34
12.i Í Í Í n n n d d d i i i c c c e e e TEMA 12: El BJT en régimen dinámico 12.1 12.1. INTRODUCCIÓN 12.1 12.2. MODELO DE CONTROL DE CARGA 12.3 12.2.1. Modelo de control de carga en condiciones estacionarias 12.3 12.2.2. Modelo de control de carga en condiciones dinámicas 12.6 12.2.3. Deducción del modelo de control de carga a partir de la representación circuital 12.9 12.3. EL BJT COMO CONMUTADOR 12.12 12.4. EL BJT COMO AMPLIFICADOR DE PEQUEÑA SEÑAL. RECTA DE CARGA DINÁMICA. 12.14 12.4.1. Recta de carga dinámica 12.22 12.5. EL BJT COMO CUADRIPOLO. PARÁMETROS HÍBRIDOS. FRECUENCIAS DE CORTE. 12.25 12.5.1. Parámetros híbridos 12.26 12.5.2. Frecuencias de corte 12.31

TBJ en Regimen Dinamico

Embed Size (px)

DESCRIPTION

TBJ DInamicoalterna

Citation preview

  • 12.i

    nnndddiiiccceee

    TEMA 12: El BJT en rgimen dinmico 12.1

    12.1. INTRODUCCIN 12.1

    12.2. MODELO DE CONTROL DE CARGA 12.3

    12.2.1. Modelo de control de carga en condiciones estacionarias 12.3

    12.2.2. Modelo de control de carga en condiciones dinmicas 12.612.2.3. Deduccin del modelo de control de carga a partir de la

    representacin circuital 12.9

    12.3. EL BJT COMO CONMUTADOR 12.12

    12.4. EL BJT COMO AMPLIFICADOR DE PEQUEA SEAL. RECTA DE CARGA

    DINMICA. 12.14

    12.4.1. Recta de carga dinmica 12.22

    12.5. EL BJT COMO CUADRIPOLO. PARMETROS HBRIDOS. FRECUENCIAS DE CORTE. 12.25

    12.5.1. Parmetros hbridos 12.26

    12.5.2. Frecuencias de corte 12.31

  • 12.1

    TTTeeemmmaaa 111222

    RRRgggiiimmmeeennn DDDiiinnnmmmiiicccooo

    12.1.- Introduccin

    En los dos temas anteriores se ha estudiado el funcionamiento del BJT en

    condiciones estacionarias; es decir, cuando est polarizado con tensiones y corrientes

    establecidas desde un tiempo anterior suficientemente largo.

    Sin embargo, en la mayor parte de las aplicaciones, el BJT trabaja con

    tensiones y corrientes dependientes del tiempo. Esto es, trabaja en RGIMEN

    DINMICO.

    Dentro del grupo de los fenmenos dinmico interesan, fundamentalmente:

    Los regmenes transitorios de establecimiento y corte de la corriente en un

  • Tema 12: Rgimen dinmico

    12.2

    BJT, asociados al funcionamiento del mismo con conmutador.

    El rgimen lineal, asociado al funcionamiento del BJT como amplificador de pequea seal.

    Un estudio general de los procesos dinmicos en un BJT sera posible

    tericamente, pero carecera de valor prctico. Por eso, lo que se va a presentar en

    este tema es un modelo bastante general conocido como modelo de control por carga

    de base, cuya aplicacin a los casos anteriormente citados permite desarrollar

    modelos ms especficos para cada caso particular, manteniendo un compromiso entre

    simplicidad y exactitud. En cada uno de ellos, se indicarn las limitaciones y campo de

    aplicacin.

  • Modelo de control de carga

    12.3

    12.2.- MODELO DE CONTROL DE CARGA

    Para fijar ideas, se considerar un transistor pnp polarizado en el MODO

    ACTIVO. Por qu esta regin de funcionamiento? Porque cuando se utiliza el BJT

    como amplificador de pequea seal, es en el MODO ACTIVO donde se obtienen las

    mayores ganancias de seal con distorsiones mnimas. Adems, en las aplicaciones del

    BJT como conmutador, necesariamente hay que pasar por el MODO ACTIVO cuando

    el BJT conmuta desde su estado OFF (corte) al estado ON (activa/saturacin) y

    viceversa.

    12.2.1.- Modelo de control de carga en condiciones estacionarias

    Supongamos, en principio, que nos encontramos en RGIMEN

    ESTACIONARIO. Por lo que se ha visto en los temas anteriores, en tal caso, la

    componente dominante de la EI e CI est constituida por el flujo de h+ inyectados por

    el emisor en la base que consiguen alcanzar y atravesar la unin de colector; de ah que

    centremos nuestra atencin en el perfil de minoritarios (huecos) en la regin neutra de la

    base (Figura 12.1).

    Se sabe que,

    ( ) ( )( )

    0 1

    0 exp

    B BB

    EBB BO

    T

    xp x pw

    Vp pV

    = =

    (12.1)

    Por otra parte, en nuestro caso,

    ( )0B

    BBC pC pB pB

    Bx w

    ppI I qAD qADx w=

    = = (12.2)

  • Tema 12: Rgimen dinmico

    12.4

    Si se define BQ como la carga acumulada en base debida al exceso de

    minoritarios (en nuestro caso, los huecos):

    ( ) ( ) ( )0 0

    0

    2

    B Bw wB B

    B B B

    p wQ qA p x dx qA p x dx qA = (12.3)

    Comparando las ecuaciones (12.2) y (12.3), resulta que:

    2

    2/ 2

    pB B BC

    B B B pB

    D Q QIw w w D

    = =

    Por lo tanto,

    2

    2

    BC

    T

    BT

    pB

    QI

    wD

    =

    (12.4)

    siendo T el tiempo de trnsito de la base, es decir, el tiempo medio que tardan los minoritarios (en nuestro caso los huecos) en atravesar la base por difusin.

