68
Strain Release Lewis Acidity: Recent Advances In Asymmetric Synthesis Aparajita Banerjee Organic Seminar December 13, 2006 M Nu . . D C A B M A B Nu C D

Strain Release Lewis Acidity: Recent Advances In … · OSi(CH 2C H 3)2 N H 3C C H3 C H 3 H O H OOSi(CH2CH3)2 CH3 H3C CH 3 O Si( C3) C C + + CH 2Cl 2-30 oC 1 a nti sy 1.8:1 N O OSi

Embed Size (px)

Citation preview

Strain Release Lewis Acidity: Recent AdvancesIn Asymmetric Synthesis

Aparajita BanerjeeOrganic Seminar

December 13, 2006

M

Nu

. .

D

C

A

B

M

A

B

Nu

C

D

Outline Introduction - Basic Principle

Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction

Application In Natural Product Synthesis

Strain Release Chemistry With Al

Conclusion

Outline Introduction - Basic Principle

Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction

Application In Natural Product Synthesis

Strain Release Chemistry With Al

Conclusion

Basic Principle

Tetracoordinated Silane:

Tetracoordinated Silacycle (4 or 5 membered):

Common Lewis Acids: Electron Deficient Compounds: BF3, AlCl3

Denmark, S. E.; Jacobs, R. T.; Dai-Ho, G.; Wilson, S. Organometallics 1990, 9, 3015Zhang, X.; Houk, K. N.; Leighton, J. L. Angew. Chem. Int. Ed. 2005, 44 , 9938

Si

Actual angle ~ 90o

Expected Angle 109.5o

Highly strained

High Lewis acidity

Nu. .

Actual angle ~ 90o

Expected Angle 90o

Trigonal bipyramidal

Strain released

C

D

B

A

Si

B

A

Nu

D

C

Nu

. .

Low Lewis acidity

Si

C

D

B

A

Nu

SiA

B

C

D

90o109.5o

Example of Strain Release Lewis Acidity Aldol Reaction

Denmark, S. E.; Griedel, B. D.; Coe, D. M. J. Org. Chem. 1993, 58, 988Matsumoto. K.; Oshima, K.; Utimoto, K. J. Org. Chem. 1994, 59, 7152

Acyclic Analogue

Cyclic Analogue

Allylation of Aldehyde

Dual Activation of the silane and aldehyde

Acyclic Analogue

Cyclic Analogue

O

SiH

Ph

Ph

H3CO

OSi

t-Bu

H3C CH3

+

H

O

Ph

C6D6 / 1M

20 oC

120 h

No Reaction

CH3

+H

O

Ph

CDCl3 / 1M

20 oC

2.2 h94%

H3CO

OSi

t-Bu

CH3

E:Z (95:5)

H3C

O

Ph

OH

CH3

H3C

O

Ph

CH3

OH

+ 95:5

PhSi

H3C CH3 +H

O

Ph

160 oC

24 h

No Reaction

PhSi

+

H

O

Ph

130 oC

12 hPh

OSi

Phaq. HCl

MeOH

Ph

OH

85%

SiMe

O

O

MeO CH3

CH3

H

Ph

Historical Background

Perozzi, E. F.; Michalak, R. S.; Figuly, G. D.; Stevenson, W. H. III, Bess, D. B.; Ross, M. R.; Martin, J. C. J. Org. Chem. 1981, 46, 1049Stevenson III, W. H.; Wilson, S.; Martin, J.C.; Farnham, W. B. J. Am. Chem. Soc. 1985, 107, 6340

Si

O

O

Si

4 coordinated

Distorted Tetrahedral

Si

5 coordinatedTrigonal Bipyramidal

SiO

O

Endocyclic C-Si-O ~ 94.4o Endocyclic C-Si-O ~ 85.3o

SiO

O

CF3CF3

CF3

CF3

O

Si

O

F3C CF3

F3CCF3

LiPhLi

A B

Hypervalency of Silicon

∆E > 200 kCal/mol

10 electrons4 orbitals ?

Hypervalent BondingConcept of 3c-4e bond

Alekseev, N. V.; Heller, G.; Niedenzu, K.; Tandura, S. N.; Trofimenko, S.; Vorkonkov, M. G. Top. Curr. Chem. 1986, 131, 99

Involved in the formation of 5 bonds

Si

Possibility 1

3S

3p

3d

sp2

dp

hybridize

sp3d

Energyp

d

sp2

sp2p

Possibility 2

Hypervalent Bonding: Concept of 3c-4e bond

Electron Distribution:

3 sp2 hybrid orbitals 6 electrons 1 X 3c-4e bond 4 electrons Total 10 electrons

Mixing of Bonding and Nonbonding MOsHypervalent Bond(p orbitals)

Consequences of 3c-4e bond

Shift of electron density from central atom to ligand

Electron withdrawing ligands preferred

Axial bonds larger than equatorial bond length

Alekseev, N. V.; Heller, G.; Niedenzu, K.; Tandura, S. N.; Trofimenko, S.; Vorkonkov, M. G. Top. Curr. Chem. 1986, 131, 99

Si

L

L

Bonding

Nonbonding

Antibonding

E

Si LL

(HOMO)

Proof of 3c-4e Bond from Crystal Structure

DistortedTetrahedral

Trigonal Bipyramidal

Bond Length: Si–O 1.654 Å Si–C 1.835 ÅBond Angle:Endocyclic C-Si-O ~ 94.4o

(Ideal 109.5o)

Expected

Highly strained

Bond Length: Si–O 1.818 Å Si–C 1.922 ÅBond Angle: Endocyclic C-Si-O ~ 85.3o

(Ideal 90o)Release of strain

Longer than expected

Average increase in Bond Length: Si–O 0.162 Å Si–C 0.085 Å

Greater increase in apical bond length 3c-4e bond

Stevenson III, W. H.; Wilson, S.; Martin, J.C.; Farnham, W. B. J. Am. Chem. Soc. 1985, 107, 6340

