploaded/saved on the file/downloaded:

• General equipment configuration

• Addresses and routing table

• Remote element table

To do it, run the SCT/LCT program (see relevant documentation available on line) until "Subnetwork Craft

Terminal" application window is displayed.

19.2.1 General equipment configuration

Upload and save

1 Select Open Configuration Template from Tools menu following this path: Tools Æ Equipment 

Configuration Wizard Æ File Æ Open Configuration Template.

The system will show Template Selection window.

2 Choose from Template Selection window the type of equipment and version (for instance radio PDH

AL: 2x2, 4x2, 8x2, 16x2 Mbit/s) from which you want to make the upload.

3 Press OK.

The system will display the Configuration Wizard  window referring to the selected type of equipment

and version (example: radio ALS: STM-1)

4 Press Upload push button and select Get Current Type Configuration from Equipment .

The system will display the Upload Configuration File window. The window will show the equipment

list.

Page 145: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 145/240

 ALS - MN.00164.E - 001 143

5 Select the equipment you wish to upload a configuration file from (normally the local equipment)

by activating the relevant box.

6 Press OK.

The system displays the Communication Status window where is pointed out:

- the operation status: upload in progress/complete.- errors area: where error messages relevant to possible abort of the operation are displayed.

At the end of the operation by pressing OK, the system displays, the uploaded equipment param-

eters present into the Configuration Wizard  window.

7 Save the uploaded configuration into a file by selecting Save File As command from File   Save

Save File As.

The system will display Save This Config. File.

Type the file name into the proper box (with "cfg" extension) and set the path to be used to save

the file.

8 Press Save push button to finish.

Download

After having installed the spare LIM proceed as follows:

1 Select Open File from Tools menu following this path: Tools menu  Equipment Configuration

Wizard   File  Open  Open File.

The system will display Select a Config. File window.

2 Select the wanted file and open it by pushing Open push button. The system will display the file

content.

3 Press Download push button and select Configure Equipment as Current File.

4 Activate the box relevant to the equipment you wish to download configuration file to (normally the

local equipment) and select Configure Equipment as Current File.

5 Press OK.

The system displays the Communication Status window where is pointed out:

- the operation status: upload in progress/completed

- errors area: where error messages relevant to possible abort of operation are displayed.

6 Press OK to finish.

19.2.2 Addresses and routing table

Upload and save

1 Select Open Address Configuration Template from Tools menu following this path: Tools menu

 Equipment Configuration Wizard  File  Open  Open Address Configuration Template.

The system will show the mask of the Address Configuration Template.

2 Press Upload push button and select Get Current Type Configuration from Equipment.

The system will display the Upload Configuration File window.

3 Select the equipment you wish to upload a configuration from (normally the local equipment).

4 Press OK.

The system displays the Communication Status window where is pointed out:

- the operation status: upload in progress- errors area: where error messages relevant to possible abort of the operation are displayed.

Page 146: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 146/240

144 ALS - MN.00164.E - 001

At the end of the operation, the system displays, the equipment parameter present into the Con-

figuration Wizard  window.

5 Save the uploaded configuration into a file by selecting Save File As command from File  Save

 Save File As

The system will display the Save This Config. File window. Into the proper boxes type the file name

(with "cfg" extension) and set the path to be used to save the file.

6 Press Save push button to finish.

Download

1 Select Open File command from Tools menu following this path: Tools  Equipment Configuration

Wizard   File  Open  Open File.

The system will display Select a Config. File window.

2 Select the wanted file and open it by pushing Open push button. The system will display the pa-

rameters contained into the file.

3 Press Download push button and select Configure Equipment as Current File.

4 Activate the box relevant to the equipment you wish to download configuration file to (normally the

local equipment).

5 Press OK.

6 The system will display Download Type Selection window. Activate boxes IP port addresses config-

uration e Routing table. If OSPF facility is enabled, you can only select Standard (IP/Communi-

cation/OSPF) Settings.

7 Press OK.

The system will show a warning indicating the possibility to proceed the download or not.

8 Press OK.

The system will show the Download in progress.

9 At the end of the download will be shown the file content.

19.2.3 Remote Element Table

Upload and save

1 Select window Subnetwork Configuration Wizard from menu Tools.

2 Select equipment Local  from Actual Configuration Area and then press Retrieve. In New configu-

ration area is shown the list of remote equipment included the local.

3 Press Save to file. The system will show window Save remote element configuration file.

4 Save the file with Rel extension and then press Save to finish.

Download

1 Select Subnetwork Configuration Wizard from menu Tool .

2 Press Read from file and then select the desired file (with Rel extension).

3 Press Open push button and then the system will show the file content into the New Configuration

 Area.

4 Select into the Actual configuration area the equipment you desire to download, the list of the re-

mote element included the local.

5 Press Send to send the list.

Page 147: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 147/240

 ALS - MN.00164.E - 001 145

20 BACK UP FULL EQUIPMENT CONFIGURATION

WITHOUT POSSIBILITY OF MODIFYING THE PA-

RAMETERS

20.1 SCOPE

This chapter describes the procedure to back up the full equipment configuration.

This permits to recover the original equipment configuration in case of faulty CONTROLLER module replace-

ment with spare.

20.2 CONFIGURATION UPLOAD

Foreword: it is advisable to upload the configuration during the first installation. Proceed as follows:

1 Select “Equipment Configuration Wizard” from menu "Tools"; "Equipment Configuration Wiz-

ard " window will be displayed.

2 Select “Upload” and then “Backup Full Equipment Configuration”; “Template Selection” win-

dow will be displayed.

3 Select the correct equipment template (in case of uncorrected choice the backup will be aborted).

4 Press OK and then select the equipment to be uploaded from “Upload Configuration File” window.

5 Press OK and then edit the file name from “Save backup as” window.

6 Press Save; “Equipment Configuration Wizard: Complete Backup” window will appear.

The window shows dynamically the backup procedure. If everything is OK, at the end of the upload

will appear the word “done” showing the procedure success.

7 Press OK to finish.

20.3 CONFIGURATION DOWNLOAD

Once the spare LIM has been installed proceed as follows:

1 Select “Equipment Configuration Wizard” from menu “Tools”. “Equipment Configuration Wizard ” 

window will be displayed.

2 Select “Download” and than “Restore Full Equipment Configuration” from Equipment Config-uration Wizard . “Select Backup File” window will be displayed.

Page 148: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 148/240

146 ALS - MN.00164.E - 001

3 Select the wanted backup file with extension .bku and then press Open. “Download Configuration

File” window will be displayed.

4 Select the equipment to download and then press OK; “Equipment Configuration Wizard: Complete

restore” window will be displayed. This window shows dynamically the download operation. The

word “done” indicates that download has been successfully.

5 Press OK to finish.

Warning: In case of EOC alarm proceed to restart the equipment.

Page 149: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 149/240

 ALS - MN.00164.E - 001 147

21 ALS - FIRMWARE UPDATE

21.1 INTRODUCTION

This chapter contains the description of the procedure to update ALS radio with SDH firmware.

Firmware update IS TRAFFIC AFFECTING: this procedure minimize the duration of traffic interruptions.

This procedure is applicable to each equipment of the network: it is presented as a procedure applicable

using the SCT/LCT, both from a local connection or from a remote one, but an equivalent procedure may

be followed from the NMS5UX management system.

21.2 SYSTEM VERSION OF FIRMWARE

Firmware software modules are described by an object called System version.

The system version is made up by a code and a version: SRALSOxy version 0x.0y.0z where X and y are

digits describing the release and the last z is the digit regarding the version of the release.

Few examples are:

SRALSO11 version 01.01.01

SRALSO12 version 01.02.03

Tab.17 – System version composition

SRALSOxy (0x.0y.0z) Version ALS radio link

E82079 0a.0b.0c Equipment controller boot (C12080)

N90485 0a.0b.0c Equipment controller appl.

N904830a.0b.0c Fpga_Base_Band (LIM Ed. 01)

0a.0b.0c Conf_Base_Band (LIM Ed. 01)

N905080a.0b.0c Fpga_Base_Band (LIM Ed. 02)

0a.0b.0c Conf_Base_Band (LIM Ed. 02)

N904860a.0b.0c Fpga_Modem (RIM Ed. 01)

0a.0b.0c Conf_Modem (RIM Ed. 01)

N905300a.0b.0c Fpga_Modem (RIM Ed. 02)

0a.0b.0c Conf_Modem (RIM Ed. 02)

N905330a.0b.0c Fpga_Modem (RIM XPIC)

0a.0b.0c Conf_Modem (RIM XPIC)

E82076 0a.0b.0c Radio boot

N92487 0a.0b.0c Radio appl.

N90489 0a.0b.0c Radio Fpga (ALS6, ALS18, ALS23)

N90543 0a.0b.0c Radio Fpga (ALS13)

Page 150: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 150/240

148 ALS - MN.00164.E - 001

21.3 PRELIMINARY CHECKS

Once received from SIAE a new system version, always check inside the "release notes" if the new system

version can be applied on the working one directly or if an intermediate step should be performed before.

Before starting the upgrade procedure be sure of the status of the equipment to be downloaded. In theSCT window “Current alarms” verify the absence of internal alarms, i.e. alarms related to:

• hardware module failures

• software module failure

• hardware or software mismatch

• units not responding

If the download is performed on a terminal connected to the SCT via the PPP radio, verify also the absence

of any alarm related to the radio connection, i.e.:

• RX power low

• TX power low

• HBER, LBER or EWL.

The presence of any other kind of alarm must in any case be justified and its cause known before proceed-

ing with the download procedure.

Upgrade should not be performed in presence of alarms.

In any case, if any alarm is present, save a Fault Report (using the SCT menu Equipment/Reports/Fault

Report) as a reference, to verify after the upgrade that no further alarms appeared.

To assure the possibility to perform a downgrade from the new version back to the old one, you must save

all the configuration data (using the SCT configuration wizard) before starting this update.

Note: Saving the configuration before proceeding with the download of a new version is always recom-

mended, even if downgrade is not foreseen.

21.4 FIRMWARE UPGRADE

A list of necessary steps is provided.

Please, be sure to have read previous chapters before performing the upgrade.

Note: the order of the paragraphs corresponds to the order to be followed in the upgrade procedure to

guarantee the minimum impact on the traffic and the proper behaviour of the equipment.

21.4.1 N90485 - Equipment controller application download

In SCT window Download setup select in Download Type field Forced. Locate the file als_all_osi.dwl

on your PC (in Fig.109 you can see an example of  Download Setup window, please note that the Down-

load file path in the example may not correspond to the one you have).

Page 151: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 151/240

 ALS - MN.00164.E - 001 149

Fig.109 – Download setup window for equipment controller application download

Press Start to execute the download.

Confirm the command clicking on Procedure to download? button (see Fig.110) before expiration time.

Fig.110 – Confirm of the operation

The Downloading window (see Fig.111) appears with download status.

Fig.111 – Download progress

Page 152: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 152/240

150 ALS - MN.00164.E - 001

During download, the relevant Status message is present in the log window of the SCT.

During the download no traffic interruption and no alarm should appear.

During the download the Downloading Warning is present in the summary panel.

After the download, the Software Download Completed message appears in the log window of SCT and

new SW release appears in the software unit table of Equipment Software Version window.

Important note: if Software Download Aborted message appears in log window of SCT or if Software

Download Completed message does not appear, the download operation has not been properly per-

formed, hence the bench switch must not be done.

After the download, click on Bench Switch button to switch on the memory bench with the new firmware

as in Fig.112.

Fig.112 – Equipment software version window

21.4.2 N90487 - Radio application download (first branch)

Warning: This download procedure IS TRAFFIC AFFECTING, if performed on the working radio branch. In

1+1 system, to minimize the impact on traffic the download has to be performed on the stand-by branch.

In this procedure we assume that initially the working radio branch is branch 1.

If the initially working radio branch is branch 2, just reverse the instructions between branch1 and branch

2.

In Download setup window select download type Only difference or not present/peripheral.

Locate the file n90487_0a0b0c -br2A.dwl on your PC (similar to Fig.109).

Please note the actual filename has the actual firmware module version (e.g. 01.01.00) insteadof 0a0b0c.

Page 153: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 153/240

 ALS - MN.00164.E - 001 151

In a 1+1 equipment this file refers to radio branch 2. Press Start to execute the download.

Confirm the command clicking on Proceed to download? button (see Fig.110) before expiration time.

A window will appear, giving the status of the download, similarly to Fig.111.

During download, the relevant Status message is present in the log window of the SCT.

During the download no traffic interruption and no alarm should appear.

During the download the Downloading Warning is present in the summary panel.

This upgrade procedure IS NOT TRAFFIC AFFECTING only if performed on the stand-by branch.

After the download, the Software Download Completed message appears in log window of SCT and new

SW release appears in the software unit table of Equipment Software Version window (see Fig.112).

21.4.3 N90489 (ALS6U-ALS18-ALS23)/N90543 (ALS13) - Radio FPGAdownload (first branch)

Warning: This download procedure IS TRAFFIC AFFECTING, if performed on the working radio branch.

In 1+1 system, to minimize the impact on traffic the download has to be performed on the stand-by

branch. In this procedure we assume that initially the working radio branch is branch 1.

If the initially working radio branch is branch 2, just reverse the instructions between branch1 and branch2.

In SCT window Download setup  (similar to Fig.109) select download type Only difference or not

present/peripheral.

Locate the file n90489_0a0b0c_br2A.dwl (for ALS6U, ALS18 or ALS23) or n90543_0a0b0c_br2A.dwl

(for ALS13) on your PC.

Press Start to execute the download.

Confirm the command clicking on the Proceed to download? button (as in Fig.110) before expiration

time.

A window will appear, giving the status of the download, similarly to Fig.111.

During download, the relevant Status message is present in the log window of the SCT.

During the download no traffic interruption and no alarm should appear.

During the download the Downloading Warning is present in the summary panel.

After the download, the Software Download Completed message appears in log window of SCT and new

SW release appears in the software unit table of Equipment Software Version window (see Fig.112).

21.4.4 N90486 or N90530 - Modem download (first branch)

Warning: this download procedure IS TRAFFIC AFFECTING, if performed on the working radio branch.

In 1+1 system, to minimize the impact on traffic the download has to be performed on the stand-by

branch.

In this procedure we assume that initially the working radio branch is branch 1.

If the initially working radio branch is branch 2, just reverse the instructions between branch 1 and branch

2.

In the SCT window Download setup (similar to Fig.109) select download type Only difference or not

present/peripheral. Locate the file n90486_rim2a.dwl on your PC.

User must always select n90486_rim2a.dwl; the controller will manage the download of this file or of 

the file n90530_*** depending on the version of the controller itself.

Press Start to execute the download.

Page 154: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 154/240

152 ALS - MN.00164.E - 001

Confirm the command clicking on the Proceed to download? button (as in Fig.110) before expiration

time.

A window will appear, giving the status of the download, similarly to Fig.111.

During download, the relevant Status message is present in the log window of the SCT.

During the download no traffic interruption and no alarm should appear.During the download the Downloading Warning is present in the summary panel.

After the download, the Software Download Completed message appears in log window of SCT and new

SW release appears in the software unit table of Equipment Software Version window (see Fig.112).

21.4.5 Radio branch switch (1+1 systems only)

Warning: This part of the procedure IS TRAFFIC AFFECTING: the average impact on the traffic is 1 ES

(Errored Second) and 1 SES (Severely Errored Second).

OPen ALS LCT, select Radio Switch page and set Branch-2 for both Rx preferential and Tx Preferentialfields (see Fig.113).

Fig.113 – Radio switch window

Press Apply to perform the new setting.

Confirm the command clicking on the Confirm changes? button (as in Fig.110) before expiration time.

As a consequence of the Tx switch, some Rx alarms will appear on the remote terminal, on both branches.

Page 155: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 155/240

 ALS - MN.00164.E - 001 153

21.4.6 N90487 - Radio application download - second branch (1+1 sys-tem only)

Warning: this download procedure IS TRAFFIC AFFECTING, if performed on the working radio branch.

In 1+1 system, to minimize the impact on traffic the download has to be performed on the stand-by

branch. In this procedure we assume that initially the working radio branch is branch 1.

If the initially working radio branch is branch 2, just reverse the instructions between branch 1 and branch

2.

In Download setup window select download type Only difference or not present/peripheral.

Locate the file n90487_0a0b0c_br1A.dwl on your PC (similar to Fig.109).

In a 1+1 equipment this file refer to radio branch 1.