    Figura 12.1.- Perfil de minoritarios en base para un pnp en el MODO ACTIVO.

    PB(x)

    0 wB x

    pBO

  • Modelo de control de carga

    12.5

    Por otra parte, la base ha de ser elctricamente neutra. Esto es, tiene que

    suministrarse a la regin de base el nmero suficiente de mayoritarios, en nuestro caso

    de electrones, que neutralicen la carga debida al exceso de minoritarios, BQ . Ahora

    bien, estos electrones no pueden suministrarse a travs de las uniones puesto que

    constituyen los portadores minoritarios de las regiones de emisor y colector. Por lo

    tanto, slo pueden suministrarse a travs del terminal de la base. Es decir, en rgimen

    estacionario y para el MODO ACTIVO que se est considerando, los electrones que

    circulan hacia el interior de la base alimentan la recombinacin de minoritarios en base

    e inyectan electrones en el emisor. Matemticamente,

    BB

    B

    QI = (12.5)

    donde B se puede interpretar como un tiempo de vida equivalente que permite expresar BI como una corriente de recombinacin en base. Es decir, en B est incluido la

    porcin de electrones que la base inyecta en el emisor.

    Por lo tanto,

    ( )2

    2

    BC

    T

    BB

    B

    E B C

    BT

    pB

    QI

    QI

    I I I

    wD

    =

    =

    = +

    (12.6)

    Las ecuaciones (12.6) constituyen las ecuaciones del MODELO DE CONTROL

    DE CARGA en rgimen estacionario, para el MODO ACTIVO. A pesar de que han

    sido obtenidas para un pnp, tal y como estn expresadas siguen siendo vlidas para un

  • Tema 12: Rgimen dinmico

    12.6

    npn. En tal caso, BQ sera carga de electrones almacenados en la base BQ < 0 , 0C BI I > .

    Debe matizarse que la ecuacin (12.4) es una primera aproximacin al valor de

    T , ya que no considera el Efecto Early. Es decir, no tiene en cuanta la dependencia de la anchura de la base con las tensiones aplicadas a las uniones de emisor y colector.

    Finalmente, debe sealarse que las ecuaciones (12.6) son equivalentes a las

    ecuaciones de Ebers-Moll particularizadas al MODO ACTIVO de funcionamiento.

    12.2.2.- Modelo de control de carga en condiciones dinmicas

    Se trata ahora de ampliar las ecuaciones del MODELO DE CONTROL DE

    CARGA, ecuaciones (12.6), para que abarquen situaciones dinmicas o variables con el

    tiempo. Para ello, se va a suponer la variacin de la distribucin de carga en la base es

    lo suficientemente lenta (seal dinmica lenta) de manera que en todo momento se tiene

    una distribucin triangular semejante a la de la situacin estacionaria. Esto es, se

    considerar el rgimen dinmico como una sucesin de estados estacionarios.

    En la Figura 12.2a se han representado dos situaciones estacionarias

    correspondientes a los instantes de tiempo 1t t= y 2t t= . Queda claro que en el intervalo de tiempo 1 2t t t< < se ha aumentado la polarizacin directa de la unin emisor-base, lo que conduce a un incremento de minoritarios almacenados en la base.

    En la Figura 12.2b, se muestra la distribucin instantnea de carga en distintos instantes

    correspondientes al intervalo 1 2t t t< < para una velocidad de variacin suficientemente lenta, de manera que se cumpla la hiptesis de estados intermedios cuasi-estacionarios.

    Sin embargo, en la Figura 12.2c, se ha dibujado una situacin en la que la tensin base-

    emisor ha aumentado instantneamente a su nuevo valor. Aunque ( ) 0Bp modifica instantneamente su valor, la distribucin de carga no puede seguir esta variacin ya

    que necesita un cierto tiempo para que los huecos se difundan a travs de la base y

    aumenten la concentracin de huecos en cada punto de dicha regin.

  • Modelo de control de carga

    12.7

    Debe sealarse que la hiptesis de rgimen dinmico como sucesin de estados

    estacionarios conduce a un modelo de circuito muy til y razonablemente exacto para

    un elevado nmero de aplicaciones.

    Admitiendo entonces como vlida dicha hiptesis, resulta que

    BC

    T

    qi = (12.7)

    siendo Ci la corriente total instantnea de colector y Bq la carga total instantnea de

    base debida al exceso de minoritarios. En lo que respecta a los mayoritarios que circulan

    pB

    x w

    t1

    t2

    x w

    t1

    t2

    pB

    pB

    x w

    t1

    t2

    Figura 12.2.- La distribucin instantnea de carga en la base, puede considerarse como esttica si no es demasiado grande la velocidad de variacin.

    (a) Estados inicial y final

    (b) Ejemplo de variacin lenta (c) Ejemplo de variacin demasiado rpida

  • Tema 12: Rgimen dinmico

    12.8

    hacia el interior de la base (en nuestro caso los electrones) en RGIMEN DINMICO

    tienen dos funciones. Por una parte, alimentan la recombinacin de portadores

    minoritarios en la base e inyectan portadores en el emisor, BB

    q (tal y como ocurra en

    rgimen estacionario); por otra, dan cuenta del aumento de carga almacenada en la base,

    Bqt

    . Es decir, matemticamente,

    ( )

    ( )

    ( )

    B BB

    B

    BC

    T

    E C B

    q t qit

    q ti

    i i i

    =

    =

    = +

    (12.8)

    Las ecuaciones (12.8) constituyen las ecuaciones del MODELO DE

    CONTROL DE CARGA de un BJT para el MODO ACTIVO.