Si

O

CF3

OF3CCF3

CF3

O

Si

O

Ph

F3C CF3

CF3F3C

Me4N

Si

O

O

SiO

O

‘Strain Release Lewis Acidity’

Denmark, S. E.; Jacobs, R. T.; Dai-Ho, G.; Wilson, S. Organometallics 1990, 9, 3015

If ∠A-X-B less than 94.40

Further distortion in tetrahedral geometry more strained greater Lewis acidity

A

X

B C

DX = Si, ∠A-X-B = 94.40

?

by Germanium

Bond Length: Ge–O 1.989 Å Ge–C 1.951 Å

Bond Angle:Endocyclic C-Si-O ~ 83.5o

(Ideal 90o)

GeO

O

F3C CF3

F3CCF3

Bond Length: Ge–O 1.786 Å Ge–C 1.898 ÅBond Angle: Endocyclic C-Ge-O ~ 91.5o

(Ideal 109.5o)

Expected

More strainedthan Si analogue

Longer than expected

Release of strain

Expected:Ge analogue much more Lewis acidic than Si analogue

Ge

O

O

CF3F3C

CF3F3C

Et4N

Ge

Ge

O

O

O

O

DistortedTetrahedral

Trigonal Bipyramidal

Average increase in Bond Length: Gei–O 0.203 Å Ge–C 0.053 Å

Enhanced Lewis Acidity by Germanium Analogue

Denmark, S. E.; Jacobs, R. T.; Dai-Ho, G.; Wilson, S. Organometallics 1990, 9, 3015

Ge analogue much more Lewis acidic than Si analogue : Proof

Intramolecular Ene Reaction:

Intramolecular [4+2] Cycloaddition Reaction:

No Reaction with Si Analogue

No Reaction with Si Analogue

GeO

O

F3C CF3

F3CCF3

1

CHO

CH3H3C

H3C CH3

1

CH2Cl2/ 20 oC OH

H3C CH3

H3C

+

H3C CH3

H3C

OH

trans cis

CH3

H

O

SCH3

1

CH2Cl2 / 20 oC

63%

O

H

H

CH3

SCH3

E-isomertrans-isomer

Si More explored because of its practical applicability

Different Silacycles

4-Membered silacycle

Ring spans along axial-equatorial

Ring spans along axial-equatorial

X, Y O, OX, Y O, N X, Y N, N

Si Si

Nu

4-coordinated 5-coordinated

Nu

Si

X

YSi

X

Y

Nu

4-coordinated 5-coordinated

Nu

Denmark, S. E.; Griedel, B. D.; Coe, D. M. J. Org. Chem. 1993, 58, 988Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920

5-Membered silacycle

Comparison: Four vs Five Membered Ring

DFT Calculation performed with Gaussian03 B3LYP-6-31G++(d,p)

4-membered Silacycle

5-membered Silacycle

4-coordinated 5-coordinated

ExpectedAngle 90°

Outline Introduction - Basic Principle

Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction

Application In Natural Product Synthesis

Strain Release Chemistry With Al

Conclusion

Si Directed Aldol Reaction

Myers, A. G.; Widdowson, K. L. J. Am. Chem. Soc. 1990, 112, 9672

Asymmetric Version:

Without apparent Catalyst Pericyclic transition state

OSi(CH2CH3)2

NH3C

CH3

CH3

H

O

H

OSi(CH2CH3)2O

CH3

H3C

CH3

OSi(CH2CH3)2O

CH3

H3C

CH3

+ +CH2Cl2

-30 oC

1 anti syn

1.8:1

N

O

SiO

CH3

CH3

H

CH3

H+

H

O

hexane

23 oC, 10 hN

O OO Si

H3CCH3

CH3

H

N

O OO Si

H3CCH3

CH3

H

+

anti-isomer syn-isomer39:1

yield: 77% (for anti-isomer)

2

Mechanism:

Myers, A. G.; Kephart, S. E.; Chen, H. J. Am. Chem. Soc. 1992, 114, 7922

Path A Path B

Si Directed Aldol Reaction

Si

R

OO

N

H

CH3

R

Si

R

O

O H

R = CH3

pseudo rotation

SiO

N

O

R

OH

H

CH3

RSi

O

N

O

O

H

CH3H

R

R

NH

H3C

OR

Si

R

OO

N

H

CH3

R

Si

R

H

CH3

R

O

N

O

O H

R = CH3

pseudo rotation

SiO

N

O

R

OH

H

CH3

R

SiO

N

O

O

H

CH3H

RR

Si Directed Aldol ReactionMechanism:

Path A Path B

10 fold rate acceleration for silacyclopentane 2X106 fold rate acceleration for silacyclobutane Path A: Operative

Si

R

OO

N

H

CH3

R

Si

R

H

CH3

O

N

O

O H

R = (CH2)3 R= (CH2)4

pseudo rotation

SiO

N

O

R

OH

H

CH3

R

SiO

N

O

O

H

CH3H

RR

R Si

R

OO

N

H

CH3

R

Si

R

O

O H

R = (CH2)3

R = (CH2)4

pseudo rotation

SiO

N

O

R

OH

H

CH3

RSi

O

N

O

O

H

CH3H

R

R

NH

H3C

OR

ExpectedAngle: 90o Expected

Angle: 90o

Si Directed Aldol Reaction

Rate enhancement with a small ring:

Acyclic Analogue

Cyclic Analogue

Myers, A. G.; Kephart, S. E.; Chen, H. J. Am. Chem. Soc. 1992, 114, 7922

OSi

Ph

H3C CH3

+

H

O

Ph

C6D6

150 oC

200 hNo Reaction

OSi

Ph

+

H

O

Ph 34 h84%

O O

Ph

SiPh

syn:anti 7:1

C6D6

100 oC

Synthesis of Cyclic Silylenol Derivative

Laane, J.; J. Am. Chem. Soc 1967, 89, 1144Denmark, S. E.; Griedel, B. D.; Coe, D. M. Schnute, M. E. J. Am. Chem. Soc. 1994, 116, 7026

H2C CHCH2Cl + HSiCl3

H2PtCl6

heatCl3SiCH2CH2CH2Cl

Si

Cl Cl

Mg, THF

t-BuLi87%

Si

Cl t-Bu

O

H3CO

LDA, THF72%

Si

O t-Bu

H3CO CH3

Si

Cl Cl

Mg

THF66%

Aldol Reaction of Silyl-enol derivative of Ester

Denmark, S. E.; Griedel, B. D.; Coe, D. M. J. Org. Chem. 1993, 58, 988Denmark, S. E.; Griedel, B. D.; Coe, D. M. Schnute, M. E. J. Am. Chem. Soc. 1994, 116, 7026

Cyclic Analogue

Acyclic Analogue

t1/2

entry R1 R2 R3 R4 (min)

1

2

3

4 t-butyl

t-butoxy

t-butyl

t-butyl

5

33

2100

-

CH3

CH3

CH3

CH3 CH3

CH3

CH3

CH3CH3

CH3

CH3

CH3

O

MeO

Sit-Bu

CH3H3C

CH3

+

Ph H

O 1M C6D6

120 h

No Reaction

Si O

R2

R3

R4R1O

PhCHO

C6D6, 1M

20 oC

O O

R1O

R3 R4Ph

SiR2

O

Me

MeSi

MeO

Me

+

O

H

SiMe

O

O

MeO CH3

CH3

H

Ph

O

MeO

SiOCHPh

H3C CH3

CH3

O

Ph

H

O O

MeO

H3C CH3

SiMe

Path A

Intramolecular silicon group

transfer

O O

MeOH3C CH3

Si

H3C

PhCHOPath B

Intermolecular silicongroup transfer

Open TS

Closed TS

Crossover Experiment Path A

Aldol Reaction: Asymmetric Version

Proposed Asymmetric Variant of Aldol Reaction

Denmark, S. E.; Griedel, B. D. J. Org. Chem. 1994, 59, 5136

O

Me

Si

X

R*ORCHO

Si

O

O

X Me

H

R1

OR*

O OSi

Me

X R1

O OH

OR*

X

Me

R*OH +

HF, THF

SiCl Cl

R1

With Chiral Enoxysilacyclobutane derived from ester

Denmark, S. E.; Griedel, B. D. J. Org. Chem. 1994, 59, 5136

Important Observations:

- Unaaceptably low yield due to large component C-silyl esters and (Z)-ketene acetal isomers

X

O

CH3

Si

Y

Si

CH3X

OY

a b

1a, b: X = OCH3, Y = (-)-8-phenylmenthol2a, b: X = OCH3, Y = (-)-trans-2-cumylcyclohexanol

oxygen silylated carbon-silylated

Aldol Reaction: Asymmetric Version

entry ketene temp, °C syni/anti ee (%) acetal

1 1 -60 >99/1 95

2 2 -60 >99/1 97

CH3O

OSi

R*O

CH3

+ PhCHO1) 0.5M, toluene

2) 1 h, HF/THF/H2O

R*OH

60/40 Oxygen vs Carbon-silyl

80/20 E/Z

O

PhH3CO

OH

CH3

syn-isomer

With chiral Enoxysilacyclobutane derived from thio ester

Denmark, S. E.; Griedel, B. D. J. Org. Chem. 1994, 59, 5136

For thio ester enolate: b < 2%

Synthetic Utility:

X

O

CH3

Si

Y

Si

CH3X

OY

ab

1a, b: X = SCH3, Y = (+)-trans-2-cumylcyclohexanol

Aldol Reaction: Asymmetric Version

OSi

O

CH3

H3CH3C

CH3SPh

1) PhCHO toluene, -35 °C, 2M, 7d

2) HF / THF / H2O

O OH

CH3S Aryl

CH3

(1S, 2S)94% ee

60%

O

CH3S Ph

CH3

OHHg(OAc)2, 5 eqNa2HPO4, 5 eq

MeOH, 12 h90%

O

CH3O Ph

CH3

OH

Outline Introduction - Basic Principle

Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction

Application In Natural Product Synthesis

Strain Release Chemistry With Al

Conclusion

1,2 vs 1,4-addition:

Why the observed regiochemistry?

Denmark, S. E.; Griedel, B. D.; Coe, D. M. Schnute, M. E. J. Am. Chem. Soc. 1994, 116, 7026

OSi

CH3OH

CH3

t-Bu+

O

H 20 °C

O

CH3O

H CH3

Sit-Bu

H +O

H

O

H3CO

SiR

1,2-addition 1,4-addition

C6D6

t1/2 = 8 min

84%

100:0

SiR1

O

O

MeO CH3

CH3R2

SiR1

O

MeO CH3

CH3

6 Membered TS

Eneregetically Accessible8 Membered TS

O

R2

Addition To α,β-Unsaturated Carbonyl

Outline Introduction - Basic Principle

Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction

Application In Natural Product Synthesis

Strain Release Chemistry With Al

Conclusion

Allylation Reaction: With Four Membered Silacycle

Acyclic Analogue

Cyclic Analogue

Allyl-alkoxy silacyclobutane more reactive than Allyl-phenyl silacyclobutane

Matsumoto. K.; Oshima, K.; Utimoto, K. J. Org. Chem. 1994, 59, 7152

PhSi

H3C CH3+

H

O

Ph

160 oC

24 hNo Reaction

PhSi

+H

O

Ph

130 oC

12 hPh

OSi

Phaq. HCl

MeOH Ph

OH

85%

+H

O

Ph

1. 100 oC

12 h

Ph

OHSi

O 2. aq. HCl83%

Allyl-Phenyl silacyclobutane with aldehydes:

Matsumoto. K.; Oshima, K.; Utimoto, K. J. Org. Chem. 1994, 59, 7152

R1 R2 Yield anti/syn

H

n-Pr

n-Pr

H

68

66

95/5

5/95

E

Z

Allylation Reaction: With Four Membered Silacycle

Si

Ph Cl -78 °C - rt96%

Si

Ph

MgCl+ THF

Synthesis of Allylsilyl Reagent:

O

SiH

H

n-Pr

R

PhO

SiH

n-Pr

H

R

Ph

anti isomer syn-isomer

E-isomer Z-isomer

PhSi +

H

O

Ph

1. 130 oC, 24 h

2. aq. HCl Ph

OH

R1

R2

R1 R2

Ph

OH

R2 R1

+

anti syn

Outline Introduction - Basic Principle Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction

- 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction

Application In Natural Product Synthesis Strain Release Chemistry With Al

Conclusion

Introduction of the Asymmetry: Choice of Chiral auxiliary :

Si

O

O Cl

H3C

H3C

H3C

H3C

Ring induces: - reactivity - chirality

Chiral 1,2-amino alcohols

OH

NH

Me

Me

Ph

Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920

Chiral 1,2-diamines

NHBn

NHBn

Inactive Catalyst

Asymmetric Allylation Reaction With Five Membered Silacycle

O

Si

O

ClMe

Me

Me

Me

O

Si

O

MeMe

MeMe

ClN

Si

N

Cl

Me

Me

acyclic six-membered

A B CO

Si

OMe

Me

Me

Me

Cl

+

O

HPh

Toluene

23 °C

52%

OH

Ph

1

Asymmetric Allylation Reaction With Five Membered Silacycle

Synthesis of Chiral Silane Reagent:

From Chiral 1,2-amino alcohols

From Chiral 1,2-diamines

Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920Kubota, K.; Leighton, J. L. Angew. Chem. Int. Ed. 2003, 42 , 946

NH

NH

p-BrC6H4

p-BrC6H4

(R,R)

CH2Cl2

88%

Cl3Si+

DBU

NSi

N

Cl

p-BrC6H4

p-BrC6H4

(R,R)

2

(S,S)

OH

NH

MeMe

Ph

NSi

O

Cl

CH3

H3C

Ph

CH2Cl2

88%

Cl3Si+

Et3N

2:1 dr

1

Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920Kubota, K.; Leighton, J. L. Angew. Chem. Int. Ed. 2003, 42 , 946

Asymmetric Allylation Reaction With Five Membered Silacycle

With aldehyde:

2

N

Si

O

Cl

CH3

H3C

Ph O

Ht-Bu

TolueneOH

t-Bu+

96% ee

- 10 oC, 2 h (S)

(S,S)

80%

1

N

Si

N

Cl

p-BrC6H4

p-BrC6H4

+

O

HPh- 10 °C, 20 h

OH

PhCH2Cl2

(R,R)

S-isomer

98% ee69%

(Z)-crotylsilane: Syn-Selective

Hackman, B. M.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2003, 42 , 946

With Aldehyde

(E)-crotylsilane: Anti-Selective

Asymmetric Crotylation Reaction With Five Membered Silacycle

Entry R Yield(%) ee(%)

1

2

3

4

5

PhCH2CH2

p-CF3C6H4

83

82

67

61

97

97

96

95

96

BnOCH2

6 67 95

Cy

Ph

PhHC CH(E)

67

81

83

54

60

98

97

99

93

96

52 94

68

(trans)-crotylsilane

Yield(%) ee(%

(cis)-crotylsilane

+

O

HR 0 °C, 20 h

OH

R

CH2Cl2

CH3

NSi

N

p-BrC6H4

p-BrC6H4

(R,R)-2

Cl

CH3

1.1 equiv

+

O

HR 0 °C, 20 h

OH

R

CH2Cl2

(R,R)-3

NSi

N

Cl

p-BrC6H4

p-BrC6H4

CH3

(1.1) equiv

CH3

Berger, R.; Rabbat, P. M. A.; Leighton, J. L. J. Am. Chem. Soc. 2003, 125, 9596

Aldehyde derived Acylhydrazone

N

Si

N

NR2

R1H

Ph

H

NOCl

Asymmetric Allylation/Crotylation Reaction

NSi

O

Cl

CH3

H3C

Ph

N

HPhPh

+NH

O R

CH2Cl2

0 or 10 oC

HNNH

O R

a) R = t-Bub) R = Me

a) 70%, 40% eeb) 86%, 88% ee

N

Si

N

OR2

R1H

Ph

H

Ph

NOCl

N

Si

O

Cl

CH3

H3C

Ph

R2

R1

N

HPh

NHBz

Ph

HNNHBz

R2 R1

+

CH2Cl2

10 oC

a. R1 = CH3, R = H

b. R1 = H, R = CH3

a. 81%; 96:4 dr; 95% eeb. 89%; 95:5 dr; 97% ee

N

Si

O

Cl

CH3

H3C

Ph

N

HPh Ph

HN+

N N

CH2Cl2

31%, 50% ee

Crotylation:

Allylation:O

N

Si

Cl

CH3

N

HPh

NHAc

+CH2Cl2

0 oC, 16h

44%

HNNHAc

Ph

Proposed mechanism:

Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686

Ketone derived Benzoylhydrazone

Asymmetric Allylation Reaction With Five Membered Silacycle

N

Si

N

O

Ph

H3C

H

Ph

NO

ClMe

N

Si

N

O

Ph

H3CPh

NO HCl

Me

N

Si

N

O

Ph

H3CPh

HClNO Me

N

HPh

NHBz

NSi

O

Cl

CH3

H3C

Ph

(S,S)