Press Start to execute the download.

Confirm the command clicking on Proceed to download? button (see Fig.110) before expiration time.

A window will appear, giving the status of the download, similarly to Fig.111.

During download, the relevant Status message is present in the log window of the SCT.

During the download no traffic interruption and no alarm should appear.

During the download the Downloading Warning is present in the summary panel.

After the download, the Software Download Completed message appears in log window of SCT and new

SW release appears in the software unit table of Equipment Software Version window (see Fig.112).

21.4.7 N90489 (ALS6U-ALS18-ALS23)/N90543 (ALS13) - Radio FPGAdownload - second branch (1+1 system only)

Warning: This download procedure IS TRAFFIC AFFECTING, if performed on the working radio branch.

In 1+1 system, to minimize the impact on traffic the download has to be performed on the stand-by

branch. In this procedure we assume that initially the working radio branch is branch 1.

If the initially working radio branch is branch 2, just reverse the instructions between branch 1 and branch

2.

In SCT window Download setup  (similar to Fig.109) select download type Only difference or not

present/peripheral.

Locate the file n90489_0a0b0c_br1A.dwl (for ALS6U, ALS18 or ALS23) or n90543_0a0b0c_br1A.dwl

(for ALS13) on your PC.

Press Start to execute the download.

Confirm the command clicking on the Proceed to download? button (as in Fig.110) before expiration

time. A window will appear, giving the status of the download, similarly to Fig.111.

During download, the relevant Status message is present in the log window of the SCT.

During the download no traffic interruption and no alarm should appear.

During the download the Downloading Warning is present in the summary panel.

After the download, the Software Download Completed message appears in log window of SCT and new

SW release appears in the software unit table of Equipment Software Version window (see Fig.112).

21.4.8 N90486 or N90530 - Modem download - second branch (1+1 sys-tem only)

Warning: This download procedure IS TRAFFIC AFFECTING, if performed on the working radio branch.

Page 156: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 156/240

154 ALS - MN.00164.E - 001

In 1+1 system, to minimize the impact on traffic the download has to be performed on the stand-by

branch. In this procedure we assume that initially the working radio branch is branch 1.

If the initially working radio branch is branch 2, just reverse the instructions between branch 1 and branch

2.

In SCT window Download setup  (similar to Fig.109) select download type Only difference or not

present/peripheral.

Locate the file n90486_rim1a.dwl on your PC.

Press Start to execute the download.

Confirm the command clicking on the Proceed to download? button (as in Fig.110) before expiration

time.

A window will appear, giving the status of the download, similarly to Fig.111.

During download, the relevant Status message is present in the log window of the SCT.

During the download no traffic interruption and no alarm should appear.

During the download the Downloading Warning is present in the summary panel.

After the download, the Software Download Completed message appears in log window of SCT and new

SW release appears in the software unit table of Equipment Software Version window (see Fig.112).

21.4.9 N90486 or N90508 - Baseband download

Warning: This part of the procedure IS TRAFFIC AFFECTING: the average impact on the traffic is 4 ES

(Errored Seconds) and 4 SES (Severely Errored Seconds).

In SCT window Download setup  (similar to Fig.109) select download type Only difference or not

present/peripheral.

Locate the file n90483.dwl on your PC.

In a 1+1 equipment this file refer to radio branch 1.

Press Start to execute the download.

Confirm the command clicking on the Proceed to download? button (as in Fig.110) before expiration

time.

A window will appear, giving the status of the download, similarly to Fig.111.

This upgrade procedure IS TRAFFIC AFFECTING (about 4 ES and 4 SES has been observed).

After the download, the Software Download Completed message appears in log window of SCT and new

SW release appears in the software unit table of Equipment Software Version window (see Fig.112).

21.5 FINAL CHECK

When the upgrade procedure is finished, verify the status of the equipment by opening the SCT Current

alarms window and verifying the absence of alarms.

If before starting the upgrade procedure some alarms were present, compare Current alarms list with the

previously saved one.

In case of new alarms, verify the possible cause and check the equipment configuration regarding on pre-

viously saved Fault Report.

Page 157: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 157/240

 ALS - MN.00164.E - 001 155

21.5.1 Downgrade procedure

If any unresolvable problem occurs while running the newly downloaded version, a downgrade is still pos-

sible. This chapter explains how to perform it.

If upgrade procedure has been performed step by step, the link works on branch 2, in Tx and in Rx. Down-

grade operation can be performed on branch 1 (in stand-by).

Note: a complete downgrade may not br necessary to recover the full functionalities of the equipment. In

this case you can perform only some of the following steps.

Equipment controller

The downgrade of the Equipment Controller firmware is easily done by a simple bench switch (the previ-

ously running firmware being still present in the stand-by memory bench.

Radio application (first radio branch)

To perform the downgrade of the radio application please follow the procedure of paragraph 21.4.2, se-lecting the file n90487_br1.dwl from the relevant system version.

Radio FPGA (first radio branch)

To perform the downgrade of the radio FPGA please follow the procedure of paragraph 21.4.3 selecting the

file n90489_br1.dwl from the relevant system version.

Modem download (first radio branch)

To perform the downgrade of the modem firmware please follow the procedure of paragraph 21.4.4, se-

lecting the file n90486_br1.dwl from the relevant version.

Radio application (second radio branch)

To perform the downgrade of the radio application please follow the procedure of paragraph 21.4.6, se-

lecting the file n90487_br2.dwl from the relevant system version.

Radio FPGA (second radio branch)

To perform the downgrade of the radio FPGA please follow the procedure of paragraph 21.4.7, selecting

the file n90489_br2.dwl from the relevant system version.

Modem download (second radio branch)

To perform the downgrade of the modem firmware please follow the procedure of paragraph 21.4.8, se-

lecting the file n90486_br2.dwl from the relevant system version.

Baseband download

To perform the downgrade of the modem firmware please follow the procedure of paragraph 21.4.9, se-

lecting the file n90483.dwl from the relevant system version.

Page 158: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 158/240

156 ALS - MN.00164.E - 001

Page 159: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 159/240

 ALS - MN.00164.E - 001 157

Section 4.CHARACTERISTICS AND DE-SCRIPTIONS SPECIFICATION

22 SYSTEM CHARACTERISTICS

22.1 GENERAL

In this chapter:

• system characteristics, relevant to the whole radio equipment

In the following chapters:

• IDU characteristics

• ODU characteristics: the following characteristics, relevant to the radio frequency, are included in

attached manuals:

- operating band and subbands

- band number and width of RF filter

- subdivision of the operating band in different transmitters

- TX guaranteed characteristics

- Rx guaranteed characteristics

- consumption and power supply characteristics

- losses in branching and flange typology towards antenna or wave guide.

• description of IDU and its functional modules

• description of ODU and its functional modules.

Page 160: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 160/240

158 ALS - MN.00164.E - 001

22.2 SYSTEM CHARACTERISTICS

- Configuration 5 1+0/1+1 Hot Stand-by 1 antenna or 2 antennas/

1+1 frequency diversity/2+0

- Modulation 32/128QAM

- Demodulation coherent

- Possible channel schemes (see Fig.114) adjacent channel polarised (ACAP)

adjacent channel co-polarised (ACCP)

co-channel dual polarisation (CCDP)

- Transmission capacity

- Main signal STM-1

2xSTM-1

4xSTM-1 6

- Service channel up to 2x2 Mbit/s way side

1x64 kbit/s, V11 contradirectional

- Interfaces

- Line interfaces STM-1 electrical ITU-T G.703

STM-1 optical I1/S.1.1/L1.1 as per ITU-T G.957

63x2 Mbit/s G.703 6

Ethernet IEEE 802.3 10/100BaseT, 100BaseFx, 6

1000BaseSx or Lx 6

- STM-1 tributary port impedance 75 Ohm micro coaxial

- Impedance and 2 Mbit/s trib.

port connectors 120 Ohm balanced type D 25 pins

Switching protection 6

- Switching configuration 1+1 Hot Stand-by or 1+1 frequency diversity

- Tx switching outage time    180 ms

- Rx switching type hitless

- Static delay recovery ± 32 bit

- Dynamic delay recovery ± 16 bit

Frequency reuse with XPIC 6

- Internal C/I (128 QAM) 1 dB degradation for an internal C/I  17 dB

- Internal C/I (32 QAM) 1 dB degradation for an internal C/I  14 dB

Performance monitoring

- G.828 counters ES, SES, SEP, BBE, UAS

- Transmitter and receiver power counters

- Received Level and Transmitted Level Threshold Seconds- Number of seconds during whom the re-

ceived (transmitted power) is below (above) a predefined threshold "n". The number of threshold

is 4. The operator can set the threshold value.

5 SDH IDU compact is only 1+0

6 only for SDH IDU modular

Page 161: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 161/240

 ALS - MN.00164.E - 001 159

- Received Level and Transmitted Level Tide Mark - The Received (Transmitted) Level Tide Mark is a

mechanism that records the maximum and the minimum value reached by RL (TL) during a meas-

urement period.

Environmental conditions

- Temperature range ETSI EN 300-019

- IDU -5°C to +45°C

- ODU -33°C to +50°C

- Relative humidity 93% up to 30°C

- ODU Weather proofing as per Recc. IP65

- EMC (Electromagnetic compatibility) ETS 300-489-4

Dimensions

- IDU 1U mod./compact (lxhxp) 480x45x260 mm

- IDU 2U modular (lxhxp) 480x90x260 mm

- ODU AS 1+0 (lxhxp) 254x254x121 mm

- ODU AS 1+1 (lxhxp) 358x254x296 mm

- ODU ALS 1+0 (lxhxp) 165x400x190 mm

- ODU ALS 1+1 (lxhxp) 316x400x229 mm

Weights of ODU

- ODU AS 1+0 5.5 kg.

- ODU AS 1+1 15 kg.

- ODU ALS 1+0 9 kg.

- ODU ALS 1+1 19 kg.

IDU/ODU AS connection

- Nominal impedance 50 Ohm

- Coaxial cable 1 cable for 1+0 configuration

2 cables for 1+1 configuration

- Cable attenuation <30 dB for 330 MHz

- Cable return loss better than 22 dB for 330 MHz

- Cable max. length <300 m (1/4” Cellflex cable)

IDU/ODU ALS connection

- Nominal impedance 50 Ohm

- Coaxial cable 1 cable for 1+0 configuration

2 cables for 1+1 configuration

- Cable attenuation <30 dB for 330 MHz

- Cable return loss min 22 dB from 100 to 400 MHz

- Total cable resistance 1,9 Ohm

- Cable max length see Tab.18

Page 162: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 162/240

160 ALS - MN.00164.E - 001

Tab.18 – Cable examples

Fig.114 – Example of channel arrangements on the same route

Tx and Rx switches in 1+1 system

Two different configurations are available for ALS 1+1 radio equipment:

• hot stand-by - the controller, depending on precise criteria, manages Rx (hitless) and Tx switches

• frequency diversity - the controller manages only Rx switch (hitless) because both radio send con-

temporarly.

Criteria used for switches are listed in Tab.19 and Tab.20.

Tab.19 - Tx switch

SIAE cable codeMax cable length

K09212A K09259 K09217A K09202

SDH ALS 18-38 300 m 300 m 300 m 550 m

SDH ALS 6-15 200 m 210 m 220 m 550 m

Priority Level Alarm

High

Low

1 RIM PSU alarm

2 Manual forcing

3 Cable short alarm

3 Cable open alarm

3 Modulator failure alarm

3 ODU unit failure alarm

3 VCO failure alarm

3 IF unit alarm

3 Tx power low alarm

4Demand from remote (both remote re-

ceivers in HBER)

5 Revertive Tx

ACCP

V or H

CCDP

V

H

ACAP

V

H

Page 163: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 163/240

 ALS - MN.00164.E - 001 161

Tab.20 - Rx switch

Priority Level Alarm

High

Low

1 RIM PSU alarm

2 Manual forcing

3 Cable short alarm

3 Cable open alarm

3 ODU unit failure alarm

3 VCO failure alarm

3 IF unit alarm

3 Demodulator failure alarm

3 BER  

4 Early warning

5 Rx Power low alarm

6 CRC pulse

7 Revertive Rx

Page 164: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 164/240

162 ALS - MN.00164.E - 001

23 CHARACTERISTICS OF THE INDOOR UNIT

23.1 GENERAL

The following IDU characteristics are guaranteed for the temperature range from -5°C to +45° C and are

the same for IDU modular and compact, if not differently specified.

23.2 STM-1 ELECTRICAL INTERFACE

Input side

- Bit rate 155520 kbit/s ±20 ppm

- Line code CMI

- Rated impedance 75 ohm

- Rated level 1 Vpp ± 0.1 V

- Return Loss   15 dB from 8 MHz to 240 MHz

- Max. attenuation of the input cable 12.7 dB at 78 MHz ( law)

Output side

- Bit rate 155520 kbit/s ±4,6 ppm

- Rated level 1 Vpp ±0.1 V

- Pulsa shape see mask of Figures 24 and 25 of ITU-T

Rec. G.703

23.3 STM-1 OPTICAL INTERFACE

The optical interface can be specialized for different applications, by simply equipping the STM-1 optical

interface with the appropriate pluggable transceiver (with LC optical connectors). Information about the

presence/absence and type of transceiver is transferred to the main controller. The characteristics of all

the possible optical interfaces are summarized in the Tab.21:

Page 165: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 165/240

 ALS - MN.00164.E - 001 163

Tab.21

The LIM is provided with Automatic Laser Shutdown functionality as prescribed by ITU-T G.664 Recom-

mendation.

23.4 2 Mbit/s WAYSIDE INTERFACE

Input side

- Bit ate 2048 kbit/s ±50 ppm

- Line code HDB3

- Rated impedance 120 Ohm

- Rated level 2.37 Vp/75 Ohm or 3 Vp/120 Ohm

- Return loss 12 dB from 57 kHz to 102 kHz

18 dB from 102 kHz to 2048 kHz

14 dB from 2048 kHz to 3072 kHz

- Max attenuation of the input cable 6 dB according to law

- Accepted jitter see mask in Table 2, ITU-T Rec. G.823

- Transfer function see mask in Figure 1, ITU-T Rec. G.742

- Output jitter Rec. G.783 (Table 10.1 (4/97))

Output side

- Bit rate 2048 kbit/s ±50 ppm

- Rated impedance 120 Ohm

- Rated level 2.37 Vp/75 Ohm or 3 Vp/120 Ohm

- Pulsa shape see mask in Figure 15, ITU-T Rec. G.703

23.5 64 kbit/s CONTRA-DIRECTIONAL INTERFACE V.11

- Tolerance ±100 ppm

- Equipment side contra-directional

- Coding clock and data on independent wire

- Electrical interface see Rec. ITU-T V.11

Interf. Ref.