    Estas ecuaciones se reducen a las ecuaciones (12.6) de RGIMEN

    ESTACIONARIO si 0t = .

    NOTAS:

    - Resaltar el cambio de notacin utilizado en condiciones estacionarias y rgimen

    dinmico.

    - Las ecuaciones (12.8) constituyen una representacin bastante correcta del

    comportamiento dinmico real del BJT, incluso para variaciones bastante rpidas.

    En efecto, tal y como se puede apreciar en la Figura 12.3, una variacin rpida

    implica que la pendiente del perfil de minoritarios en base es distinta en 0x = y Bx w= , lo que equivale a decir que puede ocurrir que existan grandes diferencias

    entre la corriente de emisor y la corriente de colector. Sin embargo, prcticamente

  • Modelo de control de carga

    12.9

    no existen diferencias entre la carga real acumulada en la base y la carga

    correspondiente al rgimen estacionario para la misma corriente de colector.

    Ahora bien, la situacin es muy diferente cuando se analizan relaciones entre cargas

    y tensiones, que vienen dada a travs de la concentracin de minoritarios en el

    borde de la zona de carga de espacio correspondiente. Esto es, tal y como se aprecia

    en la Figura 12.3, para una pequea variacin de las reas, esto es, para una

    pequea variacin de las cargas, puede existir una variacin importante en el valor

    de ( )0Bp y, por lo tanto, en el valor de la tensin instantnea emisor-base.

    Posteriormente, se aplicarn las ecuaciones (12.8) al uso del BJT como

    conmutador y como amplificador de pequea seal.

    12.2.3.- Deduccin del modelo de control de carga a partir de la representacin

    circuital

    Vamos a partir de la representacin circuital de las ecuaciones de Ebers-Moll

    para un transistor pnp particularizada al modo activo de funcionamiento, en el que la

    unin de colector se encuentra inversamente polarizada y el diodo que representa a

    dicha unin puede considerarse como un circuito abierto (Figura 12.4).

    x w

    pendiente iE

    qB rea

    (error qB)

    pB(x,t)

    pB

    pendiente iC

    Figura 12.3.- Perfil de minoritarios en base para rgimen dinmico al objeto de ilustrar las limitaciones del modelo de control de carga.

    aproximacin de rgimen cuasiestacionario

  • Tema 12: Rgimen dinmico

    12.10

    Figura 12.4.- Representacin circuital de las ecuaciones de Ebers-Moll en su versin de

    inyeccin para un transistor pnp.

    Como puede observarse, el circuito queda reducido a un diodo y un generador de

    corriente dependiente. Si tenemos en cuenta ahora la representacin circuital del

    comportamiento en dinmica del diodo, resulta el circuito de la Figura 12.5:

    Figura 12.5.- Comportamiento en dinmica de un transistor pnp en el modo activo de

    funcionamiento.

    En este circuito se ha despreciado la capacidad de la unin de emisor, 0JC por encontrarse dicha unin directamente polarizada. Segn el circuito de la Figura 12.5,

  • Modelo de control de carga

    12.11

    ( )

    ( ) ( ) ( )exp 1 exp

    0exp

    EB EBC F F F ES F ES

    T T

    B BBO EBC pB pB

    B T B T

    v vi t i I IV V

    p q tp vi t qAD qADw V w

    = = = = =

    De manera anloga,

    ( ) ( )

    ( ) ( )1 exp

    exp

    EB F EB EBB F F F d F ES d

    F T

    BS EB EB EBB d d

    F T B

    v v vi t i i C I Ct V t

    q tI v v vi t C CV t t

    = = = =

    siendo

    ( )

    ( )( )

    ( )( )

    ( )

    exp

    exp0 221

    exp exp 1 exp

    2 21

    B S EB

    B F T

    EB BB BOBF B TF

    BFEB EB EB

    S F ES F EST T T

    B BBO BO

    BF ES ES

    BBO

    B

    q t I vV

    v ww qApqApq t Vv v vI I IV V V

    w wqAp qAp

    I la porcion de I correspondiente al emisor

    wqAp

    = = = =

    = =

    =

    2

    22

    2

    E nE B

    EO B nEnE

    nE

    BB F T F

    pB

    pB nEEF

    nE B B

    N L wn N DqADL

    wD

    D LND N w

    =

    = =

    Un razonamiento similar puede hacerse si se parte de la representacin circuital

  • Tema 12: Rgimen dinmico

    12.12

    del modelo de Ebers-Moll en su versin transporte y se particulariza sta al modo activo

    de funcionamiento.

    12.3.- EL BJT COMO CONMUTADOR

    Una de las aplicaciones del transistor bipolar en dinmica es la de actuar en

    conmutacin. En la Figura 12.6 puede verse el circuito bsico, en el que la corriente de

    colector sera la corriente del interruptor y la tensin colector-emisor, outv , la tensin del

    interruptor; inv es una seal que controla el interruptor.

    Figura 12.6.- Funcionamiento de un transistor bipolar trabajando como interruptor.

    vin(t) VON

    -VOFF

    tON t0 t0 +

    t

    iB(t) IB

    IBOFF tON t0 t0 + tOFF

    VCC

    t

    vout = vCE

    tON tOFF

    -VOFF t

    -QB

    tON tOFF

    iC(t)

    t

    IC

    tr tOFF tS tf

    td

  • El BJT como conmutador

    12.13

    Los retrasos de conmutacin del transistor estn causados por las capacidades no

    lineales de las uniones. El mejor modo de apreciarlo es examinando con detalle el

    ejemplo de conmutacin representado en la Figura 12.6.

