13
2 ( ) TeoremaSiysoncontinuas,entoncesINTEGRACIÓNPORPARTESy,' ' ( ) '( ) ( ) ( ) '( ) ( ) ( ) ' ' ' ( fg fg f g f x g x dx f x g f g x f x gx dx f x g x = = [ ] .DemLastresexpresionessonunaconsecuenciainmediatade:Ejemp1los) ( ) ( ) '( ) ( ) log ( )' ' ' ' ( )' ' ( ) ( lo ) g b b b a a a fg f g fg fg fg f g x dx x dx f x gx f x gx dx - = = = + = ?siyentoncesy===1, ( ) ( ) ( ) ( ) ( ) . ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 log ' log ( ) ' l 1 ' og ' dx x x x x x x dx x dx x x dx x x x x g g x g g f f x f f f dx g = = = = = ===1 log log lo ( ) ( ) 1 ( g ) x x x x dx x x dx x x x =siyentoncesy===?. ( ) ( ) ( ) log( ) log ( ) . ( ) ( ( ) ( ) ( ) ( ) ( ) ' 1 ' ' ) ' x x x x x dx x x x x f x f x e g e g e e dx x x x x dx x x dx x x x g g x g f f f dx = = = = = ==siyentoncesy=( ) ?. ( ) ( ) ( ) ( ) 1 ' ' ( ) ( ). 1 x x x x x x x x x xe e e e e sen dx x d dx xe e x f x x x x x x x x g sen c f g s x o = = = = = ( ) ( ) ( ) ( ) =====-=( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ' 1 ( ) ( ) ) ' ) ( ( ) x x x dx x x x x dx x dx f f f x x x sen x sen g g dx g cos cos co x dx x sen x x cos x se x s n +

Teorema INTEGRACIÓN POR PARTES Si y son …sistemas.fciencias.unam.mx/~erhc/MetodosdeIntegracion_Partes.pdf · 2 Teorema Si y son continuas, entonces INTEGRACIÓN POR PARTES y,

  • Upload
    lamdung

  • View
    224

  • Download
    2

Embed Size (px)

Citation preview

2  

( )Teorema

Si y son continuas, entonces

INTEGRACIÓN POR PARTES

y

,

' ' ( ) '( ) ( ) ( ) '( ) ( )

( ) '

' '

(

f g f g f g f x g x dx f x g

f g

x f x g x dx

f x g x

= − = −∫ ∫ ∫ ∫

[ ] .

Dem ︶ Las tres expresiones son una consecuencia inmediata de:

E

jemp

1

los

) ( ) ( ) '( ) ( )

log

( )' ' ' ' ( )' '

( ) (lo )g

b bba

a a

f g f g f g f g f g f g

x dx x

dx f x g x f x g x dx

-

=

=

=

+ =

∫ ∫

? si y entonces y

=

= =

1

, ( ) ( ) ( ) ( ) ( ) .

( ) ( )

( ) ( ) ( ) ( ) ( )

1log '

log

( )

'

l

1

'

og

'

dx x x x x x

x dx x dx

x x dx x x x x

g g x

g g

f fx

f f f dxg

= = =

= =∫

∫ ∫∫ ∫

=

=

=

1log

log

lo

( )

( ) 1

(g )

x x

x

x dx

xxdx

x x x

=

si y entonces y

=

= =

?. ( ) ( ) ( )

log( ) log

( ) .

( )

(

( ) ( ) ( ) ( ) (

)

' 1

'' )

'x x x

x

x dx x x x

x f x f

x

e g e g e

e

dx x x x x

dx

x x dx x x xg g xgf f f dx

∴ −

== = = =

∫∫∫ ∫

=

=

si y entonces y

=

( ) ?. ( ) ( ) ( ) ( )

1

'' ( ) ( ).1

x

x x

x x

x x

x

x

x e

e e

e e

sen

dx

x d

dx x e e

x f xx x x x x x xg sen cf g s

x

o−

= = =

= =

( ) ( )( ) ( )

=

= =

=

= -

=

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

(

'

1

( ) (

) )

'

)

(

( )

x

x x dx x x x x dx

x

dx

f f f

x

x

x sen x

sen

g g

dx

g

cos cos

co

x dx

x sen x

x cos x se x

s

n

+∴

∫ ∫∫

 

3  

si y entonces y

=

= =

1

1 1log log '

log

( ) ? , ( ) ( ) ( ) ( ) ( ) ( ).