Launched

power

(dBm)

Minimum

sensitivity

(dBm)

Operating

wavelengthTransceiver Fiber

Distance

(km)

L-1.2 G.957 0 ... -5 -34 1480-1580 Laser Single-Mode Up to 80

L-1.1 G.957 0 ... -5 -34 1263-1360 Laser Single-Mode Up to 40

S-1.1 G.957 -8 ...-15 -28 1263-1360 Laser Single-Mode Up to 15

I-1 ANSI -14 ... -20 -28 1263-1360 Led MultiMode Up to 2

Page 166: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 166/240

164 ALS - MN.00164.E - 001

23.6 ALARM INTERFACE

User output

- Relay contacts normally open (NO) or normally closed (NC)

- Open contacts R min. 100 MOhm at 500 Vdc

- Closed contacts R max. 0.5 Ohm

- Switching voltage Vmax 100 V

- Switching voltage Imax 1 A

User input

- Equivalent circuit recognized as a closed contact 200 Ohm resist. (max) referred to -6 V (min)

- Equivalent circuit recognized as a open contact 60 kOhm (min) referred to +4 V (max)

23.7 NETWORK MANAGEMENT INTERFACE

AUI interface 6

- Connector 15 pin SUB–D

- Connection to LAN with a branching cable and a transceiver to

the Ethernet Thick coaxial cable

- Protocol TCP/IP and IPoverOSI

RJ45 interface

- LAN type Ethernet Twisted Pair 802.3 10BaseT

- Connector RJ45

- Connection to LAN direct with a CAT5 Twisted Pair

- Protocol TCP/IP or IPoverOSI

BNC interface

6

- LAN type Ethernet thinnet 802.3 10Base2

- Connector BNC

- Connection to LAN RG58 coax. cable 50 Ohm

- Protocol TCP/IP or IPoverOSI

RS232 interface

- Electrical interface V.28

- Asynchronous baud rate 9600, 19200, 38400, 57600

- Protocol PPP

Page 167: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 167/240

 ALS - MN.00164.E - 001 165

USB LCT interface

- Version 1.1

- Speed rate 12 Mbit/s

- Protocol PPP

23.8 MODULATOR/DEMODULATOR 

- Carrier modulating frequency

- Tx side 330 MHz

- Rx side 140 MHz

- Type of modulation 32QAM/128QAM

- Type of coding BCM (Block Coded Modulation)

- Modulating signal gross bit rate 169036.846 kbit/s (STM-1)

338073.692 kbit/s (2xSTM-1)

- Spectrum shaping raised cosine (roll-off = 0.45 for 32QAM;

0.26 or 0.35 for 128QAM)

- Demodulation coherent

- Baseband adaptive equalizer 21 taps

- Coding gain (asymptotic) 11 dB

23.9 CABLE INTERFACE

- Interconnection with the ODU unit single coaxial cable for both Tx and Rx

- Cable length see chapter “22 SYSTEM CHARACTERISTICS” 

- Rated impedance 50 Ohm

- Signal running along the cable

- Tx nominal frequency 330 MHz

- Rx nominal frequency 140 MHz

- Transceiver management signals 388 kbit/s bidirectional

- Carrier for transceiver management signals IDU to ODU = 17.5 MHz/-15 dBm

ODU to IDU = 5.5 MHz/-15 dBm

- Remote power supply direct from battery voltage

Page 168: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 168/240

166 ALS - MN.00164.E - 001

23.10 AVAILABLE LOOPS

Following IDU loops are available:

• STM-1 loop, line side

• STM-1 loop, radio side

• baseband loop

• IDU loop.

23.11 BATTERY INTERFACE

- Input battery voltage 48Vdc +20% -15%

Warning:

As protection to power supply circuit, inside the equipment and behind the front panel, there is a fuse with

the following characteristics:

- Nominal current 3A

- Nominal voltage 125 Vdc

- Type timed

- Dimensions 6.10 mm x 2.59 mm

- Contact soldering, not remplaceable during the service

- Position RIM module, behind front panel

23.12 POWER SUPPLY CURRENT

Power supply (Recc. EN 300 132-2)

- Battery voltage 48 Vdc +20% -15% (positive to ground)

- Imax at 48 Vdc

- 1+0 modular terminal <2 A (ALS6/7/8/11/13/15)

<1,3 A (ALS18/23/25/28/38)

- 1+1 modular terminal <3,6 A (ALS6/7/8/11/13/15) (<1,8 A for con.)

<2,3 A (ALS18/23/25/28/38) (<1,15A for con.)

- 1+0 XPIC modular terminal <3,6 A (ALS6/7/8/11/13/15) (<1,8 A for con.)

<2,3 A (ALS18/23/25/28/38) (<1,15A for con.)

- 1+1 XPIC modular terminal <7,2 A (ALS6/7/8/11/13/15) (<1,8 A for con.)

<4,6 A (ALS18/23/25/28/38) (<1,15A for con.)

- 1+0 compact terminal <1,9 A (ALS6/7/8/11/13/15)

<1,2 A (ALS18/23/25/28/38)

Page 169: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 169/240

 ALS - MN.00164.E - 001 167

24 CHARACTERISTICS OF OUTDOOR UNIT

24.1 GENERAL

The following ODU characteristics, relevant to the radio frequency, are included in attached manuals:

• operating band and subbands

• band number and width of RF filter

• subdivision of the operating band in different transmitters

• TX guaranteed characteristics

• Rx guaranteed characteristics

• consumption and power supply characteristics

• losses in branching and flange typology towards antenna or wave guide.

Page 170: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 170/240

168 ALS - MN.00164.E - 001

25 DESCRIPTION OF THE SDH IDU

25.1 GENERAL

SDH IDU is available in modular and compact versions.

Modular version has nxSTM1 or Ethernet line interface. Compact version has only STM-1 line interface.

Both versions can be connected to ODU AS and ODU ALS.

25.2 DESCRIPTION OF IDU SDH MODULAR 

The SDH IDU consists of a wired mechanical shelf housing the following:

• LIM (Line Interface Module)

• RIM (Radio Interface Module)

• Controller.

Following chapters give description of each individual module.

25.2.1 Description of the LIM

The LIM is placed between the line side and the RIM circuitry. It interfaces the STM-1, 2xSTM-1, 4xSTM-1

tributary signals as below described.

25.2.1.1 STM-1 interface

Line side to radio side

As shown in Fig.116, the STM-1 from the line side is coming from the SPI physical interface, electrical or

optical, for format and level adaptation. The STM-1 is then sent to SOH drop circuit for RSOH bytes termi-

nation. This is done after clock extraction and acknowledgment of A1, A2 frame alignment word made by

an alignment circuit.

The SOH drop circuit extracts the following bytes:

• B1: byte Interleaved Parity, BIP-8 code using even parity. B1 byte carries link quality information.

B1 byte is sent to main controller in order to process the performance monitoring relevant to G.828.

It is calculated on all bits of the previous STM-1 frame after scrambling and placed into B1 byte of 

the current frame prior to scrambling.

• D1, D2, D3 are the DCC channels and are sent to main controller for supervision and management

of regenerator sections

Page 171: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 171/240

 ALS - MN.00164.E - 001 169

• F1 is used for 64 kbit/s, V11 channel transmission. This signal can be terminated or passed to the

radio side.

Remaining bytes are not changed and transit with no change.

In case of input signal fail or failed recognition of A1/A2 or J0 byte on both radio streams an alarm criteria

is provided (LOS/LOF) which allows to:

• enable the local restart and permit the insertion of service signals relevant to RSOH section of SOH

towards the radio side.

• insert an MS AIS signal on the SOH and on the payload.

The RSOH bytes previously terminated from line side are radio side recovered for sending the whole STM-

1 frame to the two RIMs. One 2 Mbit/s wayside channel is embedded in the STM-1 frame by using the

media dependent bytes and extra columns joined to STM-1 frame. The total bit rate corresponds to 157248

kbit/s. Remaining bytes are not used and transit with no change.

Radio side to line side

As shown in Fig.116 STM-1 signals from RIMs are sent to SOH Drop circuits. The extraction of byte from

SOH relevant to RSOH section is carried out, after recognising A1, A2 alignment frame bytes by means of an aligner. Besides, it is performed a check on the path identifier contained into J0 byte.

In case of input signal fail or failed recognition of A1/A2 or J0 bytes on both radio streams an alarm criteria

is provided (LOS/LOF) which allows to:

• enable the local restart and permit the insertion of service signals relevant to RSOH section of SOH

towards the line side.

• insert an MS AIS signal on MSOH section of SOH and on the payload.

The SOH drop circuit extracts the following bytes:

• B1: byte Interleaved Parity, BIP-8 code using even parity. B1 byte carries link quality information.

B1 byte is sent to main controller in order to process the performance monitoring relevant to G.826.

It is calculated on all bits of the previous STM-1 frame after scrambling and placed into B1 byte of 

the current frame prior to scrambling.

• D1, D2, D3 are the DCC channel and are sent to main controller for supervision and management

of regenerator sections

• F1 is used for extraction of a 64 kbit/s, V11 channel. This signal can be terminated or passed to the

radio side.

• 2 Mbit/s wayside from media dependent bytes and extra columns joined to STM-1 frame.

Remaining bytes are not changed and transit with no change.

In 1+1 version STM-1 signals at the output of the two SOH drop circuits are sent to the Rx switching sec-

tion.

The switch is of hitless type. It provides the dynamic alignment for the two streams before switching with

delay compensation up to ±16 bit.

Switching operation can be observed on front panel LEDS.

Alarms and controls managed by the main controller manage the switching operation according to the fol-

lowing priority list:

• power supply failure alarm

• local manual force command

• major receiver alarms: receiver failure, cable interface alarm, demodulator, LOS/LOF alarms

• HBER alarm: bit error rate with threshold presettable 10-6 or 10-3

• HBER alarm: bit error rate with threshold presettable 10-9 or 10-6

• Early warning: bit error rate with threshold presettable 10-12 or 10-9

• Prx alarm: presettable threshold within the received field range

• preferred branch presetting.

Page 172: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 172/240

170 ALS - MN.00164.E - 001

The STM-1 signal at switching output is sent to SOH Insert circuit to insert B1, DCC and F1. In case of local

restart A1, A2 bytes are regenerated for frame alignment purpose. SPI output circuit allows to adapt levels

and code to G.703 specification for electrical interface or G.957 for optical interface.

25.2.1.2 2xSTM-1 interface

Line side to radio side (see Fig.117)

The two STM-1 signals enter similar input circuits already seen in Fig.116, that is SPI and SOH drop.

The local restart and the consequent MS-AIS generation is enabled in case of missing of both STM-1 input

signals.

The generation of the 2xSTM-1 frame is obtained by interleaving column by column the two STM-1 frames

plus additional columns dedicated for the insertion of two local 2 Mbit/s wayside.

The 2xSTM-1 frame generation is enabled provided that the two input STM-1 are synchronous between

them (see paragraph 25.2.1.4 Up to 4xSTM-1 synchronisation for details).

The frame also contains the J0 bytes and B1 bytes for radio path trace and performance monitoring.

As far as F1 carrying 64 kbit/s V.11 is concerned, the physical interface point on the LIM front is only one.

The operating mode is controlled as follows:

• line side: via software it is possible to terminate one F1 and enable the transit to the other in pass-

through modality

• radio side: via software it is possible to enable one F1 whereas the F1, line side, transits in pass-

through modality.

At the output of the 2xSTM-1 multiplexer the bit rate of the signal is 314496 kbit/s.

Along with the relevant clock the 314496 kbit/s signal is sent to the two modulators within the RIM via an

hybrid for signal duplication.

Radio side (see Fig.118)

The 2xSTM-1 signal plus relevant cks from demodulators within the RIMs are sent to the frame aligner

circuits with the purpose of extracting radio performances and alarms (LOS, J0 trace identifier mismatch)

that drive the hitless switch. This latter provides dynamic alignment of ±7 bytes before switching. The

2xSTM-1 radio side SOH drop circuit terminates the F1, D1-D3, J0, RPM (Radio Performance Monitoring)

signals that were embedded in the 2x2STM-1 frame in the far terminal, radio side.

At the output of SOH drop circuit will be available, on two separated paths, the two STM-1 signals plus the

2 Mbit/s way side.

The circuits that follow first terminate the wayside signals sending them to the 2 Mbit/s output interfaces

and then, through a RSOH insert circuit, embed the F1, D1-D3, J0, B1 into the two STM-1 frames to be

delivered to the line side.

Take into account that only one F1 can be use to carry a 64 kbit/s -V.11 channel from the local service

interface. The other F1 carries another 64 kbit/s-V11 channel (if used) in pass-through mode.

25.2.1.3 4xSTM-1 interface

Refer to Fig.119.

The four STM-1 signals are two by two grouped (precisely STM-1#1 with STM-1#2 and STM-1#3 with STM-

1#4) and then sent to two different 2xSTM-1 multiplexers.

The signal processing is equal to that already seen in paragraph 25.2.1.2 2xSTM-1 interface.

The output of the 2x2 STM-1 multiplexers are individually sent to modem 1 and modem 2 to be applied,

through the two transceivers, to a double-polarization antenna.

This occurs when the frequency re-use system is used.

Page 173: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 173/240

 ALS - MN.00164.E - 001 171

25.2.1.4 Up to 4xSTM-1 synchronisation

Refer to Fig.120.

The 2xSTM1 or 4xSTM-1 configurations require:

• the input STM-1s to be synchronous among them;

• the selection of the clock signal achieved from one of the input STM-1.

This to the purpose to generate a common synchronisation that enables the generation of one (2xSTM-1

transmission) or two 2xSTM-1 (4xSTM-1 transmission) frames along with the 2x2 Mbit/s waysides and 64

kbit/s service channel.

As shown by the Fig.120 the clocks extracted from the up to four STM-1 signals are sent to a selection

circuit that chooses one of the four signals depending on the control sent by a selection logic. This latter

acts on the base of alarm roots (LOS-loss of input signal or LOF-loss of frame) priority assigned and manual

forcing. The selected clock drives an oscillator through a PLL circuit. The oscillator will generate the re-

quired synchronisation for the 2xSTM-1 frame generation. If no input signals are available the internal os-

cillator source is used for the local restart.

25.2.2 Description of the RIM

The RIM consists of a common board housing the following mains circuits:

• 32/128 QAM modemodulator

• power supply and cable interface.

25.2.2.1 Modem

Reference is made to Fig.121.

Modulator side

The aggregate signal from LIM is enriched with extra redundancy for FEC operation reaching the total mod-

ulating rate shown below:

• 169036,846 kbit/s (1xSTM-1 version)

• 338073,692 kbit/s (2xSTM-1 version).

The circuit that follows encodes the data for the 32 or 128 constellation points and then, through a digital

filters and D/A converters, supplies the I & Q signals to the QAM modulator along with 330 MHz carrier.

The QAM modulated carrier is passed, through an IF low pass filter and an amplifier, to the cable interface

circuit for the connection to the IDU/ODU cable.

Demodulator side

The 140 MHz QAM modulated carrier from ODU, is received by the demodulator input passing through the

cable interface circuit.

An IF amplifier provided with AGC compensates for cable loss.

This amplifier has two outputs: one connected to the I&Q demodulator circuit, the other can be used for

Xpic operation.

The I&Q demodulator is driven by a 140 MHz recovered carrier. The carrier and clock recovery information

are achieved by the relevant circuits. From the analogue to digital converters the I&Q signals are sent to

the adaptive equalizer to minimize the intersymbolic interference.

The data are then passed to the decoder and the error corrector for the relevant processing and for gen-eration of a single aggregate signal to be sent to the LIM.

Page 174: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 174/240

172 ALS - MN.00164.E - 001

25.2.2.2 Power supply and cable interface

Reference is made to Fig.123.

The Power Supply Unit receives the 48 V battery voltage from a 3W3 SUB-D connector on RIM front. The

battery is processed through a DC to DC converter to achieve the +3.5V; +1.5V; +5V to power feed the

LIM and the RIM.

The same battery voltage is sent to the interconnection cable to power the far ODU. An automatic protec-

tion protects the battery against cable short.

The Cable Interface permits the bidirectional dialogue between IDU and ODU. It consists of combination

and separation filters.

Signals from IDU to ODU are the following:

• battery voltage between the core and the cable shield

• 330 MHz, 32/128QAM modulated carrier carrying the main signal

• 17.5 MHz FSK modulated carrier coming from the LIM and carrying the controls for ODU manage-

ment.

Signal from ODU to IDU are the following:

• 5 MHz FSK modulated carrier going to LIM and carrying the measurements and alarms from ODU

• 140 MHz 32/128 QAM modulated carrier carrying the main signal

25.2.3 Description of RIM with XPIC

The RIM with XPIC for frequency reuse systems consists of a common board housing the following main

circuits:

• 32/128QAM modemodulator

• 32/128QAM additional demodulator

• power supply and cable interface.

Modemodulator, power supply and cable interface are the same of normal RIM.

Additional demodulator for frequency reuse system

The frequency reuse system allows the coexistence of two radio bearer transmission on the same radio

channel. Each radio bearer carries up to 2xSTM-1 signal. The system consists of two fully independent

transceivers, each of one connected to one polarisation of a dual polarized antenna (see Fig.122).

Each receiving path receives the signal from the same polarisation and the interference signal from the

cross polarisation.

The interference signal can varies both in amplitude and phase as a function of the RF channel distortiondue to the propagation condition. The frequency reuse system makes use of an additional demodulator

that receives the IF signal from the receiver placed on the cross polarized antenna. The demodulator is

equipped with an adaptive equalizer (XPIC) able to perform in the time domain the opposite function of 

the channel distortion. The signal thus generated, summed-up with the one available on the main demod-

ulator, permits to cancel the interference contained in the copolar signal.

This RIM has 3 connectors (see Fig.115) on front panel:

• SMA connector for IF IDU-ODU cable

• SMA connector to send Rx signal to other RIM on other polarization

• SMA connector to receive Rx signal from the other RIM working on the other polarization.