    La tensin de entrada, inv , es un pulso que hace conmutar al transistor desde su

    estado OFF ON y viceversa (CORTE SATURACIN). Sin embargo, la tensin de salida real, out CEv v= , no cambia instantneamente entre los valores de corte y saturacin, sino que cambia gradualmente y slo despus de un cierto tiempo de retraso.

    Para valores de 0t < , in OFFv V= , las dos uniones estn inversamente polarizadas, luego el transistor est al CORTE. En este caso el BJT puede ser

    representado por las capacidades asociadas a sus uniones. Cada condensador est

    cargado a la tensin de su unin, todas las corrientes son nulas, as como la carga de

    minoritarios almacenada en la base. La tensin de salida out CE CCv v V= = .

    En el instante 0t = , la tensin de control pasa a tomar el valor ONV . Las tensiones de los condensadores no pueden cambiar instantneamente de ah que exista

    un tiempo de retardo dt hasta que la unin base-emisor se polarice en directa (hasta

    que la capacidad de la unin base-emisor se cargue al valor de la tensin de codo) y el

    transistor conduzca. Como ya se ha comentado en el apartado 12.2.2, la corriente de

    base responde instantneamente a este cambio de tensin, ONBB

    VIR

    = ; no as la carga de

    minoritarios almacenada en base, la corriente de colector y la tensin de salida. El

    tiempo transcurrido para que la carga de minoritarios pase del 10% 90% de su valor final, recibe el nombre de tiempo de subida rt . El tiempo de conmutacin en ON

    es, ON d rt t t= + .

    En el instante t T= , la tensin de control vuelve a cambiar bruscamente al valor OFFV . Es ahora la capacidad de difusin de la unin base-emisor la que no puede

    cambiar instantneamente, puesto que se encuentra +0,7 V, por lo que el transistor no

  • Tema 12: Rgimen dinmico

    12.14

    puede cortarse, permaneciendo saturado hasta que toda la carga de minoritarios de base

    haya desaparecido. Hay dos procesos simultneos para eliminar esta carga: Por un lado,

    la recombinacin del exceso de minoritarios; y, por otro, la corriente de base negativa

    que circula. El resultado es un retraso denominado tiempo de almacenamiento st .

    Durante este intervalo de tiempo, la corriente de base es negativa y la corriente de

    colector y tensin de salida varan poco. Slo despus de que la carga haya sido

    eliminada, el transistor pasa del MODO ACTIVO a CORTE. Ahora las capacidades de

    unin se vuelven a cargar a sus valores iniciales OFFV . El tiempo invertido para ello recibe el nombre de tiempo de cada ft y el tiempo de conmutacin en OFF la

    suma de OFF s ft t t= + (el tiempo dominante es el st ).

    12.4.- EL BJT COMO AMPLIFICADOR DE PEQUEA SEAL. RECTA DE

    CARGA DINMICA.

    Este apartado se centra en la respuesta del BJT ante pequeas seales de tensin

    o corriente superpuestas a los valores de continua. El trmino pequea seal implica

    que los valores de pico de la tensin o corriente de seal son mucho ms pequeos que

    los valores de continua. Ms concretamente, en el caso de las tensiones, mucho ms

    pequeos que kTq

    . Tpicamente, esto significa voltajes de seal de algunos mV o

    menos.

    Para representar la respuesta en seal, se han desarrollado muchos modelos de

    circuito. La representacin denominada modelo hbrido pi es muy til para los

    diseadores de circuito ya que:

    Por una parte, el modelo relaciona explcitamente los valores de los elementos del circuito de pequea seal con los valores de polarizacin (esto

    es, de continua).

    Adems, para frecuencias por debajo de los 500 kHz, los elementos del

  • El BJT como amplificador de pequea seal. Recta de carga dinmica

    12.15

    circuito son independientes de la frecuencia.

    Con los modelos de pequea seal, se calculan las ganancias de seal y las

    impedancias de entrada y salida de los amplificadores. Puesto que los BJTs que

    funcionan en el MODO ACTIVO son los que proporcionan mayores ganancias de seal

    y distorsiones mnimas, solamente los modelos de pequea seal en la regin activa son

    de especial utilidad. Es decir, a lo largo de esta aplicacin se considerar que el BJT

    est funcionando en el MODO ACTIVO. Adelantando resultados veremos que en tal

    caso es posible deducir relaciones lineales entre las componentes de seal de las cargas

    y las tensiones, lo que conduce a relaciones lineales entre las componentes de seal de

    las corrientes y las tensiones. Es decir, en lo que se refiere a las componentes de seal,

    el BJT va a tener un comportamiento lineal.

    El circuito de la Figura 12.7 es un circuito tpico de amplificacin de pequea

    seal.

    Figura 12.7.- Circuito elemental de amplificacin.

    Puesto que slo se estn considerando pequeas variaciones entorno a los

    valores de continua, por el Principio de Superposicin, resulta que

    ( ) maxBE BE be be BEv V v t v V= +

  • Tema 12: Rgimen dinmico

    12.16

    Para estudiar las relaciones entre corrientes y tensiones, aplicamos el modelo de

    control de carga:

    ( ) B BBB

    q qi tt

    =

    donde,

    ( ) ( ) ( ) ( )0 0 0

    0 1B B Bw w w

    B B B BB

    xq t qA n x d x qA n x d x qA n d xw

    =

    ( ) ( ) ( ) ( )0 1 1exp exp2 2 2

    B B BE BE beB B BO B BO

    T T

    n w v t V v tq t qA qAw n qAw n

    V V+= = =

    ( ) ( ) ( ) ( )1 exp exp exp 12

    be be beBEB B BO B B

    T T T T

    v t v t v tVq t qAw n Q QV V V V

    = = +

    Por lo tanto,

    ( ) ( )