+

(1.5 equiv)

N

CH3Ph

NHBz

R1+CHCl3

40 oC, 24 hN

Si

O

Cl

CH3

H3C

Ph NHNHBzR2

86%, 90% ee

Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686

Ketone derived Benzoylhydrazone

Asymmetric Allylation Reaction With Five Membered Silacycle

OSi

NN

Ph

O

N HPh

CH3

CH3 Cl

+

-

Ph

H

Ph

NSi

O

OMeCH3

H3C

Ph

(S,S)

+N

Me

NMe

Ph

PhO

N

Me

NH

Ph

PhO

NRNSi

O

Cl

CH3

H3C

Ph

+

N

Si

O

Cl

Ph

CH3

H3C

Ph

+N

H

NH

Ph

PhO

White Powder

1

Rabbat, P. M. A.; Valdez, S. C.; Leighton, J. L. Org. Lett. 2006, ASAP

?

No reaction

With Aldimine

H3CO

H2N

CH3

NSi

O

Cl

CH3

H3C

Ph

(S,S)-1

Asymmetric Allylation Reaction With Five Membered Silacycle

R1

OSi

N

O

N HPh

CH3

CH3 Cl

+

-

R

H

HN

O R3

R2 NH

HO

N

HR

(S,S)-1

N

H

HO

CH3

HN

HO

CH3

Et2O, 23 oC

20 h

85%

(S,S)-1

92% ee

(S,S)-1

NSi

O

Cl

CH3

H3C

Ph

N

R2R1

R1

+NH

O R3

OSi

NN

R3

O

N HPh

CH3

CH3 Cl

+

-

R2

R1

HN

O R3

R2 NH

Rabbat, P. M. A.; Valdez, S. C.; Leighton, J. L. Org. Lett. 2006, ASAP

NOH

CH3

Asymmetric Allylation Reaction With Five Membered Silacycle

Phenol Activating/directing group attached to imine nitrogen part of the substrate ?

Advantage

Possibility of success with Ketimines Flexibility in the choice of N-substituent of the imine

With Ketimine

RCH3

N

HO

Ketimine Not Possible

Limitation: Only applicable to Ketimine containing Phenolic auxiliiary

N

CH3

OH(S,S)-1Toluene

reflux, 6 h90%

NHOH

96% ee

5 mol % Grubbs II cat.

40 oC, 14 h

82%

NH

OH

96% ee

Burns, N. Z.; Hackman, B. M.; Ng, P. Y.; Powelson, I. A.; Leighton, J. L. Angew. Chem. Int. Ed. 2006, 45, 3811 ,

Sterically Hindered Ketone

Asymmetric Allylation Reaction With Five Membered Silacycle

(R) Enantiomer (major)(S) Enantiomer

Proposed mechanism:

NSi

N

Cl

p-BrC6H4

p-BrC6H4

+

HO OHO HO

H3CH3C

(R,R) 94% ee

CH2Cl2

23 °C, 48 h75%

O

Si

R

N

N

H

H

Ar

Ar

+ HCl-

O HO RH

O

Si

N

N

H

H

Ar

+ H

O

Ar

Cl -

Electronic Repulsion

StericRepulsion

OH

HO R

kA kB

AB

O

kB >> kA

R

Outline Introduction - Basic Principle

Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction

Application In Natural Product Synthesis

Strain Release Chemistry With Al

Conclusion

Different Approach in Carbon-Carbon Bond Forming Reaction

N

Si

O

Me

Ph

Me

Cl

Nucleophile present in the silane moiety

NSi

O

Me

Ph

Me

Cl

Ph+ External Nucleophile

?

Yes

Enantioselective Friedel-Crafts Alkylation

Enantioselective [3 + 2] Acylhydrazone-Enol Ether Cycloaddition

N

Si

O

Cl

Ph

CH3

H3C

Ph

+

N

R2R2

NHCORArH

? R1 Ar

R2 NHNHCOR

N

Si

O

Cl

Ph

CH3

H3C

Ph

+

N

HR2

NHCOR

?

EDGHN N

R1 EDG

O

R

Enantioselective Friedel-Crafts Alkylation

Shirakawa, S.; Berger, R.; Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 2858

OSi

N

N

Ph

O

NHPh

CH3

CH3 Cl

+

-

Ph

H

Ph

ArH

ArH

Bulky Phenyl Group

X

Plausible Mechanism :

+N

Hi-PrO2C

NHBz

ArH

(1.5 equiv)(S,S)-1

Toluene, -20 oC, 20 h Ari-PrO2C

NHNHBz

OSi

NPh

O

N HPh

CH3

CH3 ClH

+

-

Ph

H

Ph

NSi

O

Cl

CH3

H3C

Ph

N

HPh

+NH

O Ph

(S,S)-1(~2:1) dr

Entry ArH Yield(%) ee(%)

1 65 95

NMe2

NH

NO2

N

S

Bn

OMe

2

3

4

74

76

91

88

88

89

Enantioselective [3 + 2] Acylhydrazone-Enol Ether Cycloaddition

Stepwise mechanism

Shirakawa, S.; Lombardi, P. J.; Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 9974

Extension: Access to 1,3-diamines

+ HN N

t-Bu

O

Ph

OtBuN

t-Bu H

NHBz

OtBu(3.0 equiv)

