28
STABILITAS

Stabilit As

Embed Size (px)

DESCRIPTION

asdadad

Citation preview

Page 1: Stabilit As

STABILITAS

Page 2: Stabilit As

StabilitasGU

GpGvGc

Gs

+

Se point

disturbance

+

+𝑅

𝑈

𝑌Controlled variabel

𝑦𝑜+∆ 𝑦

Harga ygdiinginkan

toleransi

𝑌=𝐺𝑝 .𝐺𝑣 .𝐺𝑐

1+𝐺𝑝 .𝐺𝑣 .𝐺𝑐 .𝐺𝑠𝑅+

𝐺𝑢1+𝐺𝑝+𝐺𝑣+𝐺𝑐+𝐺𝑠

𝑈

1) Operasi normal (regulated variabel)2) Operasi tak normal (servo operation)3) Regulated & servo operation

𝑅=0 (𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 𝑦𝑔𝑡𝑒𝑡𝑎𝑝)𝑈=0

𝑈 ≠0 ,𝑅≠ 0

Page 3: Stabilit As

Stabilitas tjd saat kapan dan dimana ??

Kriteria stabilitas :

Stabil ← Nilai controlled variabel (y(t) pd t→ ~, tertentuTak stabil ←nilai controlled variabel (y(t) pd t→~, ± ~

𝑌=𝑁 (𝑠)𝐷(𝑠)

= 𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑡𝑜𝑟

+...................+

Page 4: Stabilit As

𝑦𝑖 (𝑡 )=𝑒𝜇𝑖 .𝑡 { 𝜇>0→ 𝑙𝑖𝑚𝑡→∞ 𝑦𝑖 (𝑡 )=0→𝑠𝑡𝑎𝑏𝑖𝑙¿𝜇=0→ 𝑙𝑖𝑚𝑡→∞ 𝑦 (𝑡 )=𝛼→𝑠𝑡𝑎𝑏𝑖𝑙 𝑑𝑒𝑛𝑔𝑎𝑛𝑜𝑓𝑓 𝑠𝑒𝑡 (𝑎𝑑𝑎𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑠𝑖𝑛𝑦𝑎)

¿𝜇<0→ 𝑙𝑖𝑚𝑡→∞→ 𝑡𝑑𝑘𝑠𝑡𝑎𝑏𝑖𝑙

Stabilitas harga dipengaruhi Denominator (D(s)) yang untuk ke-3 kasus (1, 2 dan 3)Mempunyai D(s) yg sama yaitu D(s)=1 + Gp .Gv. Gs. S Pers. karakteristik

1 + Gp.Gv.Gc. S = 0

Sifat kestabilan ini akan terkontrolPada akar-akar pers. Tsb. Pada Tabel berikut :

Page 5: Stabilit As

Akar-akar pers. Karakteristik, si = -µ - ωi

riil imajiner

Penyebab kestabilan

𝜇>0 ,𝑠𝑡𝑎𝑏𝑖𝑙 𝜇<0 , 𝑡𝑑𝑘𝑠𝑡𝑎𝑏𝑖𝑙

Real

Imajiner

Page 6: Stabilit As

Faktor polinomial karakateristik

Akar-akar karakteristik

Respon (I L T)

Stabilitas Letak Akar Gmbar

S=µ -µ k.

s2 +ω2 S=±ωi k sin ωt Batas stabil

(s+µ)2+ω2 S2 µ ±ωi k e-ωt sin (ωt+Ø)

Im

Re-µ

Im

Reµ

y(t)

ty(t)

tIm

Re

ω

ω

y(t)

t

Re

Imµ

µ

Ø y(t)

t

Re

Imy(t)

t

Page 7: Stabilit As

Faktor polinomial karakateristik

Akar-akar karakteristik

Respon (I L T)

Stabilitas Letak Akar Gmbar

S S=0 k

s2 S=0,0 Ko+k1.t Tdk pernah stabil

(s+µ)2 S= µ1-µ k e-µt (ko+k1t)

Stabil jk µ > 0

lm

Re1 akar

t

y(t)

lm

Re2 akar

t

y(t)

lm

Re-µ

t

y(t)

Page 8: Stabilit As

Fungsi Sinus : 𝑥 (𝑡 )=a sin𝜔𝑡y(t)

t 𝑥 (𝑠)= 𝑎𝜔𝑠2+𝜔2

y(t)

t 𝑥 (𝑠)= 𝑎𝑠𝑠2+𝜔2

Digeser 𝛼 (𝑡 )=𝑎 cos𝜔𝑡

y(t)

t ?

Digeser sebesar Ø (ωt+Ø)

Page 9: Stabilit As

= k. sin = k. cos sin + k sin cos t = k1 sin t + k2 cos t

∅a=k1

b=k2

Sin Ø= b = k sin Ø

Cos Ø= a = k cos Ø

tg Ø= Ø = arctg

𝑘=√𝑘12+𝑘2❑2

Page 10: Stabilit As

Stabilitas s atau pers. Karakteristik

1 + Gp. Gv. Gc. Gs = 0a1.sn + a2 sn-1 + .......=0

n=1 akar mudah carin=2 rumus ABCn 3 ???