    ( ) ( )

    1 exp2

    B B b

    BEB B BO

    T

    Bb be

    T

    q t Q q tVQ qAw nV

    Qq t v tV

    = +=

    =

    (12.10)

    Segn la ecuacin (12.10), la carga total acumulada en la base es la suma de dos

    componentes: Carga acumulada en la base debido a la polarizacin, BQ ; Componente

    de seal, ( )bq t , que adems es directamente proporcional a la componente de seal de la tensin, ( )bev t . Esta linealidad entre las componentes de seal de la carga y de la tensin implica que el BJT se comportar como un dispositivo lineal frente a las

    componentes incrementales de corriente y tensin, ya que la carga de base y las

    corrientes en los terminales estn relacionadas a travs de las ecuaciones lineales del

  • El BJT como amplificador de pequea seal. Recta de carga dinmica

    12.17

    modelo de control de carga.

    En efecto, introduciendo la ecuacin (12.10) en las expresiones de ( )Bi t e ( )Ci t resulta que:

    ( ) ( ) ( )b bBBB B

    q t q tQi tt

    =

    ( ) ( ) ( )

    ( ) ( ) ( )

    B be beB BB

    B T B T

    bB B BC be

    T T T T T

    Q v t v tQ Qi tV V t

    q tQ Q Qi t v tV

    =

    = =

    Es decir,

    ( ) ( )

    ( ) ( ) ( ) ( )( ) ( )

    ( ) ( ) ( )

    B B b

    BB

    B

    beB B Bb be

    T T

    C C c

    BC

    T

    Cc be

    T

    i t I i t

    QI

    v tI Ii t v t aV V t

    i t I i t

    QI

    Ii t v t bV

    = +

    =

    = + = +

    =

    =

    (12.11)

    Las ecuaciones (12.11) nos dicen que ( )Bi t e ( )Ci t son la suma de dos componentes: componente continua -de polarizacin- y componente de seal alterna-.

    Adems, tal y como se ha comentado anteriormente, existe una dependencia lineal entre

    las componentes de seal de las tensiones y corrientes, dependencia que en el caso de la

    polarizacin es exponencial. Por lo tanto, podemos resolver el problema de la

  • Tema 12: Rgimen dinmico

    12.18

    polarizacin y el problema de pequea seal por separado.

    En lo que se refiere a las componentes de seal, ecuaciones (12.11a) y (12.11b),

    resulta que,

    ( ) ( ) ( )

    ( ) ( )"conductancia de entrada"

    "capacidad de difusion de la u.emisor-base"

    "transconductancia"

    beb b be d

    c m be

    Bb

    T

    B Bd b b B

    T

    Cm

    T

    v ti t g v t C

    t

    i t g v t

    Ig gV

    IC C C gV

    IgV

    = + =

    =

    = = =

    (12.12)

    Lo ms importante es que los elementos de circuito , yb m dg g C dependen del punto de

    polarizacin.

    Las ecuaciones (12.12) pueden ser consideradas como las ecuaciones del

    siguiente circuito:

    Figura 12.8.- Circuito equivalente de un BJT para pequea seal en la configuracin de emisor comn.

    Circuito hbrido- .

    ib (t) ic (t)

    vbe(t) vce(t)

    b

    e

    c

    e

    rb = 1/gb Cb

  • El BJT como amplificador de pequea seal. Recta de carga dinmica

    12.19

    Las ecuaciones (12.12) han sido deducidas para un npn, pero tal y como estn

    expresadas serviran para un pnp. En principio, los sentidos de las corrientes seran los

    indicados en la Figura 12.8, pero a la hora de definir , yb m dg g C habra que tener en

    cuenta los sentidos de eB CI I . Por eso, se pueden definir , yb m dg g C en valor siempre

    positivo y cambiar los sentidos de las corrientes cuando estemos trabajando con un pnp.

    En la deduccin de las ecuaciones (12.12), o lo que es equivalente en el circuito

    de la Figura 12.8, no se ha tenido en cuenta el Efecto Early.

    Si tenemos en cuenta el Efecto Early, tanto la ( )bi t como ( )ci t se vern afectadas. Por lo tanto,

    Figura 12.9.- Circuito hbrido- con Efecto Early

    siendo, ,

    ,

    1

    1CE BE

    CE BE

    Co o

    o CE V V

    B

    CE V V

    Ir gg V

    Ir gg V

    = =

    NOTA: Si no tenemos en cuenta el Efecto Early Bw cte= 0og g = = or r = = . En la mayor parte de los casos prcticos, g es al menos 100 veces ms

    pequeo que og , por lo que suele ignorarse en muchas aplicaciones de circuito.

    b

    e e

    c

    rb Cd

    r

  • Tema 12: Rgimen dinmico

    12.20

    Por otra parte, hasta ahora, en la deduccin del modelo de control de carga no se

    han tenido en cuenta las variaciones de carga en las zonas dipolares debido a los

    cambios de tensin (slo se han tenido en cuenta las variaciones de carga en la zona

    neutra de la base). Las variaciones en las zonas de carga daran lugar a nuevos trminos

    de corriente que habra que sumar algebraicamente en las ecuaciones del modelo de

    control de carga, y se modelan a travs de dos capacidades de unin, tal y como se

    explic en el caso del diodo. Reproduciendo de nuevo aquel resultado,

    1

    1

    1

    1

    JEOJE

    mBE

    TE

    JCOJC

    mBC

    TC

    CCV

    CC CV

    =

    = =

    (12.13)

    donde JEOC y JCOC son las capacidades asociadas a las uniones de emisor y colector

    cuando no hay tensiones aplicadas; TE y TC son los potenciales termodinmicos de las uniones de emisor y colector; y m es un parmetro emprico que toma el valor de 2 para

    el caso de la unin abrupta, y un valor de 3 para el caso de la unin gradual.