(1.5 equiv)(S,S)-1

Toluene, 23 oC, 24 h

76%>97:3 dr98% ee

HN N

Bz

OtBu

PhN N

Bz

OtBu

PhAc

N N

BzPhPh NH HN

Ac Bz Ac

AcCl, Pyridine

DMAP, CH2Cl2

99%

MeOH, THF

87%

H2C CHCH2SiMe3

TMSOTf

CH2Cl2,-15oC

65%; >20:1 dr

SmI2

NSi

O

Cl

Ph

CH3

H3C

Ph

(S,S)-1(~2:1) dr

+

HN N

Bz

OtBuN

R H

NHBz

OtBu

(3.0 equiv)

(1.5 equiv)(S,S)-1

Toluene, 23 oC, 28 h

70%

Ph

CH3

>10:1 dr;97% ee

(Z)anti

Asymmetric Diels–Alder Cycloaddition

Model for Asymmetric Induction

Kubota, K.; Hamblett, C. L.; Wang, X.; Leighton, J. L. Tetrahedron, 2006, 62, 11397

O

tBu

N

tBu

N

Si

Cl

Ts

A

OtBu

N

tBu

N

Si

Cl

Ts

Inactive Catalyst

B

R1 CHO+

20 mol %A

CH2Cl2, - 78 oC R1

CHO

R2 R2

Entry Enal time(h) Yield(%) ee(%)

1 78 94

2

3

4

87

79

88

90

86

54

Me CHO

Me CHO

Me

CHO

Et CHO

8

48

24

16

CH3

CHOSi N

N

O

H

Ts

Cl

H

H3C

HO

Si N

NH

Ts

Cl

H

O H

H3C

O

(S)

Cooperative H-bonding

Bulky Ph Ring

Outline Introduction - Basic Principle

Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction

Application In Natural Product Synthesis

Strain Release Chemistry With Al

Conclusion

Tandem Aldol-Allylation Reaction

Potential Problem in Polyketide Synthesis: Oligomerization

Possible Solution: Termination by allylation

Wang, X.; Meng, Q.; Nation A. J.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 10672

O

Si

OMe

Me

Me

Me

O

1

Reaction:

+

OH OH

Ph

O

HPh

1

Toluene

40 °C, 24h

OH

Ph

60%; 11:1 dr 29%

O

HR

+ H3C

OMLn

n

OH OH O

CH3 CH3

HR n-1

OH OH OH

CH3 CH3

R n-1

CH3

O

HR+

H3C

O

LnM

CH3n

Tandem Aldol-Allylation Reaction: Extension

O

Si

O

O

H3C

H3C

H3C

H3CO

Si

O

O

H3C

H3C

H3C

H3C

Three Stereogenic Centres Four Stereogenic Centres

Wang, X.; Meng, Q.; Nation A. J.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 10672Wang, X.; Meng, Q.; Nicholas, R. P.; Xu, Y.; Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 12806

O

Si

O

O

H3C

H3C

H3C

H3C

Tertiary Carbinol

O

HCy

Toluene40 °C, 60 hO

SiOMe

Me

Me

MeO

OH OH

Cy

CH3

30%; 2:15 dr

Toluene40 °C, 60 h

OSi

OMe

Me

Me

MeO

H3COH OH

Cy

CH3

71%; 10:1 dr

Cy H

O

O

HCy

Toluene40 °C, 80 h

OSi

OMe

Me

Me

MeO

OH OH

Cy

CH3

81%; 66:5:24:7:4 dr

CH3

H3C

CH3

Toluene

OSi

OMe

Me

Me

MeO

O

HCy+

CH3

CH3 Cy

58%; 14:1 dr

CH3

CH3

reflux, 50 h

HO HO

Aldehyde added Externally

Tandem Silylformylation—Allyl(Crotyl)silylation

Allylation: Silylformylation of Olefins:

Predicted Scheme:

- Important structural motif found in natural product

Chapman, E.; J.; Leighton, J. L. J. Am. Chem. Soc. 1997, 119, 12416Zacuto, M. J.; Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 8587

SiO

R H

OPh Ph

O HSi

R

Ph Ph

Rh(acac)(CO)2

CO, Benzene, 60 oCN

Si

O

Me

Ph

Me

Cl

+

Ph H

O Benzene

Ph

OH

O HSi

R

SiO

R H

OOH OH OH

R

O Si O

R

Tamao

Oxidation

O Si O

R *H

OSiO

R

O

R

SiH

Tandem Silylformylation—allylsilylation

Zacuto, M. J.; Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 8587O’Malley, S. J.; Leighton, J. L. Angew. Chem. Int. Ed. 2001, 40, 2915

Alkene Substrate

Alkyne Substrate

O HSi

i. 3 mol % Rh(acac)(CO)2,

1000 psi CO, Benzene, 60 oC

ii. H2O2, NaHCO3, THF/MeOH, heat

OH OH OH

i-Pr

i-Pr

59%, 77:23 ds

OSi

H

CH3

H3C

OAc OAc

CH3

H3C

1.i. Rh(acac)(CO)2,

CO, Benzene, 60 oC

ii. n-Bu4NF, THF, heat

2. Ac2O, Pyridine 83%; 8:1 dr

Schmidt, D. R.; O’Malley, S. J.; Leighton, J. L. J. Am. Chem. Soc. 2003, 125, 1190