Page 175: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 175/240

 ALS - MN.00164.E - 001 173

Fig.115 – RIM with XPIC into 1RU IDU

25.2.4 Description of the controller

The controller module supplies the following:

• the interface ports for the management program access

• the equipment software for equipment management

• the alarm interface through relay contacts that permits to transfer outside the alarm severity asso-

ciated to each alarm root along with external input alarms.

25.2.4.1 Interface ports

The SCT/LCT or NMS5UX management program takes access to the equipment through the following in-

terface ports:

• LCT provided with an USB access connector with a maximum speed rate of 12 Mbit/s

• RS232 provided with a SUB-D access connector with a maximum speed rate of 57.6 kbit/s

• Q3-Ethernet IEEE 802.3 with three different access connector options: RJ45/AUI/BNC.

• STM-1 QECC using D1-D3-SOH bytes of the STM-1 frame with a speed rate of 192 kbit/s.

25.2.4.2 Equipment firmware

Equipment firmware controls and manages all the equipment functionalities.

It is distributed over two hardware levels: main controller within the controller module and peripheral con-

troller within the ODU. The dialogue between the main and slave controllers occurs through a 388 kbit/s

frame carried by FSK modemodulators (see Fig.124) housed into IDU and ODU.

Main controller

The activities performed by the main controller are the following:

• Communication management: it makes use of SNMP as management protocol and IP or IPoverOSI

as communication protocol stacks. See Fig.125 and Fig.126 for details.

The interface ports to permits the dialogue man-machine between the SCT/LCT - NMS5UX programs

and the main controller are listed in paragraph 25.2.4.1.

• Log-in: the main controller manages the equipment or network login/logout by setting and then

controlling the user’s ID and relevant password.

• Database (MIB): validation and storing in a non-volatile memory of the equipment configuration pa-

rameters.

• Equipment configuration: distribution of the parameters stored in the MIB towards the peripheral

µPs for their attenuation in addition to the controls from user not stored in the MIB (i.e. loops, man-

ual forcing etc....)

-+

X X

XX

+ -

W.S.1 W.S.2 V11

ONONONON

FAIL1 2 3 4

REM

USER IN/OUTRS232LCT

TEST

ODUIDU

Q3

Page 176: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 176/240

174 ALS - MN.00164.E - 001

• Alarm monitoring: acquisition, filtering and correlation of the alarms gathered from slaved µPs. Lo-

cal logger and alarm sending to the connected managers: SCT/LCT-NMS5UX. Management of the

alarm signalling on the LIM front panel.

• Performances: PM management as per Recc. G.828.

• Download: the main controller is equipped with two flash memory banks containing the running pro-

gram (active bank) and the stand-by program (inactive bank). This permits to download a new soft-ware release to the inactive bank without distributing the traffic. Bank switch enables the new

release to be used. Download activity is based on FTP protocol which downloads application pro-

grams, FPGA configuration, configuration files on main controller inactive bank or directly on the

peripheral controllers.

Peripheral controller

The peripheral controllers take place within the ODU and are slaved to main controller with the task of ac-

tivating controls and alarm reporting of dedicated functionality.

25.2.5 IDU telemetry

Refer to Fig.127. The telemetry is used to:

• propagate towards the far radio terminal the following information: ATPC, user inputs and alarms.

It makes use of the S (2,2) media dependent byte for the transport.

• permits the dialogue between IDU and ODU. the ODU management controls are framed over a 388

kbit/s signal that from the main controller is propagated over the IDU/ODU interconnecting cable

making use of a 5.5 MHz FSK modulated carrier.

Similarly alarms and status from ODU are propagated towards IDU making use of another 388 kbit/s

framed signal that is propagated over the interconnecting cable making use of a 17 MHz, FSK modulated

carrier.

25.2.6 IDU loops

To control the IDU correct operation a set of local and remote loops are made available. The controls are

sent by the management program (SCT/LCT or NMS5UX). Refer to Fig.128 for details.

25.2.6.1 Line loop

Local loop

Each input STM-1 signal is routed back directly to the output thus permitting to control the IN/OUT inter-

connecting cables.

Remote loop

Each output STM-1 signal is routed back towards the radio. This permits to control the path back and for-

ward.

Page 177: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 177/240

 ALS - MN.00164.E - 001 175

25.2.6.2 Baseband loop

The input 1xSTM-1 or 2x STM-1 signals are multiplexed and then, through the loop, routed back to the

output lines. This permits to control all the LIM circuitry.

25.2.6.3 IDU loop

This loop permits to control the full IDU operation. It happens inside the RIM. The modulator output signal

is routed back to the demodulator. Upon enabling the loop, the 330 MHz modulator output frequency is

converted to 140 MHz (demodulator input).

Warning: If IDU loop (IF) doesn’t work, please repeat the IDU loop (IF) with the IDU-ODU cable discon-

nected from IDU to give a final result.

25.2.7 Front panel of SDH IDU modular

Fig.129 shows the front panel of SDH IDU modular (with RIM XPIC) with LEDs and connectors highlighted.

25.3 DESCRIPTION OF IDU SDH COMPACT

25.3.1 General

IDU SDH compact version is an indoor unit for SDH equipment produced in single board structure. There’s

no protected configuration and no XPIC. Two different hardware composition are available for the same

unit in order to operate with user interfaces and services a) and b), as illustrated in the Tab.22.

Tab.22 - Service and user interfaces

Capacities 155 Mbit/s (with 32QAM/128QAM modulation) and 311 Mbit/s (with 128QAM modulation) are

provided.

Specifically the possible alternatives are:

• STM1 (155 Mbit/s) 128QAM - 28 MHz

• STM1 (155 Mbit/s) 32QAM - 56 MHz

• 2xSTM1 (311 Mbit/s) 128QAM - 56 MHz.

IDU consists of a single module which contains all devices to realize following functions:

• line interface

• radio interface

• equipment controller

Type User Payload Service

a2xSTM1 electrical with 1.0/2.3

2xE1 (wayside) connectors

1xV11

1xRS232

b2XSTM1 optical/electrical with plug-in module

2xE1 (wayside) connectors

1xUSB

2xETH10/100

Page 178: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 178/240

176 ALS - MN.00164.E - 001

• IDU loop

• baseband loop

• line loop.

25.3.1.1 STM-1 interface

Line side to radio side

As shown in Fig.130, the STM-1 signal from the line side is coming from the SPI physical interface, electrical

or optical, for format and level adaptation. The STM-1 is then sent to SOH drop circuit for RSOH bytes ter-

mination. This is done after clock extraction and acknowledgment of A1, A2 frame alignment word made

by an alignment circuit.

The SOH drop circuit extracts the following bytes:

• B1: byte Interleaved Parity, BIP-8 code using even parity. B1 byte carries link quality information.

B1 byte is sent to main controller in order to process the performance monitoring relevant to G.828.It is calculated on all bits of the previous STM-1 frame after scrambling and placed into B1 byte of 

the current frame prior to scrambling.

• D1, D2, D3 are the DCC channels and are sent to main controller for supervision and management

of regenerator sections

• F1 is used for 64 kbit/s, V11 channel transmission. This signal can be terminated or passed to the

radio side.

Remaining bytes are not changed and transit with no change. In case of input signal fail or failed recogni-

tion of A1/A2 or J0 byte on both radio streams an alarm criteria is provided (LOS/LOF) which allows to:

• enable the local restart and permit the insertion of service signals relevant to RSOH section of SOH

towards the radio side.

• insert an MS AIS signal on the SOH and on the payload.

The RSOH bytes previously terminated from line side are radio side recovered for sending the whole STM-

1 frame to modulator. One 2 Mbit/s wayside channel is embedded in the STM-1 frame by using the media

dependent bytes and extra columns joined to STM-1 frame. The total bit rate corresponds to 157248 kbit/

s. Remaining bytes are not used and transit with no change.

Radio side to line side

As shown in Fig.130 STM-1 signals from demodulator are sent to SOH Drop circuits. The extraction of byte

from SOH relevant to RSOH section is carried out, after recognising A1, A2 alignment frame bytes by

means of an aligner. Besides, it is performed a check on the path identifier contained into J0 byte.

In case of input signal fail or failed recognition of A1/A2 or J0 bytes on both radio streams an alarm criteria

is provided (LOS/LOF) which allows to:

• enable the local restart and permit the insertion of service signals relevant to RSOH section of SOH

towards the line side.

• insert an MS AIS signal on MSOH section of SOH and on the payload.

The SOH drop circuit extracts the following bytes:

• B1: byte Interleaved Parity, BIP-8 code using even parity. B1 byte carries link quality information.

B1 byte is sent to main controller in order to process the performance monitoring relevant to G.826.

It is calculated on all bits of the previous STM-1 frame after scrambling and placed into B1 byte of 

the current frame prior to scrambling.

• D1, D2, D3 are the DCC channel and are sent to main controller for supervision and management

of regenerator sections

• F1 is used for extraction of a 64 kbit/s, V11 channel. This signal can be terminated or passed to the

radio side.

• 2 Mbit/s wayside from media dependent bytes and extra columns joined to STM-1 frame.

Page 179: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 179/240

 ALS - MN.00164.E - 001 177

Remaining bytes are not changed and transit with no change.

The STM-1 signal is sent to SOH Insert circuit to insert B1, DCC and F1. In case of local restart A1, A2 bytes

are regenerated for frame alignment purpose. SPI output circuit allows to adapt levels and code to G.703

specification for electrical interface or G.957 for optical interface.

25.3.1.2 2xSTM-1 interface

Line side to radio side (see Fig.131)

The two STM-1 signals enter similar input circuits already seen in Fig.130, that is SPI and SOH drop.

The local restart and the consequent MS-AIS generation is enabled in case of missing of both STM-1 input

signals.

The generation of the 2xSTM-1 frame is obtained by interleaving column by column the two STM-1 frames

plus additional columns dedicated for the insertion of two local 2 Mbit/s wayside.

The 2xSTM-1 frame generation is enabled provided that the two input STM-1 are synchronous betweenthem. The frame also contains the J0 bytes and B1 bytes for radio path trace and performance monitoring.

As far as F1 carrying 64 kbit/s V.11 is concerned, the physical interface point on the front is only one. The

operating mode is controlled as follows:

• line side: via software it is possible to terminate one F1 and enable the transit to the other in pass-

through modality

• radio side: via software it is possible to enable one F1 whereas the F1, line side, transits in pass-

through modality.

At the output of the 2xSTM-1 multiplexer the bit rate of the signal is 314496 kbit/s. Along with the relevant

clock the 314496 kbit/s signal is sent to modulator.

Radio side (see Fig.132)

The 2xSTM-1 signal plus relevant clock from demodulator are sent to the frame aligner circuits with the

purpose of extracting radio performances and alarms (LOS, J0 trace identifier mismatch). The 2xSTM-1

radio side SOH drop circuit terminates the F1, D1-D3, J0, RPM (Radio Performance Monitoring) signals that

were embedded in the 2x2STM-1 frame in the far terminal, radio side.

At the output of SOH drop circuit will be available, on two separated paths, the two STM-1 signals plus the

2 Mbit/s way side.

The circuits that follow first terminate the wayside signals sending them to the 2 Mbit/s output interfaces

and then, through a RSOH insert circuit, embed the F1, D1-D3, J0, B1 into the two STM-1 frames to be

delivered to the line side.

Take into account that only one F1 can be use to carry a 64 kbit/s -V.11 channel from the local service

interface. The other F1 carries another 64 kbit/s-V11 channel (if used) in pass-through mode.

25.3.1.3 Modem

Reference is made to Fig.133.

Modulator side

The aggregate signal from line interface is enriched with extra redundancy for FEC operation reaching the

total modulating rate shown below:

• 169036,846 kbit/s (1xSTM-1 version)

• 338073,692 kbit/s (2xSTM-1 version).

Page 180: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 180/240

178 ALS - MN.00164.E - 001

The circuit that follows encodes the data for the 32 or 128 constellation points and then, through a digital

filters and D/A converters, supplies the I & Q signals to the QAM modulator along with 330 MHz carrier.

The QAM modulated carrier is passed, through an IF low pass filter and an amplifier, to the cable interface

circuit for the connection to the IDU/ODU cable.

Demodulator side

The 140 MHz QAM modulated carrier from ODU, is received by the demodulator input passing through the

cable interface circuit.

An IF amplifier provided with AGC compensates for cable loss.

This amplifier has two outputs: one connected to the I&Q demodulator circuit, the other can be used for

Xpic operation.

The I&Q demodulator is driven by a 140 MHz recovered carrier. The carrier and clock recovery information

are achieved by the relevant circuits. From the analogue to digital converters the I&Q signals are sent to

the adaptive equalizer to minimize the intersymbolic interference.

The data are then passed to the decoder and the error corrector for the relevant processing and for gen-

eration of a single aggregate signal to be sent to line interface.

25.3.1.4 Power supply and cable interface

Reference is made to Fig.134.

The Power Supply Unit receives the 48 V battery voltage from a 3W3 SUB-D connector on RIM front. The

battery is processed through a DC to DC converter to achieve the +3.5V; +1.5V; +5V to power feed the

IDU.

The same battery voltage is sent to the interconnection cable to power the far ODU. An automatic protec-

tion protects the battery against cable short.

The Cable Interface permits the bidirectional dialogue between IDU and ODU. It consists of combination

and separation filters.

Signals from IDU to ODU are the following:

• battery voltage between the core and the cable shield

• 330 MHz, 32/128QAM modulated carrier carrying the main signal

• 17.5 MHz FSK modulated carrier coming from the Controller and carrying the controls for ODU man-

agement.

Signal from ODU to IDU are the following:

• 5 MHz FSK modulated carrier going to Controller and carrying the measurements and alarms from

ODU

• 140 MHz 32/128 QAM modulated carrier carrying the main signal

25.3.2 Controller

The controller manages the following:

• the interface ports for the management program access

• the equipment firmware for equipment functioning

• the alarm interface through relay contacts that permits to transfer outside the alarm severity asso-

ciated to each alarm root along with external input alarms.

Page 181: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 181/240

 ALS - MN.00164.E - 001 179

25.3.2.1 Interface ports

The SCT/LCT or NMS5UX management program takes access to the equipment through the following in-

terface ports:

• LCT provided with an USB access connector with a maximum speed rate of 12 Mbit/s

• RS232 provided with a SUB-D access connector with a maximum speed rate of 57.6 kbit/s

• Q3-Ethernet IEEE 802.3 with RJ45 connector

• STM-1 QECC using D1-D3-SOH bytes of the STM-1 frame with a speed rate of 192 kbit/s.

25.3.2.2 Equipment firmware

Equipment firmware controls and manages all the equipment functionalities.

It is distributed over two hardware levels: main controller within the controller module and peripheral con-

troller within the ODU. The dialogue between the main and slave controllers occurs through a 388 kbit/s

frame carried by FSK modemodulators (see Fig.135) housed into IDU and ODU.

Main controller

The activities performed by the main controller are the following:

• Communication management: it makes use of SNMP as management protocol and IP or IPoverOSI

as communication protocol stacks. See Fig.136 and Fig.137 for details.

• Log-in: the main controller manages the equipment or network login/logout by setting and then

controlling the user’s ID and relevant password.

• Database (MIB): validation and storing in a non-volatile memory of the equipment configuration pa-

rameters.

• Equipment configuration: distribution of the parameters stored in the MIB towards the peripheral

µPs for their attenuation in addition to the controls from user not stored in the MIB (i.e. loops, man-

ual forcing etc....)

• Alarm monitoring: acquisition, filtering and correlation of the alarms gathered from slaved µPs. Lo-

cal logger and alarm sending to the connected managers: SCT/LCT-NMS5UX. Management of the

alarm signalling on the front panel.

• Performances: PM management as per Recc. G.828.

• Download: the main controller is equipped with two flash memory banks containing the running pro-

gram (active bank) and the stand-by program (inactive bank). This permits to download a new soft-

ware release to the inactive bank without distributing the traffic. Bank switch enables the new

release to be used. Download activity is based on FTP protocol which downloads application pro-

grams, FPGA configuration, configuration files on main controller inactive bank or directly on the

peripheral controllers.

Peripheral controller

The peripheral controllers take place within the ODU and are slaved to main controller with the task of ac-

tivating controls and alarm reporting of dedicated functionality.

25.3.3 IDU telemetry

Refer to Fig.138. The telemetry is used to:

• propagate towards the far radio terminal the following information: ATPC, user inputs and alarms.It makes use of the S (2,2) media dependent byte for the transport.