    En definitiva, el circuito equivalente del BJT para pequea seal resulta:

    Figura 12.10.- Circuito hbrido de alta frecuencia

    b

    e

    c

    e

    rb Cd

    r

  • El BJT como amplificador de pequea seal. Recta de carga dinmica

    12.21

    ,JE JCC C modelan las variaciones de carga en las zonas de carga de espacio.

    , or r tienen en cuenta el Efecto Early.

    NOTAS:

    A bajas frecuencias todos los efectos capacitivos son despreciables. El modelo de la Figura 12.10 es vlido hasta frecuencias del orden de los MHz. Otras relaciones,

    Cm

    T

    C mBd b B B B B m T

    T T

    m b

    IgV

    I gIC C g gV V

    g g

    = = = = = =

    Si consideramos el circuito de la Figura 12.8 y una seal de entrada sinuosidad de la forma,

    expbe bev V jwt= resulta que,

    ( )( ) ( )( )

    exp exp

    exp

    exp exp

    b b be d be

    b b b b d be

    c m be c c m be

    i t g V jwt jwC V jwt

    i t I jwt I g jwC V

    i t g V jwt I jwt I g V

    = += = += = =

    ( )( )

    c c m

    b b b d

    i t I gi t I g jwC

    = = + (12.14)

    La ecuacin (12.14) nos indica que la ganancia directa de corriente en la

    configuracin de emisor comn (antes, en esttica, ), en dinmica no es una magnitud constante sino que es funcin de la frecuencia. Slo en el caso de

    bajas frecuencias, cuando los trminos capacitivos son despreciables, coincidir

    con la ganancia de corriente continua,

    ( )( )

    c c C

    b b B

    i t I Ii t I I

    = =

  • Tema 12: Rgimen dinmico

    12.22

    12.4.1.- Recta de carga dinmica

    Volviendo de nuevo al circuito de la Figura 12.7 y sustituyendo el BJT por su

    circuito equivalente, el correspondiente circuito para el estudio de las componentes de

    seal resulta ser,

    Figura 12.11.- Circuito simplificado de pequea seal, considerando bajas frecuencias

    Puesto que las relaciones entre las componentes de seal son lineales, podemos

    expresar la ecuacin de los puntos en los que en cada instante de tiempo se van a

    encontrar los valores totales de la corriente de colector y la tensin colector-emisor,

    ( )Ci t , ( )CEv t . Dicha ecuacin, que pasa por el punto Q (Figura 12.12), es la denominada recta de carga dinmica pues viene impuesta por el circuito externo:

    ( ) ( )( )1//C CQ CE CEQC Li t I v t VR R =

    La pendiente de dicha recta viene determinada por la relacin entre las

    componentes de seal, ( )ci t y ( )cev t .

    Si la amplitud de la seal de entrada es muy grande, los valores de CEv e Ci

    pueden llegar, en una primera aproximacin, a ser incluso negativos. Esto supondra la

    vo

    ii io

  • El BJT como amplificador de pequea seal. Recta de carga dinmica

    12.23

    salida del transistor de la regin activa para adentrarse en la regin de saturacin o

    corte. Pero en tal caso, no se cumplirn las relaciones lineales empleadas hasta ahora y

    por lo tanto las tensiones y corrientes de salida no tendrn la misma forma que la seal

    de entrada, apareciendo el fenmeno conocido como distorsin. En los amplificadores

    de audio, la distorsin (falta de linealidad) se traduce en armnicos indeseados: ruido.

    Figura 12.12.- Rectas de carga esttica y dinmica para un npn segn el circuito de la Figura 12.7.

    Cuando, 0Ci = entraremos en la regin de corte (el circuito no permite para el caso de un transistor npn que 0Ci < ):

    ( ) ( )// //CE CE C C L ce C C Lv V I R R v I R R= + =

    Por lo tanto existe una maxCEv .

    En saturacin, 0CEv (el circuito no permite en el caso de un transistor npn que CEv sea negativa):

    ( ) ( )/ // / //C C CE C L c CE C Li I V R R i V R R= + =

    y esto nos lleva a una determinada maxCi .

    iC

    R.C. esttica (Todos los puntos Q posibles)

    R.C dinmica

    Punto Q

    vCE

  • Tema 12: Rgimen dinmico

    12.24

    Por lo tanto, existe un lmite tanto para la amplificacin como una amplitud de

    salida mxima sin distorsin. Se conoce como rango dinmico a la amplitud de

    salida mxima que podemos obtener sin distorsin alguna. En este caso, la

    expresin min ( )max min;CE CE CE CEv V V v nos da el rango dinmico (la amplitud mxima de la seal de salida alterna que podemos obtener sin distorsin), Figura 12.13.

    Figura 12.13.- Distorsin y rango dinmico.

    Nota: Siempre se cumplir que maxCE CCv V< puesto que:

    ( )max //CE CE C C Lv V I R R= +

    y CC CE C CV V I R= + ( )//C L CR R R<

    Para obtener el mayor rango dinmico, interesar que el punto Q se encuentre

    VCE

    VCE

    IC IC

    t

    iC iC

    vCE

    t

    Q

    Recta de carga dinmica

    vCE

    saturacin

    corte

    saturaci

    corte

    iC

    vCEmax

    iCmax

  • El BJT como amplificador de pequea seal. Recta de carga dinmica

    12.25

    en la mitad de la recta de carga dinmica. Si desde esta situacin movemos el punto Q

    hacia la saturacin o corte, se ve que se reducir el rango dinmico (Figura 12.14).