With Alkyne Substrate: Access to Both syn and anti 1,5-diol

BDPP: (2,4)-bis(diphenylphosphino)pentane

Entry R1 R2 Ligand ds Yield

1

2

3

4

75

89

83

8212:88

90:10

20:80

80:20(R,R)-BDPP

(S,S)-BDPP

(R,R)-BDPP

(S,S)-BDPP

n-Pr

n-Pr

Ph

Ph

CH2CCH

CH2CCH

CH2CCH

CH2CCH

Tandem Silylformylation—Allylsilylation

OH

R2R1O

R1 R2

SiH O

R1 R2

SiH

HSi

H

t-But-Bu t-Bu

+ +

10 mol % CuCl10 mol % NaO-t-Bu10 mol % Ligand

Toluene, 12-24 h

BA

OH OH

R

i. 10 mol % ((PhO)3P)2Rh(CH3COOH)2.BF4,

CO, Benzene, 60 oC

ii.O

R

SiH

t-Bu

R = n-Pr, 55%, 78:22 drR = Ph, 38%, 90:10 dr

R = n-Pr, 80:20 drR = Ph, 90:10 dr

OH OH

R

i. 10 mol % ((PhO)3P)2Rh(CH3COOH)2.BF4,

CO, Benzene, 60 oC

ii.O

R

SiH

t-Bu

R = n-Pr, 44%, 79:21 drR = Ph, 43%, 88:12 dr

R = n-Pr, 80:20 drR = Ph, 88:12 dr

n-Bu4NF, THF, heat

n-Bu4NF, THF, heat

A

B

Outline Introduction - Basic Principle

Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction

Application In Natural Product Synthesis

Strain Release Chemistry With Al

Conclusion

Synthesis of (+)-SCH 351448

Bolshakov, S.; Leighton, J. L. Org. Lett. 2005, 7, 3809

- Isolated in 2000- Low-density Lipoprotein receptor

Retrosynthesis

O

OH O

CH3

O

HO

O

OHO

O

O

H3C

ONaO2C

H3C CH3

CO2H

H3C CH3

O

OBn OH

CH3

ONaO2C

H3C CH3

O

O

O

OBnOR

OH3C CO2H

H3C CH3

OO

OH

O

CH3CH3

OH3CH3C

R = TBS

A

B

C

RCM

3

4

1

2

5 Steps

B

C

A

BnO2CO

OBn OH OH

H3C CH3 CH35

Bolshakov, S.; Leighton, J. L. Org. Lett. 2005, 7, 3809

Forward Synthesis of Structure 5

Synthesis of (+)-SCH 351448

OO

1. ent-7, CH2Cl2, -10 oC

2.p-TsOH, Benzene, reflux

72% (2 steps)(93% ee)6 8

CHOt-BuO2C O

OBn

BnO2C

H3C CH3

O

H

9

O

OBn

BnO2C

H3C CH3

OH

CH3O

OBn

BnO2C

H3C CH3

O

CH3

SiH

12 11

10, CH2Cl2, 0 oC

80%, >20:1 dr

(Allyl)2Si(NEt2)H, CH2Cl2

3 Steps

Asymmetric Crotylationof Aldehyde

Asymmetric Allylationof Aldehyde

NSi

N

p-BrC6H4

p-BrC6H4

Cl 7 R = H10 R = CH3

R

Bolshakov, S.; Leighton, J. L. Org. Lett. 2005, 7, 3809

- 32 Total Steps- 2.1% Overall Yield

Forward Synthesis of Structure 5

Synthesis of (+)-SCH 351448

BnO2CO

OBn OH OH

H3C CH3 CH3

5

i. 5 mol% Rh(acac)(CO)2,

900 psi CO, Benzene, 65 oC

ii. n-Bu4NF, THF, reflux

69% (2 steps)

(+)-SCH 351448

O

OBn

BnO2C

H3C CH3

O

CH3

SiH

12

Steps

Tandem Silylformylation /Allylsilylation

Synthesis of Dolabelide D: Retrosynthesis

Park, P. K.; O’Malley, S. J.; Schmidt, D. R.; Leighton, J. L. J. Am. Chem. Soc. 2006, 128, 2796

- Isolated in 1997- Important cytotoxic agent

Dolabelide D

Total Synthesis of Dolabelide D

OAc O

CH3

OH OH

CH3

HO

CH3OH

H3C

OH

O

CH3 OAc

n-Pr

O

RCM

Esterification

2

3

OAc O

H3C

O

OHCH3

CH3 OAc

n-Pr

OH OH

CH3

OH

HO

1

CH3

Dolabelide D

A

A

B

B

CH3

CH3

PMBO O

4

O PMBO O

OH

CH3 CH3

5

+

Park, P. K.; O’Malley, S. J.; Schmidt, D. R.; Leighton, J. L. J. Am. Chem. Soc. 2006, 128, 2796

Synthesis of Fragment 2

11% overall yield from 6

Total Synthesis of Dolabelide D

i. 2 mol %

[Rh(acetone)2(P(OPh)3)2]BF4

CO, Benzene, 60 oC

ii. MeLi, Et2O, -78 to 23 oC

56%4:1 dr

HO Si HO

n-Pr

CH3

8

HSi

H

t-Bu

OH

n-Pr

+

4 mol % CuCl, 4 mol % NaO-t-Bu,

4 mol % (R,R)-BDPP, Benzene

95%4:1 dr

HSi

O

t-Bu

H3C

n-Pr

6 7 Silylformylation Crotylsilylation

O O OH CH3 OAc

n-Pr

CH3

2

8 steps

t-Bu CH3H3C

Synthesis of Dolabelide D

First Total Synthesis of Dolabelide D14 linear steps from 6 2% Overall yield

Park, P. K.; O’Malley, S. J.; Schmidt, D. R.; Leighton, J. L. J. Am. Chem. Soc. 2006, 128, 2796

Synthesis of Fragment 3

2 3+

4 steps

1

Dolabelide D

O

H

CH3 CH3

OPMB

CH3

O PMBO O

OH

CH3 CH3

ent-13, CH2Cl2;