Page 182: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 182/240

180 ALS - MN.00164.E - 001

• permits the dialogue between IDU and ODU. the ODU management controls are framed over a 388

kbit/s signal that from the main controller is propagated over the IDU/ODU interconnecting cable

making use of a 5.5 MHz FSK modulated carrier.

Similarly alarms and status from ODU are propagated towards IDU making use of another 388 kbit/s

framed signal that is propagated over the interconnecting cable making use of a 17 MHz, FSK modulated

carrier.

25.3.4 IDU loops

To control the IDU correct operation a set of local and remote loops are made available. The controls are

sent by the management program (SCT/LCT or NMS5UX). Refer to Fig.139 for details.

25.3.4.1 Line loop

Local loop

Each input STM-1 signal is routed back directly to the output thus permitting to control the IN/OUT inter-

connecting cables.

Remote loop

Each output STM-1 signal is routed back towards the radio. This permits to control the path back and for-

ward.

25.3.4.2 Baseband loop

The input 1xSTM-1 or 2x STM-1 signals are multiplexed and then, through the loop, routed back to the

output lines. This permits to control all the line interface circuitry.

25.3.4.3 IDU loop

This loop permits to control the full IDU operation. The modulator output signal is routed back to the de-

modulator. Upon enabling the loop, the 330 MHz modulator output frequency is converted to 140 MHz (de-

modulator input).

Warning: If IDU loop (IF) doesn’t work, please repeat the IDU loop (IF) with the IDU-ODU cable discon-

nected from IDU to give a final result.

25.3.5 Front panel of SDH IDU compact

Fig.140 shows the front panel of SDH IDU compact with LEDs and connectors highlighted.

Page 183: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 183/240

 A L  S 

-MN. 0  0 1  6 4 .E 

- 0  0 1 

 1  8 1 

F i   g.1 1 

 6 –L I M

 b l   o

 ck 

 d i   a

 gr 

 am

 ,R S T m

 o d  e-1 x

 S T M-1 

 o p er  a

 t i   on

remarF

HOSporD

sseltiHxR 

airetirc

ataDssol

lacoL

tratser

SIASM

lacoLrhcnys.reneg

evobasA

HOSR setyb

pord

wSairetirc

1–MTS

LA

LA

1–MTS

1–MTS

FOL /SOL

HOSR setybtresni

kC

1–MTS

kC

2MIR morf 

1MIR morf 

HOStresnI

lacoLtratser

lacoL rhcnys.reneg

SIASM

HOSporD

remarF

Dl

LA

LA

HOSR setybpord

HOSR setybtresni

1–MTS

1–MTS

1MIR ot

2MIR ot

rellortnocniaM

dnalortnocetybHOStnemeganamgnihctiwsxR  /xT

smralA

smralA

s /tibM2edisyaw

s /tibM2

edisyaw

s /tibM2

s /tibM2

Page 184: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 184/240

1  8 2 

L  S -MN. 0  0 1  6 4 .E 

- 0  0 1 

F i   g.1 1 7 –L I M

 b l   o

 ck 

 d i   a

 gr  am

 ,R

 S T 

 o p er 

 a t i   onm

 o d  e-2 x

 S T M-1 

 o p er  a

 t i   onm

 o d  e-f  

r  om l  i  n

 e si   d 

 e t  o

r  a d 

i   o si   d 

 e

1POR DHOSR ,IPS 2POR DHOSR ,IPS

tresnIHOSsulprexelpitlumedisoidaR 1–MTSx2

1DOMot2DOMot

KC+ataD

2B+1B

MP

0J1F 3D–1D

s /tibM2tresniedisyaw

gnif f utsdna

+1–MTS

edisyaw

2B+1B

MP1F 0J D–1D

w

1–MTS

edisyaWsecaf retni

s /tibM2x2

1–MTS

enilmorf 

slennahcecivreSsnoitcennocretni

3D–1D1F

tratserlacoL

SIASM& .rusaem

SIA–SM0J

liaf 2 /1–MTS

liaf 1 /1–MTS

1B

1–MTS

enilmorf 

11V /s /tibk46

tresnilacol

.piuqErellortnoc

edisyaWecaf retni

Page 185: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 185/240

 ALS - MN.00164.E - 001 183

Fig.118 – LIM block diagram, RST operation mode - 2xSTM-1 version - from radio side to line

side

Fig.119 – LIM - 4xSTM-1 operation mode

Framealigner

Hitless switch Switch control

Data–ck–frame

sync

Framealigner

Data–ck–frame

sync

2xSTM–1radio side

SOH Drop

F1

D1–D3

RPMJ0

2 Mbit/s waysidedrop/destuff 

2 Mbit/s waysidedrop/destuff 

RSOH insert 1 RSOH insert 2

Alarms

(LOF, RPM, J0) dem1 and

2 alarms, Ber

F1 D1–D3 B1 J0 F1 D1–D3 B1 J0

STM–1 + 2 Mbit/s

STM–1

STM–1 + 2 Mbit/s

STM–1

Alarms

(LOF, RPM, J0)

From DEM1 From DEM2

Service channels

interconnection

64 kbit/s/V11

local drop

Equip.controller

Waysideinterf.

2 Mbit/s

2 Mbit/s

STM–1

to line

STM–1

to line

As per circuitryof Fig. 84

As per circuitryof Fig. 84

LIM

MODEM A ODU A

MODEM B ODU B

STM–1#1

STM–1#2

STM–1#3

STM–1#4

Page 186: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 186/240

184 ALS - MN.00164.E - 001

Fig.120 – Synchronisation block diagram

Clock

selection

Logic

circuit for

clock

selection

Synchronism

for 2xSTM–1

generation

Ck from STM–1/1

Ck from STM–1/2

Ck from STM–1/3

Ck from STM–1/4

LOS 1–4

LOF 1–4

Priority control

Manual forcing

Control

Page 187: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 187/240

 A L  S 

-MN. 0  0 1  6 4 .E 

- 0  0 1 

 1  8  5 

F i   g.1 2 1 –M

 o d  em

 o

 d  ul   a t  or 

 b l   o

 ck 

 d i   a

 gr  am

MILmorf ataD & CEFredocne

latigiDretlif 

D

A

D

A

Q& Irotaludom

DA

D

A

Q& I.domed

evitpadArezilauqe

KCyrevocer

reirraCyrevocer

rorrErotcerrocredoced& 

MILotataD

041OCVzHM

CIPX

D

A

D

A

etniQ& I

.domed

OXCV

041OCVzHM

zHM033rotallicso

Page 188: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 188/240

186 ALS - MN.00164.E - 001

Fig.122 – Frequency reuse system arrangement

Fig.123 – Power supply and cable interface block diagram

+

+

Rx1

Rx2

V

H

IF

IF

MainDEM

Main

DEM

Dem withXPIC

Dem withXPIC

RIM1

RIM2

data H

data V

TxA

TxB

V

H

Data H

Data V

Cableinterface

MOD

DEM140 MHz

330 MHz

Filtering& fuse

MODFSK

DEMFSK

LIM

5 MHz

17,5 MHz

to/fromODU

–48 Vbattery +5 V

+1.5 V+3.5 V

Cableprotec.

Page 189: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 189/240

 ALS - MN.00164.E - 001 187

Fig.124 – Main and peripheral controller connection

Fig.125 – Full-IP protocol stack

  r  e   l   l  o  r  t  n  o  c  n   i  a

   M

  s   /   b   k   8   3   3

  s   /  t   i   b   k   8   8   3

   N   A   L

   2   3   2   S   R

   T

   C   L

  n   I  r  e  s

   U

   /  m  r  a   l

   A

  t  u

   O  r  e  s

   U

   K   S   F

  m  e

   d  o  m

   K   S   F

  m  e

   d  o  m

   2   U   D   O

  s   /   b   k   8   8   3

  s   /  t   i   b   k   8   8   3   K

   S   F

  m  e

   d  o  m

   K   S   F

  m  e

   d  o  m

   1   U   D   O

   C   C   D

  s   /  t   i   b   k   8   8   3

  r  o  t  a  r  e  n  e  g

  r  e  v   i  e  c  e  r

  s   /  t   i   b   k   8   8   3

  r  o  t  a  r  e  n  e  g

  r  e  v   i  e  c  e  r

 .  c  e  r   /  n  e  g

   l  a  r  e

   h  p   i  r  e

   P

  r  e   l   l  o  r  t  n

  o  c

   l  a  r  e   h  p   i  r  e

   P

  r

  e   l   l  o  r  t  n  o  c

 .  c  e  r   /  n  e  g

  s  m  r  a   l

   A

STM–1 DCC Line sideSTM–1 DCC Radio side

PPP PPP

ISO 8802.3(Ethernet LAN)

LLC ISO 8802.2MAC ISO 8802.3

AsynchronousRS –232

PPP

IP / OSPF

TCP/UDP

SNMP

ALS APPLICATION SOFTWARE

Page 190: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 190/240

188 ALS - MN.00164.E - 001

Fig.126 – OSI+IP protocol stack

Fig.127 – IDU telemetry

AsynchronousRS–232

PPP

STM–1 DCC– Line sideSTM–1 DCC– Radio sideISO 8802.3(Ethernet LAN)

LLC ISO 8802.2MAC ISO 8802.3

LAPDQ.921

LAPDQ.921

ISO 8473 ISO 10598 IS– IS

IP / OSPF

TCP/UDP

SNMP

ALS APPLICATION SOFTWARE

  y  r  t  e  m  e   l  e   T

  s   d  r  a  w  o  t

  e  t  o  m  e  r

  e  c  a   f  r  e  t  n   I

   1  –   M   T   S  x   2

  e  m  a  r   f

   D   O   M

   K   S   F

   M   E   D

   K   S   F

   U   D   O  o   T

   M   I   R  a   i  v

  n   i  a   M

  r  e   l   l  o  r  t  n  o  c

   /   T   C   S

   T   C   L

    S

   (   2

 .   2   )

   7   1

  z   H   M

  5 z   H   M

Page 191: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 191/240

 A L  S 

-MN. 0  0 1  6 4 .E 

- 0  0 1 

 1  8  9 

F i   g.1 2 

 8 –I D

 Ul   o

 o p s

MEDMAQ

ro1–MTSx11–MTSx2

XUM

ro1–MTSx11–MTSx2

XUM

MIR 

MIL

BB

pool

eniLpool

meR poolenil

otpu1–MTSx2

otpu1–MTSx2

Page 192: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 192/240

190 ALS - MN.00164.E - 001

1 Led fail (self test controller)

- Electrical or plug-in line interface (electrical or optical with LED ON) and fail- 2xE1 wayside (RJ45)

- V11 (RJ45)

- IDU-ODU cable (SMA) connector

- IF out XPIC (SMA) connector

- IF in XPIC (SMA) connector

- -48 Vdc power supply connector, positive to ground

- Switch button

- LCT (USB) connector

- RS232 (SUB-D 9 pin male) connector

- User In/Out (SUB-D 9 pin male) connector

- Q3 (RJ45) connector

- Reset button

- IDU alarm LEDs (red), ODU (red), REM (red), TEST (yellow)

Fig.129 - Front panel of SDH IDU modular

-+

X X

XX

+-

W.S.1 W.S.2 V11

ONONONON

FAIL

1 2 3 4

REM

USER IN/OUTRS232LCT

TEST

ODUIDU

Q3

151413121110

1 2 3 4 5 6 7 8 9

Page 193: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 193/240

Page 194: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 194/240

1  9 2 

L  S -MN. 0  0 1  6 4 .E 

- 0  0 1 

F i   g.1 

 3 1 –L i  n

 ei  n

 t  er f   a

 c e b l   o

 ck 

 d i   a

 gr  am

 ,R

 S T 

 o

 p er  a t i   onm

 o d  e-2 x

 S T M-1 

 o p er  a

 t i  

 onm

 o d  e-f  r  om 

l  i  n e si   d 

 e t  or 

 a d i   o

 si   d 

 e-I D

 U S DH

 c om

 p a c t 

1POR DHOSR ,IPS POR DHOSR ,IPS

tresnIHOSsulprexelpitlumedisoidaR 1–MTSx2

KC+ataD

2B+1B

MP

0J1F 3D–1D

s /tibM2tresniedisyaw

gnif f utsdna

+1–MTS

edisyaw

2B+1B

MP1F 0J –1D

1–MTS

edisyaWsecaf retni

s /tibM2x2

slennahcecivreSsnoitcennocretni

3D–1D1F

tratserlacoLSIASM& .rusaem

SIA–SM0J

iaf 2 /1–MTS

af 1 /1–MTS

1B

11V /s /tibk46

tresnilacol

.piuqErellortnoc

edisyaWecaf retni

to modulator

STM-1 input n° STM-1 input n° 1

Page 195: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 195/240

 ALS - MN.00164.E - 001 193

Fig.132 – Line interface block diagram, RST operation mode - 2xSTM-1 version - from radio side

to line side (IDU SDH compact)

Framealigner

Data–ck–frame

sync

2xSTM–1radio sideSOH Drop

F1

D1–D3

RPM

J0

2 Mbit/s waysidedrop/destuff 

2 Mbit/s waysidedrop/destuff 

RSOH insert 1 RSOH insert 2

Alarms

(LOF, RPM, J0)

F1 D1–D3 B1 J0 F1 D1–D3 B1 J0

STM–1 + 2 Mbit/s

STM–1

STM–1 + 2 Mbit/s

STM–1

From DEM

Service channelsinterconnection

64 kbit/s/V11

local drop

Equip.controller

Waysideinterf.

2 Mbit/s

2 Mbit/s

STM–1output n°2

STM–1output n°1

Page 196: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 196/240

1  9 4 

L  S -MN. 0  0 1  6 4 .E 

- 0  0 1 

F i   g.1 

 3  3 –M

 o d  em

 o

 d  ul   a t  or 

 b l   o

 ck 

 d i   a

 gr  am

& CEFredocne

latigiDretlif 

D

A

D

A

Q& Irotaludom

D

A

D

A

Q& I.domed

evitpadArezilauqe

KCyrevocer

reirraCyrevocer

rorrErotcerrocredoced& 

041OCVzHMOXCV

zHM033rotallicso

from line interface

to line interface

Page 197: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 197/240

 ALS - MN.00164.E - 001 195

Fig.134 – Power supply and cable interface block diagram

      C      O      N      T      R      O      L      L      E      R

Cableinterface

MOD

DEM140 MHz

330 MHz

Filtering& fuse

MODFSK

DEMFSK

5 MHz

17,5 MHz

to/fromODU

–48 Vbattery +5 V

+1.5 V+3.5 V

Cable

protec.