    Por lo tanto, si el punto Q se encuentra en la mitad de la recta de carga dinmica,

    max 2CE CEv V= y max 2C Ci I= . Esto es,

    CE

    CRCD

    CE

    C

    VI

    mvi ==

    max

    max

    Figura 12.14.- Obtencin del mayor rango dinmico

    Interesar, adems, que la pendiente de la recta de carga dinmica sea lo menor

    posible (con el objeto de obtener la mayor longitud). Esta ltima condicin se verificar

    cuando las rectas de cargas esttica y dinmica sean iguales. Normalmente el punto Q

    no tiene por qu estar centrado en la recta de carga esttica, pero si las dos rectas son

    iguales y situamos el punto Q en el centro de ambas, obtendremos el mayor de los

    mayores rangos dinmicos posibles para un circuito dado.

    12.5.- EL BJT COMO CUADRIPOLO. PARMETROS HBRIDOS.

    FRECUENCIAS DE CORTE.

    Por lo que se ha visto en el apartado anterior, el clculo analtico de los circuitos

    amplificadores de pequea seal se reduce a un problema de circuitos una vez que se ha

    sustituido el BJT por su circuito equivalente.

    Todas las posibles RCD

    iC

    vCE

    Punto Q ptimo (desde el punto de vista del rango dinmico) En la mitad de RC DINMICA.

    El punto Q en la mitad de la RC ESTTICA conlleva un rango dinmico menor.

  • Tema 12: Rgimen dinmico

    12.26

    Siguiendo en esta lnea, y teniendo en cuenta el comportamiento lineal del BJT

    en pequea seal, resulta que, desde un punto de vista funcional, al BJT se le puede

    aplicar la teora de los cuadripolos lineales. En concreto, en el caso del BJT se suele

    trabajar con los parmetros hbridos h.

    Qu ventajas ofrece la teora de los cuadripolos lineales?. Por una parte, los

    parmetros h pueden medirse experimentalmente. Por otra, en el apartado anterior nos

    hemos limitado al estudio de la configuracin de emisor comn en rgimen de pequea

    seal a bajas frecuencias en las que los efectos capacitivos del BJT eran despreciables.

    El aumento de la frecuencia, hace que tengamos que utilizar el modelo hbrido completo dificultando, de esta manera, la resolucin del circuito. Con la teora de

    cuadripolos lineales, el circuito a resolver es siempre el mismo con independencia de la

    frecuencia y configuracin utilizada para el BJT.

    En este apartado, se aplicar la teora de los cuadripolos lineales al BJT; Se

    establecer una relacin entre los parmetros h y los del circuito equivalente fsico del

    BJT y se analizarn los lmites superiores de frecuencia que restringen el uso del BJT

    como amplificador, relacionando dichos lmites con las caractersticas del BJT.

    12.5.1.- Parmetros hbridos

    Qu es un cuadripolo?. En sntesis, un cuadripolo es cualquier circuito que

    pueda disponer de dos terminales de entrada y dos de salida, Figura 12.15. Este circuito

    Figura 12.15.- Esquema para la definicin de un cuadripolo con los criterios de signo de las tensiones y corrientes en los terminales.

    I2 I1

    V2 V1

    I1 I2

  • El BJT como cuadripolo. Parmetros hbridos. Frecuencias de corte

    12.27

    puede entonces describirse por cuatro variables, que son las corrientes y tensiones de los

    terminales de entrada y salida. En cada caso, dos de estas variables pueden considerarse

    independientes y las otras dos, dependientes. Puesto que el circuito funciona

    linealmente, las variables estn relacionadas entre s por un conjunto de ecuaciones

    lineales que relacionan las corrientes y tensiones del cuadripolo definiendo as una serie

    de parmetros. Existen seis posibles combinaciones para expresar dos de las variables

    en funcin de las otras dos. De estos seis posibles grupos de parmetros slo se va a

    desarrollar uno de ellos, los denominados Parmetros Hbridos o Parmetros h

    llamados as por no ser dimensionalmente homogneos. Esto es, se elegir

    1I , 2V variables independientes

    1V , 2I variables dependientes

    con lo que,

    1 11 1 12 2

    2 21 1 22 2

    V h I h V

    I h I h V

    = + = + (12.15)

    Los cuatro parmetros h dependen de, y caracterizan al circuito encerrado en

    la caja de la Figura 12.15.Conocido el circuito, pueden calcularse dichos parmetros

    pero, lo que es ms importante, estos parmetros pueden medirse con facilidad sin

    necesidad de conocer el circuito. En efecto, de las ecuaciones (12.15) es inmediato que:

    2

    111

    1 0V

    VhI =

    = 1

    112

    2 0I

    VhV =

    =

    2

    221

    1 0V

    IhI =

    = 1

    222

    2 0I

    IhV =

    =

  • Tema 12: Rgimen dinmico

    12.28

    Estas relaciones, que pueden considerarse como definiciones de los parmetros

    h, sugieren a la vez el nombre dado a cada parmetro y el procedimiento experimental

    para medirlos. As:

    11h = impedancia de entrada con la salida en cortocircuito, = ih

    22h = admitancia de salida con la entrada en circuito abierto, -1 = oh

    12h = ganancia inversa de tensin con la entrada en circuito abierto = rh

    21h = ganancia directa de corriente con la salida en cortocircuito = fh

    Figura 12.16.- Representacin circuital de las ecuaciones (12.15).