( )

( ) ( ) ( ) ( )

1' log

' ( ) ( )'

x dx x x x x x x

x dx

x x dx x x x x

f fx

f

g gx x

x

g dgf f xg

= = = ==

∫ ∫

( )

( )

( )

=

1 =

1 1 =

1 2 =

2

2

2

( ) ( ) ( )

log( ) log( )

log( ) log( ) log( )

1lo

log( ) log( )

g lg lo ogx x x dx

x x dxx

x dx x x dxx x

x dx xx

x−

∴ −

∫ ∫

( )

si y entonces y

1

y si y

entonces

=

2

( ) ? , ( ) ( ) ( ) ( ) ( ) ( ).

( ) ( )

1log( ) log

( )

)2

'

'

(

'x x x

x

x dx xx

e f esen g sen g cos

k cos

x dx x f e

h e

x x x x x

x x x

=

=

=

=

= = −=∫

( ) ( )

y =

= =

=

=

+

( ) (

'

) ( ).

( )

( ) ( ) ( ) (

'

') ( ) ( )

( ) ( )

( )

x

x x

x

x

h e

e

f f f

e

x x x

x d

k sen

sen

g g g

cos cos

x

x x dx x x x x dx

x x dx

- e co x

e

s

− −

= =

∫ ∫

( )

= + = +

=

+

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )''

( )

x

x x

x

x dx

- e cos x x x dx - e cos x x x x

e

h x dx

- e

cos

k k kh

cos x

h −

∫ ∫

( )

= +

2

=

( ) ( )

( ) ( ) ( ) ( )

( ) (

x

x

x

x x x

x

x

x x dx

x dx -

e esen sen

sen sen sen

sen

e ee cos x x e x dx

x dx - e cos xe

∴ −

∫∫ ∫∫

( )

+

+ =

=

) ( )

( ) ( )( )

2( ) ( )

( )2

x

x

x

x x

x

x

-e cos x e

sen

se

e

e

e sen x - cos xe s

sen

n xx

en x

x

dx

d∴

∴ ∫

∫ 

3  

si y entonces y

=

= =

1

1 1log log '

log

( ) ? , ( ) ( ) ( ) ( ) ( ) ( ).

( )

( ) ( ) ( ) ( )

1' log

' ( ) ( )'

x dx x x x x x x

x dx

x x dx x x x x

f fx

f

g gx x

x

g dgf f xg

= = = ==

∫ ∫

( )

( )

( )

=

1 =

1 1 =

1 2 =

2

2

2

( ) ( ) ( )

log( ) log( )

log( ) log( ) log( )

1lo

log( ) log( )

g lg lo ogx x x dx

x x dxx

x dx x x dxx x

x dx xx

x−

∴ −

∫ ∫

( )

si y entonces y

1

y si y

entonces

=

2

( ) ? , ( ) ( ) ( ) ( ) ( ) ( ).

( ) ( )

1log( ) log

( )

)2

'

'

(

'x x x

x

x dx xx

e f esen g sen g cos

k cos

x dx x f e

h e

x x x x x

x x x

=

=

=

=

= = −=∫

( ) ( )

y =

= =

=

=

+

( ) (

'

) ( ).