Page 198: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 198/240

196 ALS - MN.00164.E - 001

Fig.135 – Main and peripheral controller connection

Fig.136 – Full-IP protocol stack

  r  e   l   l  o  r  t  n  o  c  n   i  a

   M

   N   A   L

   2   3   2   S   R

   T

   C   L

  n   I  r  e  s

   U

   /  m  r  a   l

   A

  t  u

   O  r  e  s

   U

  s   /   b   k

   8   8   3

  s   /  t   i   b   k   8   8   3   K

   S

   F

  m  e

   d

  o  m

   K   S

   F

  m  e

   d

  o  m

   U   D   O

   C   C   D

  s   /  t   i   b   k   8   8   3

  r  o  t  a  r

  e  n  e  g

  r  e  v   i  e  c  e  r

   l  a  r  e

   h  p   i  r  e

   P

  r  e   l   l  o  r  t  n  o  c

 .  c  e  r   /  n  e  g

  s

  m  r  a   l   A

STM–1 DCC Line sideSTM–1 DCC Radio side

PPP PPP

ISO 8802.3(Ethernet LAN)

LLC ISO 8802.2MAC ISO 8802.3

AsynchronousRS –232

PPP

IP / OSPF

TCP/UDP

SNMP

ALS APPLICATION SOFTWARE

Page 199: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 199/240

 ALS - MN.00164.E - 001 197

Fig.137 – OSI+IP protocol stack

Fig.138 – IDU telemetry

AsynchronousRS–232

PPP

STM–1 DCC– Line sideSTM–1 DCC– Radio sideISO 8802.3(Ethernet LAN)

LLC ISO 8802.2MAC ISO 8802.3

LAPDQ.921

LAPDQ.921

ISO 8473 ISO 10598 IS– IS

IP / OSPF

TCP/UDP

SNMP

ALS APPLICATION SOFTWARE

  y  r  t  e  m  e   l  e   T

  s   d  r  a  w  o  t

  e  t  o  m  e  r

  e  c  a   f  r  e  t  n   I

   1  –   M   T   S  x   2

  e  m  a  r   f

   D   O   M

   K   S   F

   M   E   D

   K   S   F

   U   D   O  o   T

   M   I   R  a   i  v

  n   i  a   M

  r  e   l   l  o  r  t  n  o  c

   /   T   C   S

   T   C   L

    S

   (   2

 .   2   )

   7   1

  z   H   M

  5 z   H   M

Page 200: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 200/240

1  9  8 

L  S -MN. 0  0 1  6 4 .E 

- 0  0 1 

F i   g.1 

 3  9 –I D

 Ul   o

 o p s

MEDMAQ

ro1–MTSx11–MTSx2

XUM

ro1–MTSx11–MTSx2

XUM

IDU SDH Compact

BB

pool

eniLpool

meR poolenil

otpu1–MTSx2

otpu1–MTSx2

Page 201: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 201/240

 ALS - MN.00164.E - 001 199

1 STM1-1 output (optical or electrical plug-in)

2 STM1-1 input (optical or electrical plug-in)

3 STM1-2 output (optical or electrical plug-in)

4 STM1-2 input (optical or electrical plug-in)

5 2xE1 (1, 2) wayside

6 ETH1 (RJ45) connector

7 ETH2 (RJ45) connector

8 V11 (RJ45) connector

9 RS232 (RJ45) connector

10 LCT (USB) connector

11 (SUB-D 9) 2 user in, 1 user out console

12 3,15 A 250V delayed fuse 5  20 mm miniature

13 SUB-D 3W3 power supply connector

14 IDU-ODU cable SMA connector

15 Led Test (yellow)

16 ODU alarm Led (red)

17 IDU alarm Led (red)

18 Led On (green)

Fig.140 - Front panel of IDU SDH compact

LCT

      + -

IDU

ON

ODU

TEST

USER IN/OUT

RS232V11

Q3 /1 Q3/ 2

1

2

21

2Mb/s WAY SIDE

STM1-2STM1-1

1514131211101 2 3 4 5 6 7

8 9

18

16 17

Page 202: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 202/240

200 ALS - MN.00164.E - 001

26 ODU AS DESCRIPTION

26.1 GENERAL

The ODU (refer to Fig.141) consists of a two shell aluminium structure, one shell housing all the circuits,

the other forming the covering plate.

On the ODU there are:

• the “N” type connector for cable interfacing IDU and ODU

• the “BNC” connector for connection to a multimeter with the purpose to measure the received field

strength

• a ground bolt.

The 1+1 hot stand–by version (refer to Fig.142) consist of two ODUs mechanically secured to a structure

housing the hybrid (for 1+1 hot stand-by configuration) or the circulator (for 1+1 frequency diversity con-

figuration) for the antenna connection.

26.2 TRANSMIT SECTION

Refer to block diagram shown in Fig.143.

The 330 MHz QAM modulated carrier from the cable interface (see chapter 26.4 CABLE INTERFACE) is for-

warded to a mixer passing through a cable equalizer for cable loss compensation up to 40 dB. The mixer

and the following bandpass filter give rise to a second IF Tx carrier the frequency of which depends on the

go/return frequency value.

The IF Tx frequency is µP controlled. Same happens to Rx IF and RF local oscillators. This latter is common

to both Tx and Rx sides.

The IF carrier is converted to RF and then amplified making use of MMIC circuits.

The power at the MMIC output can be manually attenuated via software.

The automatic adjustment is performed making use of an ATPC (see paragraph 26.5 ATPC OPERATION for

details).

The regulated output power is kept constant by a detector diode and a feedback including the AGC. RF Tx

signal is injected in Tx section of the duplexer.

The Loop RF circuits permit the conversion of the RF Tx signal to Rx frequency of the terminal. In this way

it is possible to control the total local radio terminal performance.

26.3 RECEIVE SECTION

The RF signal coming from the Rx bandpass filter of the duplexer is sent to a low noise amplifier that am-

plify it to low NF. The following down–converter translates the RF frequency to IF Rx frequency.

Page 203: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 203/240

 ALS - MN.00164.E - 001 201

A second down converter converts this signal to 140 MHz IF frequency. The output level of this signal is

kept constant to –5 dBm thank to the IF amplifier stages, AGC circuit controlled. Inside the IF Rx chain

there are filters that give Rx selectivity. In addition the AGC gives a measure of the receive RF level.

26.4 CABLE INTERFACE

The cable interface permits to interface the cable interconnecting IDU to ODU and viceversa.

It receives/transmits the following signals:

• 330 MHz (from IDU to ODU)

• 140 MHz (from ODU to IDU)

• 17.5 MHz (from IDU to ODU)

• 5.5 MHz (from ODU to IDU)

• remote power supply.

The 17.5 MHz (IDU -> ODU) and 5.2 MHz (ODU -> IDU) FSK modulated carriers, carry the telemetry chan-

nel. This latter consists of two 388 kbit/s streams one from IDU to ODU with the information to manage

the ODU (RF power, RF frequency, capacity, etc...) while the other, from ODU to IDU, sends back to IDU

measurements and alarms of the ODU. The ODU management is made by a µP.

26.5 ATPC OPERATION

The ATPC regulates the RF output power of the local transmitter depending on the value of the RF level

that joins the remote terminal. This value has to be preset from the local terminal as threshold high and

low. The difference between the two thresholds must be equal or higher than 3 dB.

As soon as the received level crosses the preset threshold level low (see Fig.144) due to the increase of 

the hop attenuation, a microP at the received side of the remote terminal sends back to the local terminal

a control to increase the transmitted power. The maximum ATPC range is 40 dB.

If the hop attenuation decreases and the threshold high is crossed then the control sent by the microP

causes the output power to decrease.

26.6 1+1 HOT STAND-BY AND FREQUENCY DIVERSITY Tx SYSTEM

The following 1+1 configurations are available:

• 1+1 hot stand-by, realized by 2 ODUs coupled by a mechanical support with one hybrid inside. Hy-

brid can be balanced or unbalanced.

• 1+1 frequency diversity, realized by 2 ODUs coupled by a mechanical support with a circulator in-

side.

The two ODUs are coupled to the antenna side via a balanced or unbalanced hybrid/circulator.

Page 204: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 204/240

202 ALS - MN.00164.E - 001

26.7 POWER SUPPLY

The battery voltage is dropped from the cable interface and then sent to a DC/DC converter to generate

stabilized output voltages used by the ODU circuitry:

Each voltage is protected against overcurrent with automatic restart.

Protection against overvoltage occurs as soon as the output voltage raises more than 15% respect to the

nominal voltage. The restart is automatic.

26.8 FREQUENCY REUSE

The frequency reuse system makes use of an XPIC circuit (Cross Polar Interference Canceller) and allows

the coexistence of two radio bearer transmission on the same RF channel. Each radio bearer carries an

individual STM–1 or 2xSTM–1.

The system consists of two fully independent transceivers, and a crosspolarized antenna with polarization

H connected to one transceiver and polarization V connected to the other transceiver.

The initial co–channel interference is featured by the antenna cross polar discrimination factor (example

29 dB). This value may be not sufficient for frequency reuse system making use of modulations   of 

32QAM.

After all, it may be impaired by the propagation condition giving rise to a BER degradation. To get a suitable

discrimination value, an adaptive canceller, based on a fully numeric adaptive coefficient filter, must be

used.

As shown in Fig.145, the received signals at the IF receiver outputs are processed by the demodulator

placed on the copolar branch as well as by the canceller annexed to the demodulator processing the signals

from the cross polar polarization. This process operates inbase band time domain.

An adaptive equalizer minimizes the intersymbolic interference within the copolar demodulator whereas acircuit similar to the equalizer, processes the signal on the cross route.

Such a signal, summed with the one available at the equalizer output permits the cancelling of the inter-

ference contained in the copolar signal.

Page 205: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 205/240

 ALS - MN.00164.E - 001 203

Fig.141 - 1+0 ODU

Fig.142 - 1+1 ODU with branching

Page 206: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 206/240

204 ALS - MN.00164.E - 001

Fig.143 - ODU block diagram

   C  a   b   l  e

   i  n  t  e  r   f  a  c  e

   C  a   b   l  e

  e  q  u  a   l   i  z .

   D   C   D   C

   S  t  e  p  u  p

   T

   L   N   A

   M   M   I   C

  v  a  r   i  a   b   l  e   b  w

   (  c  a  p  a  c   i  t  y

   d  e  p  e  n   d   i  n  g   )

   A   G   C

   N  t  y  p  e

   3   3   0

   M   H  z

  -   4   8   V

  x

   P   R  x  m  e  a  s

   1   4   0

   M   H  z

   1   4

   0

   M   H

  z

  a  p  p  r  o  x .

   7   6   5

   M   H  z

  +   3 .   5

   V

  +   6 .   2  t  o   8 .   2

   V

  -   1   2   V

   A   G   C

  x

   P   T  x  a  t  t .

  c  o  n  t  r  o   l

   0  t  o   4   0   d   B

   I   F

   L   O  u

  n   i  t

   M   O   D

   5 .   5

   M   H  z

   R   E   C

   1   7 .   5

   M   H  z

   D   E   M

   1   7 .   5

   M   H  z

   M   U   X

   D   E   M   U   X

   3   8   8

   k   b   i  t   /  s

   A   l  a  r  m

  m  a  n  a  g

   &

  c  o  n  t  r  o   l

   A   l  m

  c  o  m  m

   l  o  o  p  s

   5 .   5   M   H  z

   1   7 .   5

   M   H  z

   3   8   8

   k   b   i  t   /  s

   I   F   T  x

  a  n  t  e  n  n  a

  s   i   d  e

   I   N   V

   B   N   C

   P   R  x

  m  e  a  s .

  c  t  r   l

   R   F   L   O  u  n   i

  t   R

  x

   T

  x

   R   F   l  o  o  p

  c  t  r   l

  c  t  r   l

  c  t  r   l

   R  x

   T  x

Page 207: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 207/240

 ALS - MN.00164.E - 001 205

Fig.144 - ATPC operation

Fig.145 - Frequency reuse system

Thresh High

Thresh Low

Hop attenuation (dB)

20 dBATPC range

PTx max.

PTx min.

Remote PRx

dBm

Local PTx

dBm

Hop attenuation (dB)

Tx

Rx

Rx

Tx

PTx actuation

Local Remote

PRx recording

Transmission

of PTx control

µP µP

level

PTx control

+

+

Rx1

Rx2

V

H

IF

IF

DEM

DEM

XPIC

XPIC

RIM1

RIM2

H data

V data

Page 208: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 208/240

206 ALS - MN.00164.E - 001

27 ODU ALS DESCRIPTION

27.1 GENERAL

Refer to Fig.146.

The ODU mechanical structure consists of two aluminium shells that contain respectively the active circuits

and the branching filter.

It is the electrical interface with the radiant system and the coaxial cable connected to the indoor unit

(IDU).

The IDU–ODU cable connection is realised by a “N” type connector.

In the 1+1 versions there are two “N” connectors available.

A BNC connector is also available for the measurement of the received field by means of a multimeter.

The ODU is available in the 1+0 version or in the 1+1 version.

The subdivision of active circuits into the transceiver and passive circuits into the branching has allowed

the execution of a mechanical structure that makes easier the maintenance operations.

Two knobs and two fast coupling levers permit to remove the faulty transceiver and replace it with spare.

One handle makes the transceiver transport easier.

27.2 TRANSMITTER SECTION

Refer to block diagram shown in Fig.147.

The modulated signal at 330 MHz intermediate frequency dropped from cable interface (see chapter 27.4

CABLE INTERFACE) is forwarded to a mixer in order to translate it to a new IF frequency by beating with

an IF local oscillator.

The value of this IF frequency depends on the RF channelling.

The frequency conversion from IF to the RF operating band is enabled through an SHP (Sub Harmonic

Pumped) mixer.

This latter is fed by a VCO (RF LO), common also to the receive section.

At the mixer output, it is positioned a filter with metallic insert (E–plane metal insert filter). Such a filter

provides the selection of the useful band and the erasing of the spurious signals coming from the mixer.

The signal at the filter output is forwarded to a power amplifier the gain of which is controlled by an ATPC

circuit (if enabled) or manually controlled. The ATPC range is from 0 to 20 dB, 1 dB step.

ATPC function is managed by the main controller present in the IDU and it is particularly useful to reduce

the possible interference generation.

Page 209: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 209/240

 ALS - MN.00164.E - 001 207

27.3 RECEIVER SECTION

Refer to block diagram shown in Fig.147.

The signal coming from the branching is forwarded to a low noise amplifier. This operation allows to reduce

the noise factor of the whole receiver.

Then the signal is sent to a variable amplifier with the aim to limit the intermodulation in the following

steps.

At the output, a pre–conversion filter with metallic insert (E–plane metal insert filter) is positioned. Such

a filter provides eliminating all the signals out of the receiving band.

The reception mixer is a SHP (Sub Harmonic Pumped) type one. It allows to convert the received signal

from RF band to IF Rx frequency making use of RFLO oscillator.

At the mixer output, the signal is sent to a dielectric resonator filter to select the useful band and to elim-

inate mixer spurious signals.

A second down conversion translates the IF Rx signal frequency to 140 MHz.

At the mixer output, one filter shapes the passband for STM–1 or 2xSTM–1 signal.

This filter is realised by means of SAW technique to ensure high attenuations out of band.

An AGC (Automatic Gain Control) circuit regulates the received signal at an output constant level before to

be sent to the cable interface.

27.4 CABLE INTERFACE

The cable interface unit permits to interface the cable interconnecting IDU to ODU and viceversa.

It receives/transmits the following signals (see Fig.152):

• 330 MHz (from IDU to ODU)

• 140 MHz (from ODU to IDU)

• 17,5 MHz (from IDU to ODU)

• 5,5 MHz (from ODU to IDU)

• remote power supply.

The 17.5 MHz and 5,5 MHz carriers, carry the telemetry channel. This latter consists of two 388 kbit/s

streams one from IDU to ODU with the information to manage the ODU (RF power, frequency, capacity

etc...) while the other, from ODU to IDU, sends back to IDU measurements and alarms of the ODU.

A Mux/Demux and an alarm/management & control µP complete the telemetry channel.

27.4.1 Power supply

The cable interface unit manages the remote power supply VTAL for the outdoor unit provided through the

interconnecting cable coming from indoor unit. Refer to Fig.147.

This voltage is sent to two DC/DC converters, inserted into the power supply unit, to obtain the –12 V and

+12 V stabilised voltages. The +12 V is sent to another DC/DC converter to obtain the stabilised voltage

+5 V. These three outputs (+12 V, –12 V, +5 V) supply the whole transceiver.

Each voltage has overcurrent protection (Overcurrent prot) to disable the relevant converter.

The Alarm Detector block generates an alarm (PSU AL) due to undervoltage, if at least one of these volt-

ages drops under the fixed threshold.

Page 210: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 210/240

208 ALS - MN.00164.E - 001

The unit provides also an interrupt command for the +5 V and +12 V outputs if the output voltage –12 V

is missing. This prevents the devices in the power amplifier stage from reaching their saturation current.

27.5 BRANCHING UNIT

The branching unit allows coupling the antenna to the transmitting side and to the receiving one.

The branching mainly consists of one filter fro the transmission and another filter for the reception, coupled

at the antenna port by means of a duplexer.

At Tx side an optional attenuator permits to lower the output power by 0/20 dB via software. The attenu-

ator is placed in the transceiver for 38 GHz version only.

The branching unit is available in the following versions:

• 1+0 (see Fig.148)

• 1+1, hot stand–by 1 antenna with RF relay (see Fig.149)

This configuration is used up to 26 GHz.

• 1+1, hot stand–by 1 antenna with hybrid (see Fig.150)

This configuration is used from 28 GHz up to 38 GHz.

• 1+1 frequency diversity (see Fig.151).

1+1 hot stand–by version, comprises an electromechanical RF relay in Tx side for transmitter selection and

a splitter in Rx side. Two 0/50 dB attenuators can be used in alternative to the electromechanic selector

switch (see Fig.150). In this case the two 0/50 dB attenuators take place in the transceivers.

Controls for transmitter selection to be coupled to the antenna are from main controller within the LIM. It

processes the switching criteria according to the following priority:

Tab.23 - Switching criteria priority

27.6 ATPC

The automatic transmit power control function (ATPC) is available in the equipment as a standard feature.