    Puesto que en rgimen de pequea seal, el BJT tiene un comportamiento lineal,

    el circuito encerrado en la caja de la Figura 12.15 puede ser el circuito equivalente del

    BJT en pequea seal (modelo hbrido en ). Por lo tanto, el BJT puede caracterizarse por cuatro parmetros h que pueden medirse experimentalmente (Figura 12.16).

    Adems, puesto que el BJT puede ser utilizado en las configuraciones de emisor, base o

    colector comn, para cada una de ellas pueden escribirse ecuaciones similares a las

    ecuaciones (12.15). Esto es, para cada configuracin pueden definirse cuatro parmetros

    h de ah que se acostumbra aadir el subndice e, b y c (emisor, base y colector

    hi

    1/ho v = hrv2

  • El BJT como cuadripolo. Parmetros hbridos. Frecuencias de corte

    12.29

    respectivamente) para indicar la configuracin utilizada. Ni qu decir tiene que existe

    una relacin entre todos los parmetros que segn la teora de cuadripolos pueden

    definirse para el BJT, entre los parmetros para las diferentes configuraciones y entre

    los parmetros de una determinada configuracin y los parmetros del circuito hbrido

    . En la tabla de la Figura 12.17 se indican los parmetros h en las configuraciones de base y colector comn en funcin de los parmetros he. De igual manera, en la

    ecuacin (12.16) se expresa la relacin entre hfe y los parmetros del circuito hbrido

    sin efecto Early.

    Parmetro hi hf hr ho

    Base comn 1+feie

    hh

    1+ fe

    fe

    hh

    refe

    oeie hh

    hh +

    1

    1+feoe

    hh

    Colector comn ieh ( )1+ feh 1 oeh

    Figura 12.17.- Parmetros h en las configuraciones de base y colector comn en funcin de los de emisor comn.

    ( )21 m JCe fe d JE JCg jwCh h

    g jw C C C

    = = + + + (12.16)

    NOTAS:

    Debe sealarse que, si aplicamos la teora de cuadripolos al BJT en pequea seal, las corrientes y tensiones de entrada y salida tienen sus sentidos ya

    definidos por la propia teora, con independencia de si dichos sentidos

    coinciden o no con los sentidos de las tensiones y corrientes en el BJT. Esto es,

    los sentidos son siempre los indicados en la Figura 12.15.

    Adems, tal y como se observa en la ecuacin (12.16), la frecuencia de trabajo se encuentra ya implcita en la propia definicin de los parmetros.

    Si los elementos del circuito hbrido dependan del punto Q, cualquiera de los parmetros que se definan para el BJT segn la teora de cuadripolos tambin van a

  • Tema 12: Rgimen dinmico

    12.30

    depender del punto Q. En la tabla de la Figura 12.18 se indican los valores tpicos de los

    parmetros h para las tres configuraciones de un BJT tpico medidos a una

    IE = 1,3 mA. Debido a estos valores (especialmente hf y hr), la configuracin de emisor

    comn ser (como comprobaremos en el tema 14) la que proporcionar los valores de

    amplificacin de tensin y corriente ms elevados (AV y AI).

    Adems, si se observan los valores de h en la configuracin de emisor comn

    CE, resulta que para la mayor parte de las aplicaciones hie y hfe son suficientes para el

    anlisis de circuitos amplificadores de baja frecuencia, suponiendo que la resistencia

    equivalente de carga cumpla la siguiente condicin hoeRLequiv < 0,1. En la Figura 12.19

    se representa dicho modelo simplificado, con el que el error cometido en el clculo de

    AV , AI , Zin y Zout es inferior al 10%. Si slo se conoce el valor de los parmetros he, y

    el BJT est siendo utilizado en otra configuracin, puede tambin emplearse este

    circuito simplificado conectando adecuadamente los tres electrodos correspondientes.

    Parmetro CE CC CB

    h11 = hi 1100 1100 21,6 h12 = hr 2,510-4 1 2,9 10-4 h21 = hf 50 - 51 - 0,98

    h22 = ho 24 A/V 25 A/V 0,49 A/V

    1/ho 40 k 40 k 2,04 M

    Figura 12.18.- Valores tpicos de los parmetros h de un transistor (a IE = 1,3 mA).

    Figura 12.19.- Modelo hbrido simplificado que se puede emplear para las tres configuraciones en CE, CB y CC.

  • El BJT como cuadripolo. Parmetros hbridos. Frecuencias de corte

    12.31

    12.5.2.- Frecuencias de corte

    Segn la ecuacin (12.16),

    ( )21 m JCe fe d JE JCg jwCh h

    g jw C C C= = + + +

    En los BJTs reales, en el margen de las frecuencias de funcionamiento, JC mwC g

  • Tema 12: Rgimen dinmico

    12.32

    Se denomina frecuencia de transicin, Tw , la frecuencia a la cual 1feh = . Por lo tanto,

    2 b mT Tb JE JC b JE JC

    g gf wC C C C C C

    = = =+ + + + (12.20)

    Por encima de esta frecuencia, 1feh < IA tambin lo ser. Sin embargo, VA puede ser mayor que la unidad incluso para Tw w> . El lmite superior absoluto de uso del BJT como amplificador viene determinado por la frecuencia mxima de

    oscilacin definida como aqulla para la que la ganancia de potencia se hace igual a la

    unidad.

    P V IA A A=

    Un valor de frecuencia importante es aqul para el cual comienza la cada del

    feh . Por lo tanto, sin ms que igualar las ecuaciones (12.18) y (12.19) resulta que:

    b T

    b JE JC

    g wwC C C = =+ + (12.21)

    Figura 12.20.- Diagrama logartmico de la variacin feh en funcin de la frecuencia angular w .

    Log|hfe|

    wB wT Log w