45
Spring 2012 Signals and Systems Chapter SS-2 Linear Time-Invariant Systems Feng-Li Lian NTU-EE Feb12 – Jun12 Figures and images used in these lecture notes are adopted from “Signals & Systems” by Alan V. Oppenheim and Alan S. Willsky, 1997 Feng-Li Lian © 2012 NTUEE-SS2-LTI-2 Outline Discrete-Time Linear Time-Invariant Systems The convolution sum Continuous-Time Linear Time-Invariant Systems The convolution integral Properties of Linear Time-Invariant Systems Causal Linear Time-Invariant Systems Described by Differential & Difference Equations Singularity Functions h(t) h[n]

Signals and Systems - 國立臺灣大學cc.ee.ntu.edu.tw/~fengli/Teaching/SignalsSystems/103-2_ss02_LTI... · Spring 2012 Signals and Systems Chapter SS-2 Linear Time-Invariant Systems

Embed Size (px)

Citation preview

Spring 2012

Signals and Systems

Chapter SS-2Linear Time-Invariant Systems

Feng-Li LianNTU-EE

Feb12 – Jun12

Figures and images used in these lecture notes are adopted from“Signals & Systems” by Alan V. Oppenheim and Alan S. Willsky, 1997

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-2Outline

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant Systems

Causal Linear Time-Invariant Systems Described by Differential & Difference Equations

Singularity Functions

h(t)h[n]

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-3Chapter 1 and Chapter 2

h(t)h[n]

SystemsSignals

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-4In Section 1.5, We Introduced Unit Impulse Functions

Sample by Unit ImpulseFor x[n] More generally,

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-5DT LTI Systems: Convolution Sum

Representation of

DT Signals by Impulses:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-6DT LTI Systems: Convolution Sum

Representation of DT Signals by Impulses:

More generally,

• The sifting property of the DT unit impulse

• x[n] = a superposition of scaled versions of shifted unit impulses [n-k]

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-7DT LTI Systems: Convolution Sum

DT Unit Impulse Response & Convolution Sum:

Linear System

Linear System

Linear System

Linear System

Linear System

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-8DT LTI Systems: Convolution Sum

DT Unit Impulse Response & Convolution Sum:

Linear System

Linear System

Linear System

Linear System

Linear System

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-9DT LTI Systems: Convolution Sum

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-10DT LTI Systems: Convolution Sum

Linear System

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-11DT LTI Systems: Convolution Sum

If the linear system (L) is also time-invariant (TI)

• Then,

Hence, for an LTI system,

• Known as the convolution of x[n] & h[n]

• Referred as the convolution sum or superposition sum

Symbolically,

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-12DT LTI Systems: Convolution Sum

Example 2.1:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-13DT LTI Systems: Convolution Sum

Example 2.2:

Feng-Li Lian © 2011NTUEE-SS2-LTI-14DT LTI Systems: Convolution Sum

Example 2.2:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-15DT LTI Systems: Convolution Sum

Example 2.1:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-16DT LTI Systems: Convolution Sum

Example 2.2:

Feng-Li Lian © 2011Feng-Li Lian © 2012

Example 2.2:

DT LTI Systems: Convolution Sum NTUEE-SS2-LTI-17

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-18DT LTI Systems: Convolution Sum

Example 2.2:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-19DT LTI Systems: Convolution Sum

Example 2.3:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-20DT LTI Systems: Convolution Sum

Example 2.3:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-21DT LTI Systems: Convolution Sum

Example 2.3:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-22DT LTI Systems: Convolution Sum

Example 2.4:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-23DT LTI Systems: Convolution Sum

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-24DT LTI Systems: Convolution Sum

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-25DT LTI Systems: Convolution Sum

Example 2.5:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-26Outline

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant Systems

Causal Linear Time-Invariant Systems Described by Differential & Difference Equations

Singularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-27CT LTI Systems: Convolution Integral

Representation of CT Signals by Impulses:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-28CT LTI Systems: Convolution Integral

Representation of CT Signals by Impulses:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-29CT LTI Systems: Convolution Integral

Graphical interpretation:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-30CT LTI Systems: Convolution Integral

CT Impulse Response & Convolution Integral:

Linear System

Linear System

Linear System

Linear System

Linear System

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-31CT LTI Systems: Convolution Integral

CT Impulse Response & Convolution Integral:

Linear System

Linear System

Linear System

Linear System

Linear System…

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-32CT LTI Systems: Convolution Integral

LinearSystem

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-33CT LTI Systems: Convolution Integral

CT Unit Impulse Response & Convolution Integral:

Linear System

Linear System

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-34CT LTI Systems: Convolution Integral

If the linear system (L) is also time-invariant (TI)

• Then,

Hence, for an LTI system,

• Known as the convolution of x(t) & h(t)

• Referred as the convolution integralor the superposition integral

Symbolically,

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-35CT LTI Systems: Convolution Integral

Example 2.6:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-36CT LTI Systems: Convolution Integral

Example 2.7:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-37CT LTI Systems: Convolution Integral

Example 2.8:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-38Convolution Sum and Integral

Signal and System:

h(t)

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-39Outline

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant Systems

Causal Linear Time-Invariant Systems Described by Differential & Difference Equations

Singularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-40Properties of LTI Systems

Convolution Sum & Integral of LTI Systems:

h(t)

h[n]

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-41Properties of LTI Systems

Properties of LTI Systems

1. Commutative property

2. Distributive property

3. Associative property

4. With or without memory

5. Invertibility

6. Causality

7. Stability

8. Unit step response

h[n]

h(t)

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-42Properties of LTI Systems

Commutative Property:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-43Properties of LTI Systems

Distributive Property:

h2[n]