The range is 20 dB implemented in 1 dB step. ATPC allows to improve the system performance.

The most important impacts are:

• interference reduction;

• power consumption reduction in nominal propagation condition.

The ATPC functional block diagram is shown in Fig.153.

Priority Level Definition

From highest to lowest

1 Power supply alarm

2 Local manual forcing

3 Cable open/Cable short

4 ODU failure/modulator failure

5 ATPC out of order

6 Preferential branch presetting

Page 211: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 211/240

 ALS - MN.00164.E - 001 209

West side

The value of the received Rx power is extracted inside ODU Rx section and then transmitted to RIM making

use of a 388 kbit/s frame forwarded through a 5,5 MHz carrier.

Such a value is then inserted into the RFCOH frame to be sent to remote terminal.

East side

The remote terminal drops from the RFCOH frame the PRx information and then sends it to the ODU

through a 388 kbit/s frame forwarded by a 17,5 MHz carrier.

The value of the transmitted power is regulated by the ATPC processor circuit.

27.7 RF LOOP (OPTION)

The RF loop is realised inside the transceiver before the branching, routing the transmitted signal to the

receiver (see Fig.147).

To avoid interference, the far RF transmitter is automatically switched–off during the RF loop activity.

The transmission signal is dropped from the transmitter by means of a coupler.

Upon receiving a control from SCT/NMS5UX programs a shift oscillator is switched–on thus generating the

Tx/Rx separation frequency signal.

This latter is sent to one mixer along with the Tx signal.

The beating between the two permits to convert the Tx frequency to Rx and then to convoy the Rx fre-

quency to the Rx side through a coupler.

Warning

If RF loop is enabled on the remote terminal then the loop must be timed–out to avoid a permanent loss

of connection with the remote terminal.

Time–out presetting is performed by SCT/LCT or NMS5UX programs (for details see relevant documenta-

tion).

The RF loop must be enabled on one terminal at the time. In case of 1+1, Tx and Rx branches must be

forced on the looped branch.

RF loop can be checked only at max PTX. If ATPC is active verify output power or disable ATPC and set PTx

at maximum values.

27.8 FREQUENCY REUSE

The frequency reuse system makes use of an Xpic circuit (Cross Polar Interference Canceller) and allows

the coexistence of two radio bearer transmission on the same RF channel. Each radio bearer carries an

individual STM–1 or 2xSTM–1.

The system consists of two fully independent transceivers, and a crosspolarized antenna with polarization

H connected to one transceiver and polarization V connected to the other transceiver.

The initial co–channel interference is featured by the antenna cross polar discrimination factor (example

29 dB). This value may be not sufficient for frequency reuse system making use of modulations  32QAM.

After all, it may be impaired by the propagation condition giving rise to a BER degradation. To get a suitablediscrimination value, an adaptive canceller, based on a fully numeric adaptive coefficient filter, must be

used.

Page 212: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 212/240

210 ALS - MN.00164.E - 001

As shown in Fig.154, the received signals at the IF receiver outputs are processed by the demodulator

placed on the copolar branch as well as by the canceller annexed to the demodulator processing the signals

from the cross polar polarization. This process operates in base band time domain.

An adaptive equalizer minimizes the intersymbolic interference within the copolar demodulator whereas a

circuit similar to the equalizer, processes the signal on the cross route.

Such a signal, summed with the one available at the equalizer output permits the cancelling of the inter-ference contained in the copolar signal.

Page 213: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 213/240

 ALS - MN.00164.E - 001 211

Fig.146 - Lower view of the ODU 1+1 and ODU 1+0 units

Transceivers

BNC connectorsfor PRx measuerment

N connectorsfor IDU cable

Branching

BNC connectorfor PRx measurement

N connectorfor IDU cable

Branching

Transceiver

Page 214: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 214/240

212 ALS - MN.00164.E - 001

Fig.147 - Block diagram of the ODU

   S   h   i   f  t  e  r

   f  r  o  m  µ   P

   A   G   C

   L   N   A

   1   4   0

   M   H  z

   P   R  x

   I   F   R  x

   I   F   T  x

   I   F   R  x

   I   F   T  x

   R   F   f  r  o  m    b

  r  a  n  c   h   i  n  g

   R   F  t  o   b  r

  a  n  c   h   i  n  g

   d  a

  µ   P

   A   T   P   C

  1  4  0   M  H  z

   3   3   0

   M   H  z

   M   O   D

   5 .   5

   M   H  z

   R   E   C

   1   7 .   5

   M   H  z

   D   E   M

   1   7 .   5

   M   H  z

   M   U   X

   D   E   M   U   X

   A   l  a  r  m

    m    a    n    a    g .

   &  c  o  n  t .

  µ   P

   5 .   5

   M   H  z

   3   8   8   k   b   i  t   /  s

   3   8   8   k   b   i  t   /  s

   A   l  a  r  m

  c  o  m

  m  a  n   d  s

   l  o  o  p  s

   R   F   L   O

   1   2 .   5

   M   H  z

   O  v  e  r  c  u  r  r .

  p  r  o

  t  e  c .

   A   l  a  r  m

   d  e  t  e  c

  t .

   C  a   b   l  e

   i  n  t  e  r   f  a  c  e

  +   1   2   V

  +   5   V   P

   S   U   A   L

  -   1   2   V

  V  T  A  L

  t  o   /   f  r  o  m    I   D

   U

   R

   F

   A   G   C

   0   /   2   0   d   B

   3   8   0   G   H  z  s  o   l  o

   f  r  o  m  µ   P

   f  r  o  m  µ   P

   M  e  a  s  u  r  e

   2  x   S   T   M  -   1

   1  x   S   T   M  -   1

   R   F   L  o  o  p

   O  v  e  r  c  u  r  r .

  p  r  o  t  e  c .

   O

  v  e  r  c  u  r  r .

  p  r  o  t  e  c .

Page 215: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 215/240

 ALS - MN.00164.E - 001 213

Fig.148 - 1+0 branching

Fig.149 - 1+1 hot stand–by branching, 1 antenna (RF relay version)

Rx

Tx

Antennaside

to/fromtransceiver

Duplexer

From Tx1

Antenna

From Tx2

To Rx1

To Rx2

Switchingcontrol

Page 216: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 216/240

214 ALS - MN.00164.E - 001

Fig.150 - Branching 1+1 hot stand–by, 1 antenna (version with hybrid)

Rx1

Tx1

Antennaside

Rx2

Tx2

Switching

command

from µP

Switching

command

from µP

T

0/50 dB

T

50/0 dB

Branching side

Page 217: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 217/240

 ALS - MN.00164.E - 001 215

Fig.151 - 1+1 branching frequency diversity

Fig.152 - Signals present on the IDU–ODU coaxial cable

 

T

0/20 dB optional

command

T

0/20 dB optional

command

from

A

from

A

48 Vdc

330 MHz140 MHz17.5 MHz5.5 MHz

RxTelemeteringfrom IDUto ODU

Tx

Telemiteringfrom ODUto IDU Rx signal Tx signal

Page 218: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 218/240

216 ALS - MN.00164.E - 001

Fig.153 - ATPC functional block diagram

Fig.154 - Frequency reuse system

BR ANCHING

Tx

Rx

BR ANCHING

Rx

Tx

RFCOH MOD

PRx meas.

STM-1RFCOHDEM

PRx meas.

ATPC

RIMRIM

ODUODU

West side East side

+

+

Rx1

Rx2

V

H

IF

IF

DEM

DEM

XPIC

XPIC

RIM1

RIM2

data H

data V

Page 219: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 219/240

 ALS - MN.00164.E - 001 217

Section 5.COMPOSITION

28 IDU COMPOSITION

28.1 GENERAL

IDU SDH consists of the following versions:

• IDU SDH modular

• IDU SDH compact

Each module is available in different versions and is composed of various subunits.

Warning: Modules mentioned in this document are those that, following a failure, are considered as re-

placeable parts.

28.2 COMPOSITION OF IDU SDH MODULAR 

The IDU consists of LIM/RIM/CONTROLLER modules made-up in different versions. Each module is identi-

fied through a label (see Fig.155) placed inside indicating the correspondent P/N. The P/Ns are the follow-

ing:

- LIM D12091 capacity 2xSTM-1 electrical interface

D12092 capacity 4xSTM-1 electrical interface

D12106-02 capacity 2xSTM-1 electrical/optical interface without plug-in

D12107-02 capacity 4xSTM-1 electrical/optical interface without plug-in

- E01409 plug-in module with Laser S11 interface

- S04002 plug-in module with electrical STM-1 interface and 1.0/2.3 connector

- RIM D16027 (with Xpic)

D16026 (without Xpic)

- CONTROLLER D12078 option RJ45

Page 220: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 220/240

218 ALS - MN.00164.E - 001

Fig.155 - IDU P/N

28.3 COMPOSITION OF IDU SDH COMPACT

IDU is available in different versions; each of them is identified by a part number code.

A label, on the top left side of IDU mechanical structure contains this part number.

The available versions are:

- IDU 1+0 2xSTM-1 electrical interface GD0366

- IDU 1+0 2xSTM-1 optical interface GD0367.

ALS IDU

Page 221: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 221/240

 ALS - MN.00164.E - 001 219

29 COMPOSITION OF THE OUTDOOR UNIT

29.1 GENERAL

SDH ODU is available in ALS and AS versions.

29.2 ODU AS COMPOSITION

The ODU AS consists of mechanical structure formed by two shells. One shell houses the transceiver mod-

ule, the other houses the branching module.

Both the transceiver and the branching are available in different versions depending on the operating band,

the antenna configuration, the channel filters etc.....

To the purpose on the branching mechanical structure is available a label showing the ODU most significant

parameters and the P/N of the whole unit. Fig.156 shows label position whereas Fig.157 shows a typical

example of the parameters evidenced by the label.

Fig.156 - Label positiobs - ODU AS

ODU serial nr. plate

ODU type plate (see next figure)

Page 222: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 222/240

220 ALS - MN.00164.E - 001

Fig.157 - Equipment most significant data

29.3 ALS ODU COMPOSITION

IDU is made up of a mechanical structure consisting of two cases. One case houses the transceiver module

and the other houses the branching module.

Both transceiver and branching are available in different versions depending on the operating band, an-

tenna configuration, channel filters, etc....

On branching mechanical structure a label is provided; it shows the most important ODU parameters and

the part number of the whole unit.

ALS18

Page 223: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 223/240

 ALS - MN.00164.E - 001 221

Fig.158 - Label positions - ODU ALS

Branching

Branching

Transceiver

Transceiver P/N label

Transceiver

ODU P/N position

ODU P/N position

Transceiver P/N label

Page 224: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 224/240

222 ALS - MN.00164.E - 001

Page 225: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 225/240

 ALS - MN.00164.E - 001 223

Section 6.SAFETY RULES AND EQUIP-MENT DISPOSAL

30 FIRST AID FOR ELECTRICALSHOCK AND SAFETYRULES

30.1 FIRST AID FOR ELECTRICAL SHOCK

Do not touch the patient with bare hands until the circuit has been opened. Open the circuit by switch-

ing off the line switches. If that is not possible protect yourself with dry material and free the patient

from the conductor.

30.1.1 Artificial respiration

It is important to start mouth resuscitation at once and to call a doctor immediately. suggested procedure

for mouth to mouth resuscitation method is described in the Tab.24.

30.1.2 Treatment of burns

This treatment should be used after the patient has regained consciousness. It can also be employed while

artificial respiration is being applied (in this case there should be at least two persons present).

Warning

• Do not attempt to remove clothing from burnt sections.

• Apply dry gauze on the burns.

• Do not apply ointments or other oily substances.

Page 226: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 226/240

224 ALS - MN.00164.E - 001

Tab.24 - Artificial breathing

Phase Description Figure

1

Lay the patient on his back with his arms parallel to the body.

If the patient is laying on an inclined plane, make sure that his

stomach is slightly lower than his chest. Open the patientsmouth and check that there is no foreign matter in mouth

(dentures, chewing gum, etc.).

2

Kneel beside the patient level with his head. Put an hand under

the patient’s head and one under his neck.

Lift the patient’s head and let it recline backwards as far

as possible.

3

Shift the hand from the patient’s neck to his chin and his

mouth, the index along his jawbone, and keep the other fingers

closed together. While performing these operations take agood supply of oxygen by taking deep breaths with your mouth

open.

4

With your thumb between the patient’s chin and mouth keep

his lips together and blow into his nasal cavities.

5

While performing these operations observe if the patient’s

chest rises. If not it is possible that his nose is blocked: in that

case open the patient’s mouth as much as possible by pressing

on his chin with your hand, place your lips around his mouth

and blow into his oral cavity. Observe if the patient’s chest

heaves. This second method can be used instead of the first

even when the patient’s nose is not obstructed, provided his

nose is kept closed by pressing the no strils together using the

hand you were holding his head with. The patient’s head must

be kept sloping backwards as much as possible.

6Start with ten rapid expirations, hence continue at a rate oftwelve/fifteen expirations per minute. Go on like this until the

patient has regained consciousness, or until a doctor has as-

certained his death.

Page 227: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 227/240

 ALS - MN.00164.E - 001 225

30.2 SAFETY RULES

When the equipment units are provided with the plate, shown in Fig.159, it means that they contain com-

ponents electrostatic charge sensitive.

Fig.159 - Indication of components sensitive to electrostatic charges

In order to prevent the units from being damaged while handling, it is advisable to wear an elasticised band(Fig.160) around the wrist ground connected through coiled cord (Fig.161).

Fig.160 - Elasticised band

Fig.161 - Dedicated cord

The units showing the label, shown in Fig.162, include laser diodes and the emitted power can be danger-ous for eyes; avoid exposure in the direction of optical signal emission.

Fig.162 - Laser indication

Page 228: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 228/240

226 ALS - MN.00164.E - 001

30.3 CORRECT DISPOSAL OF THIS PRODUCT (WasteElectrical &Electronic Equipment)

(Applicable in the European Union and other European countries with separate collection systems). This

marking shown on the product (see Fig.163) or its literature indicates that it should not be disposed withother household wastes at the end of its working life. To prevent possible harm to the environment or hu-

man health from uncontrolled waste disposal, please separate this from other types of wastes and recycle

it responsibly to promote the sustainable reuse of material resources. Household users should contact ei-

ther the retailer where they purchased this product, or their local government office, for details of where

and how they can take this item for environmentally safe recycling. Business users should contact their

supplier and check the terms and conditions of the purchase contract. This product should not be mixed

with other commercial wastes for disposal.

Fig.163 - WEEE Symbol – 2002/96/CE EN50419

Page 229: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 229/240

 ALS - MN.00164.E - 001 227

31 LIST OF FIGURES

Fig.1 – 1xSTM-1 and 2xSTM-1 unprotected version............................................................ 18

Fig.2 – 1xSTM-1 and 2xSTM-1 protected version ............................................................... 19

Fig.3 – 2xSTM-1, 4xSTM-1 unprotected version................................................................. 19

Fig.4 – 4xSTM1 optical interface protected version............................................................. 20

Fig.5 – 1+0, up to 1xSTM-1 equipment block diagram, with ODU AS.................................... 21

Fig.6 – 1+0, up to 2xSTM-1 equipment block diagram, with ODU AS.................................... 22

Fig.7 – 1+1, up to 2xSTM-1 equipment block diagram, hot stand-by or

frequency diversity versions with ODU AS.......................................................................... 23Fig.8 – 1+0, 4xSTM-1 equipment block diagram, with ODU AS............................................ 24

Fig.9 – Interconnections for frequency reuse - 1+0 version................................................. 26

Fig.10 – Interconnections for frequency reuse - 1+1 version ............................................... 26

Fig.11 - Grounding connection ........................................................................................ 28

Fig.12 – Typical connector position .................................................................................. 29

Fig.13 - Connectors position ........................................................................................... 32

Fig.14 - Antisliding strip ................................................................................................. 36

Fig.15 - 60–114 mm pole supporting plate fixing............................................................... 37

Fig.16 - Adapting kit for 219 mm pole .............................................................................. 38

Fig.17 - Possible mounting position.................................................................................. 39

Fig.18 - Possible positions of the support with ODU fast locking mechanism .......................... 40

Fig.19 - Installation onto the pole of the supporting plate ................................................... 41

Fig.20 - Circulator for 1+1 frequency diversity systems ...................................................... 42

Fig.21 - Band-it pole fixing ............................................................................................. 43

Fig.22 - ODU reference tooth .......................................................................................... 43

Fig.23 - Final ODU assembly of 1+1 hot stand-by version ................................................... 44

Fig.24 - Final assembly of 1+1 frequency diversity system.................................................. 45

Fig.25 - ODU grounding ................................................................................................. 46

Fig.26 - Wall supporting plate ......................................................................................... 50

Fig.27 - Support with ODU fast locking mechanism ............................................................ 51

Fig.28 - Possible mounting positions ................................................................................ 52

Fig.29 - Installation onto the wall of the supporting plate.................................................... 53

Fig.30 - Circulator of 1+1 frequency diversity system......................................................... 54

Fig.31 - Position of the ODU body:

1+0 system - depending on the polarisation.