Page 11: Stabilit As

G(s)𝑋 (𝑠) 𝑌 (𝑠)

b = 2 f c = 1

=

𝑠1=− 𝑓𝜏

+ √ 𝑓 2−1𝜏

𝑠2=− 𝑓𝜏− √ 𝑓 2−1

𝜏

Page 12: Stabilit As

𝑈𝑛𝑡𝑢𝑘 :√ 𝑓 2−1

1. Jika f > 1 2 akar riil yg bebeda

Over damped / non osilasi

2. Jika f=0 2 akar riil yg sama

Crtically Damped

3. Jika f < 1 Sepasang akar bil. komplek

Osilasi (under lumped)

f1

f2

f3

f4f5

ho

f1> f2 > f3 > f4 > f5

Page 13: Stabilit As

𝑥 (𝑠 )=𝑠𝑡𝑒𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛=0𝑠 𝑥 (𝑡 )=𝑎

𝑦 (𝑠)𝑢𝑛𝑡𝑢𝑘 𝑓 <1 𝑦 (𝑡 )=1− 1

√1− 𝑓 2𝑒− 𝑓 𝑡

𝜏 sin (√1− 𝑓 2𝑡𝜏

+𝑡𝑎𝑛− 1 √1− 𝑓2

𝑠 )𝑦 (𝑠)𝑢𝑛𝑡𝑢𝑘 𝑓 =1 𝑦 (𝑡 )=1−(1+ 𝑡

𝜏 )𝑒− 𝑓𝜏

𝑦 (𝑠)𝑢𝑛𝑡𝑢𝑘 𝑓 >1 𝑦 (𝑡 )=1−𝑒− 𝑓 𝑡

𝜏 ( h𝑐𝑜𝑠 √ 𝑓 2−1 𝑡𝜏

+ 𝑓

√ 𝑓 2h𝑠𝑖𝑛 √ 𝑓 2−1 𝑡

𝜏 ) =

Page 14: Stabilit As

Respon time limit

ts B

A

T

c

1. Over shoot = simpangan terbesar = exp ( -¶ f /

2. Decay Ratio Peredaman = c/A f > c/A > 3. Rise Time =tr wkt pertama kali y(t) berharga sebesar B tr > f >

Page 15: Stabilit As

4. Response Time

wkt y(t) = yt ~ ± ∆y

-5 % < ∆y < +5%

5. Periode T

Page 16: Stabilit As

Stabilitas

akar-akar persamaan F2(s)=0

Bentuk umum :λj=-μ ±iω

j=1,2,.....μ =bagian realΩ=bagian imajiner

Page 17: Stabilit As

Bila ω=0 → bil. Real →

Bila ω≠01. μ=0 →bil. Imajiner pasangan akar

Page 18: Stabilit As

k sin(ωt+Ø) =K

k1=Kcos

k2=K sin

tan = 2+k2

2 =K2

Page 19: Stabilit As

2. μ≠0a. μ > 0 λj=- μ ± ib. μ <0

ʆ{y(t)} =F(s)ʆ{y(t)e-at} =F(s+a)

𝐵1+𝐵2(𝑠−𝜇)(𝑠−𝜇)2+𝜔2

Page 20: Stabilit As

µ<0 ; e +μt

µ>0 ; e -μt

−𝜙𝜔

K sin(ωt+Ø)eµt ; μ<0 ; stabil

k sin(ωt+Ø)

K sin(ωt+Ø)eµt ; μ>0 ; tidak stabil

Page 21: Stabilit As

Contoh.

Gc=Kc

A

Gv=Kv

X L/min

SolventU L/min

Gs=Ks

Y gmol/L

Konsentrasi A dikendalikan

t=0 ; U=Uot ≥0 ; U=Uo+a

Page 22: Stabilit As

F2(s)=s { s3 +6s2 +12s +8 + 8Kc}

(s+λ1)(s+ λ2)(s+λ3) (s+λ4)

λ1=0

Yang dipengaruhi adalah harga Kc yang digunakan.

Bila kc=1 ; λ2 = -4; λ3= -1± i√3 ; µ>0 ; stabil

Bila Kc=8 ; λ2 = -6; λ3,4= i(2√3) ; µ=0 ; keadaan batas

Bila Kc=27 ; λ2 = -8; λ3,4= 1 ± i(3√3) ; µ<0 ; tidak stabil

Kesimpulan :Harga kc > 8 sistem tidak stabilHarga kc < 8 sistem stabil

Dari segi keamanan harga Kc yg diambil jauh lebih kecil dari 8 Hp jangan terlalu kecil krn merugikan

Page 23: Stabilit As

Contoh.

Kc =1

Sehingga kita punya bentuk :

= = offset

Page 24: Stabilit As

Dilihat dari offset : Kc<<< - offset besar - stabil Harus ada kompromi antara stabilitas dan offset.Offset bisa dihilangkan dgn jenis kontroller lain, tetapi kontroller tidak bisa menghilangkan stabilitas.Stabilitas diketahui dengan mencari akar F2(s)=0Dgn real λ =-μ ± iω akar-akar = - μ ; μ >0 stabil

Page 25: Stabilit As

“FREQUENSI RESPONSE”G(I)

I (s) O (s)

O(s) = G(I) . I(s)

I(t) = a sin (ωt)

Amplitudo

t=T

Asin (ωt)

t

t=-Ø/w

K

Page 26: Stabilit As

O(s) = G(s) . I(s)O(s) = G(s) a

+....

Ksin(

A1sin(t)+A2 cos(t)

t=besar

Bil. Stabil 0

O(t)=K sin (t+Ø

Page 27: Stabilit As

Sistem yang stabilInput = a sin ωt output pd t >> , O =K sin (t+Ø) sinusoida fungsi sinusoida

Merupakan ciri dg perb. Amplitudo K/a= |G(i )| f1()Transf. Func. System perb. Phase = Ø = G(i ) f2()

*

G(s) awS2+ω2 = 0S=i ω

Page 28: Stabilit As

aω=

S=iw

G(iw)=

tanØ = A2/A1k2 = A1

2 +A22 im

ReA1/a

A2/a

Ø|G|