+

h1[n]

h1[n]+h2[n]

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-44Properties of LTI Systems

Distributive Property:

h[n]+

h[n]

+

h[n]

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-45Properties of LTI Systems

Example 2.10

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-46Properties of LTI Systems

Associative Property:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-47Properties of LTI Systems

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-47In Section 1.6.1: Basic System Properties

Systems with or without memory

Memoryless systems• Output depends only on the input at that same time

Systems with memory

(resistor)

(delay)

(accumulator)

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-48Properties of LTI Systems

Memoryless:• A DT LTI system is memoryless if

• The impulse response:

• The convolution sum:

• Similarly, for CT LTI system:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-49In Section 1.6.2: Basic System Properties

Invertibility & Inverse Systems

Invertible systems• Distinct inputs lead to distinct outputs

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-50Properties of LTI Systems

Invertibility:

h1(t)

Identity System (t)

h2(t)

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-51Properties of LTI Systems

Example 2.11: Pure time shift

h1(t) h2(t)

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-52Properties of LTI Systems

Example 2.12

h1[n] h2[n]

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-53Properties of LTI Systems

Causality:

• The output of a causal system depends only on the present and past values of the input to the system

• Specifically, y[n] must not depend on x[k], for k > n

• It implies that the system is initially rest

• A CT LTI system is causal if

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-54Properties of LTI Systems

Convolution Sum & Integral

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-55In Section 1.6.4: Basic System Properties

Stability

Stable systems• Small inputs lead to responses that do not diverge

• Every bounded input excites a bounded output– Bounded-input bounded-output stable (BIBO stable)

– For all |x(t)| < a, then |y(t)| < b, for all t

• Balance in a bank account?

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-56Properties of LTI Systems

Stability:• A system is stable

if every bounded input produces a bounded output

Stable LTI

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-57Properties of LTI Systems

Stability:• For CT LTI stable system:

Stable LTI

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-58Properties of LTI Systems

Example 2.13: Pure time shift

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-59Properties of LTI Systems

Example 2.13: Accumulator

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-60Properties of LTI Systems

Unit Step Response:• For an LTI system, its impulse response is:

• Its unit step response is:

DT LTI CT LTI

DT LTI CT LTI

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-61Outline

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant Systems1. Commutative property2. Distributive property3. Associative property4. With or without memory5. Invertibility6. Causality7. Stability8. Unit step response

Causal Linear Time-Invariant Systems Described by Differential & Difference EquationsSingularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-62Singularity Functions

Singularity Functions• CT unit impulse function is one of singularity functions

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-63Singularity Functions

Singularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-64Singularity Functions

Example 2.16

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-65Singularity Functions

Example 2.16

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-66Singularity Functions

Defining the Unit Impulse through Convolution:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-67Singularity Functions

Defining Unit Impulse through Convolution:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-68Singularity Functions

Defining Unit Impulse through Convolution:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-69Singularity Functions

Unit Doublets of Derivative Operation:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-70Singularity Functions

Unit Doublets of Derivative Operation:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-71Singularity Functions

Unit Doublets of Integration Operation:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-72Singularity Functions

Unit Doublets of Integration Operation:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-73Singularity Functions

Unit Doublets of Integration Operation:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-74Singularity Functions

In Summary

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-75Outline

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant Systems1. Commutative property2. Distributive property3. Associative property4. With or without memory5. Invertibility6. Causality7. Stability8. Unit step response

Causal Linear Time-Invariant Systems Described by Differential & Difference EquationsSingularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-76Causal LTI Systems by Difference & Differential Equations

Linear Constant-Coefficient Differential Equations• e.x., RC circuit

• Provide an implicit specification of the system

• You have learned how to solve the equation in Diff Eqn

RC Circuit

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-77Causal LTI Systems by Difference & Differential Equations

Linear Constant-Coefficient Differential Equations• For a general CT LTI system, with N-th order,

CT LTI

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-78Causal LTI Systems by Difference & Differential Equations

Linear Constant-Coefficient Difference Equations• For a general DT LTI system, with N-th order,

DT LTI

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-79Causal LTI Systems by Difference & Differential Equations

Recursive Equation:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-80Causal LTI Systems by Difference & Differential Equations

Recursive Equation:• For example, (Example 2.15)

LTI

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-81Causal LTI Systems by Difference & Differential Equations

Nonrecursive Equation:• When N = 0,

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-82Causal LTI Systems by Difference & Differential Equations

Block Diagram Representations:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-83Causal LTI Systems by Difference & Differential Equations

Block Diagram Representations:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-84Causal LTI Systems by Difference & Differential Equations

Block Diagram Representations:

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-85Causal LTI Systems by Difference & Differential Equations

Block Diagram Representations:

Example 9.30 (pp.711)

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-86Causal LTI Systems by Difference & Differential Equations

Block Diagram Representations:

Example 10.30 (pp.786)

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-87Chapter 2: Linear Time-Invariant Systems

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant Systems1. Commutative property2. Distributive property3. Associative property4. With or without memory5. Invertibility6. Causality7. Stability8. Unit step response

Causal Linear Time-Invariant Systems Described by Differential & Difference Equations

Singularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2012NTUEE-SS2-LTI-88

Periodic Aperiodic

FSCT

DT(Chap 3)

FTDT

CT (Chap 4)

(Chap 5)

Bounded/Convergent

LT

zT DT

Time-Frequency

(Chap 9)

(Chap 10)

Unbounded/Non-convergent

CT

CT-DT

Communication

Control

(Chap 6)

(Chap 7)

(Chap 8)

(Chap 11)

Signals & Systems LTI & Convolution(Chap 1) (Chap 2)

Flowchart