1+1 hot stand-by system - polarisation is always vertical (handle always at the left side)

1+1 frequency diversity system - polarisation is always horizontal (handle always at the right side)

55

Fig.32 - ODU body reference tooth .................................................................................. 55

Fig.33 - Final assembly of 1+1 hot stand-by version .......................................................... 56

Page 230: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 230/240228 ALS - MN.00164.E - 001

Fig.34 - Final assembly of 1+1 frequency diversity version.................................................. 57

Fig.35 - ODU grounding ................................................................................................. 58

Fig.36 - Centering ring position ....................................................................................... 63

Fig.37 - Antislide strip.................................................................................................... 64

Fig.38 - Support mount on pole....................................................................................... 65

Fig.39 - Supporting system position................................................................................. 66

Fig.40 - Hole E.............................................................................................................. 66

Fig.41 - Antenna installation on pole support..................................................................... 67

Fig.42 - Position of the ODU handle depending on the polarisation for 1+0. For 1+1 the polarisation

is always horizontal. Handle at the right side...................................................................... 67

Fig.43 - Support system for ODU housing and reference tooth in evidence ............................ 68

Fig.44 - ODU body reference tooth .................................................................................. 69

Fig.45 - ODU housing final position for vertical polarization ................................................. 69

Fig.46 - ODU housing final position for horizontal polarization.............................................. 70

Fig.47 - Hybrid and polarization disk ................................................................................ 71

Fig.48 - Circulator and polarization disk............................................................................ 72

Fig.49 - Fixing of the polarization disk (only for 13 GHz and 15 GHz).................................... 73

Fig.50 - Hybrid mount on pole support ............................................................................. 74

Fig.51 - ODU final position for 1+1 version ....................................................................... 75

Fig.52 - Final ODU assembly of 1+1 frequency diversity version .......................................... 75

Fig.53 - Vertical and horizontal adjustments ..................................................................... 76

Fig.54 - Antenna aiming block......................................................................................... 77

Fig.55 - ODU grounding ................................................................................................. 78

Fig.56 - 1+0 pole mounting ............................................................................................ 83

Fig.57 - ODU body reference tooth .................................................................................. 84

Fig.58 - Position of the ODU body:

1+0 system - depending on the polarisation.

1+1 hot stand-by system - polarisation is always horizontal (handle always at the right side)

1+1 frequency diversity system - polarisation is always vertical (handle always at the left side) 84

Fig.59 - 1+0 support ..................................................................................................... 85

Fig.60 - ODU final position.............................................................................................. 86

Fig.61 - Antenna aiming................................................................................................. 86

Fig.62 - ODU grounding ................................................................................................. 87

Fig.63 - Hybrid and polarization disk ................................................................................ 88Fig.64 - Circulator and polarisation disk............................................................................ 89

Fig.65 - Fixing of the polarization disk (only for 13 GHz and 15 GHz).................................... 90

Fig.66 - Hybrid/circulator installation ............................................................................... 91

Fig.67 - Installation of 1+1 hot stand-by ODUs.................................................................. 92

Fig.68 - Installation of 1+1 frequency diversity ODUs......................................................... 92

Fig.69 - ODU 1+1 and 1+0............................................................................................. 95

Fig.70 - ODU 1+0 and 1+1............................................................................................. 96

Fig.71 - Collar mounting ODU 1+0 and 1+1...................................................................... 97

Fig.72 - Side view (1+1) ................................................................................................ 98

Fig.73 - Rear view (1+1) ................................................................................................ 98

Page 231: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 231/240

 ALS - MN.00164.E - 001 229

Fig.74 - Side view (1+0) ................................................................................................ 99

Fig.75 - Rear view (1+0) ................................................................................................ 99

Fig.76 - Details for transceiver mounting on the branching shell ........................................ 100

Fig.77 - Antenna bend ................................................................................................. 100

Fig.78 - ODU installation (top view and front view) .......................................................... 101

Fig.79 - Grounding cord connection ............................................................................... 101

Fig.80 - Wave guide fixing, cable connection ................................................................... 102

Fig.81 - Installation on pole of the outdoor unit (1+0) ...................................................... 103

Fig.82 - Installation on pole of 3 m antenna of two ODU using two polarization.................... 104

Fig.83 - Sun–screen .................................................................................................... 104

Fig.84 - Checking the antenna polarisation ..................................................................... 107

Fig.85 - Rear view of the antenna.................................................................................. 108

Fig.86 - Pole supporting kit........................................................................................... 109

Fig.87 - Supporting bracket mounting on the antenna rear side ......................................... 110

Fig.88 - Supporting bracket mounting ............................................................................ 111

Fig.89 - Antenna fixing to the pole................................................................................. 112

Fig.90 - Alignment adjustment kit mounting ................................................................... 113

Fig.91 - 1+1 branching mounting on supporting bracket................................................... 114

Fig.92 - 1+0 branching mounting on supporting bracket................................................... 115

Fig.93 - ODU mounting in 1+1 configuration................................................................... 116

Fig.94 - ODU mounting in 1+0 configuration................................................................... 117

Fig.95 - Horizontal alignment adjustment ....................................................................... 118

Fig.96 - Vertical alignment adjustment ........................................................................... 119

Fig.97 - Outdoor unit with covering................................................................................ 120

Fig.98 - Checking the antenna alignment........................................................................ 121

Fig.99 -...................................................................................................................... 123

Fig.100 - .................................................................................................................... 123

Fig.101 - XPIC SMA to SMA cables ................................................................................. 123

Fig.102 - XPIC SMA to SMA cables ................................................................................. 123

Fig.103 - IDU-ODU cables ............................................................................................ 125

Fig.104 - IDU-ODU cables ............................................................................................ 125

Fig.105 – Connection cables ......................................................................................... 126

Fig.106 – Connection cables ......................................................................................... 126

Fig.107 - Substitution of ODU in 1+1 frequency diversity system....................................... 128

Fig.108 – Decoupling verify - Step 1 .............................................................................. 133

Fig.109 – Download setup window for equipment controller application download ................ 149

Fig.110 – Confirm of the operation ................................................................................ 149

Fig.111 – Download progress ........................................................................................ 149

Fig.112 – Equipment software version window ................................................................ 150

Fig.113 – Radio switch window...................................................................................... 152

Fig.114 – Example of channel arrangements on the same route......................................... 160

Fig.115 – RIM with XPIC into 1RU IDU............................................................................ 173

Fig.116 – LIM block diagram, RST mode - 1xSTM-1 operation ........................................... 181

Page 232: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 232/240230 ALS - MN.00164.E - 001

Fig.117 – LIM block diagram, RST operation mode - 2xSTM-1 operation mode - from line side to

radio side.................................................................................................................... 182

Fig.118 – LIM block diagram, RST operation mode - 2xSTM-1 version - from radio side to line side

183

Fig.119 – LIM - 4xSTM-1 operation mode ....................................................................... 183

Fig.120 – Synchronisation block diagram........................................................................ 184

Fig.121 – Modemodulator block diagram ........................................................................ 185

Fig.122 – Frequency reuse system arrangement.............................................................. 186

Fig.123 – Power supply and cable interface block diagram ................................................ 186

Fig.124 – Main and peripheral controller connection ......................................................... 187

Fig.125 – Full-IP protocol stack ..................................................................................... 187

Fig.126 – OSI+IP protocol stack.................................................................................... 188

Fig.127 – IDU telemetry............................................................................................... 188

Fig.128 – IDU loops..................................................................................................... 189

Fig.129 - Front panel of SDH IDU modular ...................................................................... 190

Fig.130 – Line interface block diagram, RST mode - 1xSTM-1 operation (IDU SDH compact) . 191

Fig.131 – Line interface block diagram, RST operation mode - 2xSTM-1 operation mode - from line

side to radio side - IDU SDH compact............................................................................. 192

Fig.132 – Line interface block diagram, RST operation mode - 2xSTM-1 version - from radio side

to line side (IDU SDH compact)...................................................................................... 193

Fig.133 – Modemodulator block diagram ........................................................................ 194

Fig.134 – Power supply and cable interface block diagram ................................................ 195

Fig.135 – Main and peripheral controller connection ......................................................... 196

Fig.136 – Full-IP protocol stack ..................................................................................... 196

Fig.137 – OSI+IP protocol stack.................................................................................... 197

Fig.138 – IDU telemetry............................................................................................... 197

Fig.139 – IDU loops..................................................................................................... 198

Fig.140 - Front panel of IDU SDH compact...................................................................... 199

Fig.141 - 1+0 ODU...................................................................................................... 203

Fig.142 - 1+1 ODU with branching ................................................................................ 203

Fig.143 - ODU block diagram ........................................................................................ 204

Fig.144 - ATPC operation.............................................................................................. 205

Fig.145 - Frequency reuse system ................................................................................. 205

Fig.146 - Lower view of the ODU 1+1 and ODU 1+0 units................................................. 211Fig.147 - Block diagram of the ODU............................................................................... 212

Fig.148 - 1+0 branching .............................................................................................. 213

Fig.149 - 1+1 hot stand–by branching, 1 antenna (RF relay version).................................. 213

Fig.150 - Branching 1+1 hot stand–by, 1 antenna (version with hybrid) ............................. 214

Fig.151 - 1+1 branching frequency diversity ................................................................... 215

Fig.152 - Signals present on the IDU–ODU coaxial cable................................................... 215

Fig.153 - ATPC functional block diagram......................................................................... 216

Fig.154 - Frequency reuse system ................................................................................. 216

Fig.155 - IDU P/N........................................................................................................ 218

Fig.156 - Label positiobs - ODU AS ................................................................................ 219

Page 233: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 233/240

 ALS - MN.00164.E - 001 231

Fig.157 - Equipment most significant data ...................................................................... 220

Fig.158 - Label positions - ODU ALS............................................................................... 221

Fig.159 - Indication of components sensitive to electrostatic charges.................................. 225

Fig.160 - Elasticised band............................................................................................. 225

Fig.161 - Dedicated cord .............................................................................................. 225

Fig.162 - Laser indication ............................................................................................. 225

Fig.163 - WEEE Symbol – 2002/96/CE EN50419 .............................................................. 226

Page 234: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 234/240232 ALS - MN.00164.E - 001

Page 235: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 235/240

 ALS - MN.00164.E - 001 233

32 LIST OF TABLES

Tab.1 - Cable and connector characteristics .......................................................................27

Tab.2 – WS1/WS2 connector pin-out for 2 Mbit/s ...............................................................30

Tab.3 – V11 connector pin-out for 64 kbit/s channel - V.11 interface.....................................30

Tab.4 – User in/out connector pin-out for external alarm input and alarm transfer to outside....30

Tab.5 – RS232 connector pin-out for connection to/from supervision system (modular IDU).....31

Tab.6 – RJ45 connector pin-out for 10BaseT Ethernet connection..........................................31

Tab.7 - Pin out of IDU compact RS232 connector................................................................32

Tab.8 - Torques for tightening screws ...............................................................................34

Tab.9 - Torques for tightening screws ...............................................................................35

Tab.10 - Torques for tightening screws..............................................................................48

Tab.11 - Torques for tightening screws..............................................................................48

Tab.12 - Torques for tightening screws..............................................................................61

Tab.13 - Torques for tightening screws..............................................................................82

Tab.14 – Configuration: XPIC 1+0 .................................................................................. 134

Tab.15 – Configuration: XPIC, 1+1, Hot stand-by/Hot stand-by, Space Diversity ..................135

Tab.16 – Configuration: XPIC, 1+1, Frequency Diversity/Frequency Diversity, Space Diversity137

Tab.17 – System version composition ............................................................................. 147

Tab.18 – Cable examples .............................................................................................. 160

Tab.19 - Tx switch........................................................................................................ 160

Tab.20 - Rx switch ....................................................................................................... 161

Tab.21 ........................................................................................................................163

Tab.22 - Service and user interfaces ............................................................................... 175

Tab.23 - Switching criteria priority..................................................................................208

Tab.24 - Artificial breathing ........................................................................................... 224

Page 236: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 236/240234 ALS - MN.00164.E - 001

Page 237: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 237/240

 ALS - MN.00164.E - 001 235

33 ASSISTANCE SERVICE

The assistance service provided by Siae Microelettronica will be in compliance, if stipulated, to what spec-

ified in the Agreement of Software Maintenance.

To exploit this service, fill in all its parts the Module for the notification of bad SW operation

(RQ.00961) and send it to the following address:

SIAE Microelettronica S.p.A

via Michelangelo Buonarroti, 21

20093 Cologno Monzese

Milano - Italy

www.siaemic.it

Fax + (39) 02 25391585e-mail [email protected]

33.1 RQ.00961 MODULE

Each RQ916 module can contain at most one signalling.

The information required for the signalling of the bad operation.

Warning. The compiling of the parts General Information (Siae only), Trouble notified by, Reserved to Siae

Department and Validation manager are at charge of the Siae personnel.

Section – Trouble Identification

- SIAE product name. Identifier or SIAE code of the product whose bad operation has been detected.

- Version. Version of the sw product whose bad operation has been detected

- Documentation Type. Identifier of the document where the problem has been detected.

- Revision. Revision of the document where the problem has been detected.

- Volume N. Number of the volume of the document where the problem has been detected.

- Page N . Number of the page, into the volume, where the problem has been detected.

- Typology. Severity of the detected bad operation:

- Critical, if it prevents the use of a main functionality of the product;

- Important, if it prevents the use of a secondary functionality of the product;

- Disturbing, if occasionally and in difficultly reproducible conditions, it prevents the use of a main

functionality of the product;

- Minor, if very seldom it prevents the use of a secondary functionality without important conse-

quences;

- Suggestion, if no functionality of the product is damaged but some aspects (e.g.: user interface)

can be improved.

- Recurrent . Possibility (Yes) or not (No) to cause the bad operation after the same sequence of inputs

given to the product.

- Repeatable. Possibility (Yes) or not (No) to reproduce the detected bad operation.

-  Annexes. Possibility (Yes) or not (No) of annexed to the NM and their possible number.

Page 238: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 238/240

236 ALS - MN.00164.E - 001

- Title. Title of the bad operation.

- Description. Clear and concise description of the bad operation, comprehensive of the edge condi-

tions and, when possible and applicable, of the reference to the test (identifier and version of the

technical documentation, test identifier).

Page 239: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 239/240

GENERAL INFORMATION (SIAE ONLY)

Object   Software Documentation Hardware Number

Submitted Distribution List: Quality Assurance

TROUBLE NOTIFIED BY

Siae Operator Name _______________________________ Date _______________________________

Customer Report Ref. _______________________________ Date _______________________________

Customer Name Reference _______________________________ Tel _______________________________

Company/Dept. _______________________________ e-mail _______________________________

Contract N Address

TROUBLE IDENTIFICATION

SW/FW failures

SIAE product name ___________________________________________________ Version ______

Documentation

Documentation type ___________________________________________________ Revision ______

Volume N. ___________________________________________________

Page N.

Typology Critical Important Disturbing Minor Suggestion

Recurrent Yes No

Repeatable Yes No

Annexes Yes: N° No

Title:

Description (including enviranmental conditions):

RESERVED TO SIAE DEPARTMENT

Trouble  Accepted_Open

 Rejected  Reasons

Notes

 Analysis performed by Date Expected Closing Date

CORRECTIVE ACTION DESCRIPTION 

FIXED Executed by Date Approved by  

VALIDATION

MANAGER

MN Closed

Open

Verified by Date

Notes

Quality Record Module TROUBLE REPORT Issued byTerzo L.

Approved byGaviraghi S.

Date24/09/02

Page1/1

Siae Microelettronicaall rights reserved.

Document Ref.RQ.00961

Rev/Ver003

Page 240: siae_ALS_SDH

7/25/2019 siae_ALS_SDH

http://slidepdf.com/reader/full/siaealssdh 240/240