NaH, PMBBr, THF, reflux

53%

6 Steps

12 14 5Asymmetric Crotylation

of aldehyde

4 5+

RO O

CH3

OH

CH3CH3

5 steps

3

OTESBMPOOAc

NSi

N

p-BrC6H4

p-BrC6H4

Cl

R10 R = H13 R = CH3

CH3

H

O10, CH2Cl2, - 20 oC

80 %98 % ee

CH3

OH

CH3

CH3

PMBO

2 Steps

O

9 11 4Asymmetric Allylation

of aldehyde

Synthesis of Polyketide like Macrolide

Tandem Silylformylation / Allylsilylation

Zacuto, M. J.; Leighton, J. L. Org. Lett. 2005, 7, 5525

H3C

O O OH OH OH

CH3 CH3 CH3

H3C CH3

H3C

OH

CH3 CH3

5 Steps

33% yield

1 2

O

O

OCH3

H3C

H3CO

HO

CH3

H3C

H3CO

HO

CH3

OBn

O

CH3

CH3

CH3

CH3

O

OCH3

H3C

O O OH OH OH

CH3 CH3 CH3

H3C CH3

5 steps52% yield

9 steps13% yield

2

3 4

Outline Introduction - Basic Principle Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction

Application In Natural Product Synthesis Strain Release Chemistry With Al

Conclusion

Strain Release Lewis Acidity: Al(III) Complexes

Catalyzed Asymmetric Acyl Halide - Aldehyde Cyclocondensation (AAC) Reactions

With Unsubstituted Acylhalide

Nelson, S. G.; Spencer, K. L. Angew. Chem. Int. Ed. 2000, 39, 1323

O

CH3Br

O

CH2CH2PhH+

10 mol% 1

i-Pr2NEt, CH2Cl2- 50 oC

96%

OO

CH2CH2Ph

97% ee

O

CH3X

O

R1H

+O

O

R1

X = Br, Cl

O

.

[R1CHO.Al(III)]

Al(III)-Catalyst

R3N

R3N

R3(H)N.X

N Al

N

N

Bn

CH3

i-Pri-Pr

SO2CF3F3CO2S

1

Nelson, S. G.; Kim, B-K.; Peelen, T. J. J. Am. Chem. Soc. 2000, 122, 9318

Strain Release Lewis Acidity: Al(III) Complexes

1.DMF Complex

Me

N1

N3

Al

N2114.0°

Plane angles(sum) = 358.6°

Me

N1

N3

Al

N297.5°

OH

NMe2

99.8°

N Al

N

N

Bn

CH3

i-Pri-Pr

SO2CF3F3CO2S

1

Active Catalyst Inactive Catalyst

Lacking a lewis basic residuein the ligand backbone

Nelson, S. G.; Kim, B-K.; Peelen, T. J. J. Am. Chem. Soc. 2000, 122, 9318

Ligand defineddistorted 4-coordinate geometryKey to reactivity

Strain Release Lewis Acidity: Al(III) Complexes

N Al N

CH3TfTf

4

N Al

N

N

Bn

CH3

i-Pri-Pr

TfTf

1

N Al

N

N

CH3

CH3TfTf

2

N Al

O

N

CH3TfTf

3

Strain Release Lewis Acidity: Al(III) Complexes

Nelson, S. G.; Kim, B-K.; Peelen, T. J. J. Am. Chem. Soc. 2000, 122, 9318

Inactive Catalyst

- Identical in coordination number and ligand electronics- Different in chelate size

Active Catalyst

NAl

N

NTfTf CH3

CH3

5 (inactive)

E1

Al

O

Al

O

Al

O

1 + RCHO

5 + RCHO

E2

Energy

NAl

N

N

R

TfTfMe

activeNAl

N

N

R

Tf TfMe

Inactive

N Al

N

N

Bn

CH3

i-Pri-Pr

SO2CF3F3CO2S

1 (active)

Origin of selectivity with 2

Strain Release Lewis Acidity: Al(III) Complexes

Nelson, S. G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2004, 126, 14

N Al

N

N

CH3SO2CF3ArO2S

Ph

i-Pr i-Pr

Ar = 3,5-(CF3)2C6H3-

2

N Al

N

N

CH3SO2CF3ArO2S

Ph

i-Pr i-Pr

Ar = 4-(NO2)C6H4-

3

N Al

N

N

CH3

SO2O2S

R

CF3 Ar

N Al

N

N

CH3

SO2O2S

R

Ar CF3

H R1

OMajor Diastereomer

Second generation AAC catalyst

With Substituted Acylhalide

O

Br

O

PhH+

10 mol% 2

i-Pr2NEt, CH2Cl2- 25 oC

84%

OO

Ph

96% ee> 98:2 de (syn)

i-Pri-Pr

Total Synthesis of (-)-Malyngolide:

(−)-Malyngolide

- 4 Steps- 54% Overall Yield

Nelson, S. G.; Zhonghui, W. J. Am. Chem. Soc. 2000, 122, 10470

N Al

N

N

Bn

CH3

i-Pri-Pr

SO2CF3F3CO2S

1

OO

H3CnC9H19

OH

OHC

OBn

10 mol % 1, EtCOBr,

i-Pr2NEt, CH2Cl2, -50 oC OO

H3C

OBnOO

H3CnC9H19

OH85%

94% ee, 91:9 cis:trans

3 Steps

23

- An Antibiotic

Outline Introduction - Basic Principle Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction

Application In Natural Product Synthesis Strain Release Chemistry With Al

Conclusion

Conclusion

Release of strain of four or five membered silacycles in going from four coordinated distorted tetrahedral geometry to five coordinated trigonal bipyramidal geometry

Constraining silicon in a small ring (four or five) causes Lewis acidity

Enhanced lewis acidity of five membered silacycles containing heteroatom than four membered silacycles

Application of the Lewis acidity of these silacycles in various type of carbon-carbon bond forming reactions

Lewis acidity of some neutral electron-rich Al (III) complex due to distorted ground state coordination geometry imposed by the ligand backbone

Acknowledgement

Dr. Smith Dr. Borhan Dr. Jackson Dr. Walker Dr. Odom

Group Members: Abbas, Appi, Sulagna, Suzi

Friends: Sanjukta, Supriyo, Sampa, Partha, Luis

Thank You