( )

( ) ( ) ( ) (

'

') ( ) ( )

( ) ( )

( )

x

x x

x

x

h e

e

f f f

e

x x x

x d

k sen

sen

g g g

cos cos

x

x x dx x x x x dx

x x dx

- e co x

e

s

− −

= =

∫ ∫

( )

= + = +

=

+

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )''

( )

x

x x

x

x dx

- e cos x x x dx - e cos x x x x

e

h x dx

- e

cos

k k kh

cos x

h −

∫ ∫

( )

= +

2

=

( ) ( )

( ) ( ) ( ) ( )

( ) (

x

x

x

x x x

x

x

x x dx

x dx -

e esen sen

sen sen sen

sen

e ee cos x x e x dx

x dx - e cos xe

∴ −

∫∫ ∫∫

( )

+

+ =

=

) ( )

( ) ( )( )

2( ) ( )

( )2

x

x

x

x x

x

x

-e cos x e

sen

se

e

e

e sen x - cos xe s

sen

n xx

en x

x

dx

d∴

∴ ∫

∫ 

4  

( )

( )

si y entonces y

=

2

2

log( ) ( ) ? ,

( ) ( ) ( ) ( ) ( ) .

lo

log

1log '

l

log( )

' log( ) log( )

log( )

'

g( ) ( )

( ) (

og

)

x dx x dx

xf fx

x x x

x

g x g x

x dx x dx

x xf

x x x

xg d

x

= =

= = =

∴ =

= −

=

∫ ∫

∫ ∫

( ) ( )

=

=

log(

'

1l

( )

) log

( ) ( ) ( )

( ) ( )og

g g

x x x x

x x x x dxf f

xx xx dx

−− −

∫ ∫

∫( ) ( )( )

=

= + 1

lo ( )

log

log( ) lo

( ) log( ) log(

g g

)

( ) 1xx dx

x x x x x d

x

x dx

x x −

− −

− −∫∫ ∫

( ) ( ) = + = + +

log( ) log( ) log( )log( ) log( ) log( ) log( )

x x x x x x x xx x x x x x x x x

− − −

− −

( )( ) ( )

= + 2

= + 2

2

2 2l

log( ) 2

og( ) log( ) 2 log( )

log( )

x dx x x x x

x x x x

x

x

∴ ∫ 

         

9  

Si y entonces y

=

2

arctan( ) arctan( ) 1 ?

arctan( )1

1( ) arctan( ) '( ) 1 '( ) ( )1

'( ) ( ) ( ) ( ) '( ) ( )

f x x g x f x g x xx

f x g x dx f x g x f x g

x dx x d

x d

x

x dx x

= = = =+

= =

= −∫ ∫

2

2

2

1arctan( )1

1 1arctan( )2 11 1arctan( )2

x x x dxx

x x x dxx

x x duu

= −+

= −+

= −

Teorema ︵FORMULAS DE REDUCCION

︶2

2

1ar

1arctan( ) arctan( ) log(

ctan( ) log( )21arctan( ) log(

2

1

)

)2

1x dx

x x u

x x

x x x

se

x

n

= −

=

= − +

− +

∴∫

( ) ( ) ( )

( ) ( ) ( )

Nota: La demostrac

ión se puede obtener median

t n

e i

1 2

1 2

2 2 1 2 1

1 1( ) ( ) cos( ) ( ) ,

1 1( ) ( ) ( ) ( ) ,

1 1 2 3 1 .2 2 2 2( 1) ( 1) ( 1)

n n n

n n n

n n n

nx dx sen x x sen x dxn n

ncos x dx cos x sen x cos x dxn n

x ndx dxn nx x x

− −

− −

− −

−= − +

−= +

−= +

− −+ + +

∫ ∫

∫ ∫

∫ ∫

tegracion por partes. 

   

10  

 

TeoremaSi ,

entonces puede escrib

1 1

11 0,

11 0

2 21 1 1

. . .

. . .

( ) . . . ( ) ( ) . . . (

( )

( )

( )(

) ,

)

k l

n nn

m mm

r sr sk l l

n m

x a x a

x b x b

x x x x x x

p x

q x

p xq x

α α β γ β γ

−−

−−

<

= + +

= + + +

= − − + + + +

irse en la forma

+

1

1

1 1

1

,1,1,1 ,1

1 1

1, 1,1,1 1,12 2

1 1 1 1

. . . . . . . . .( ) ( )( ) ( )

. . . . . .( )

( )(

( )

)k

k

k rr kr r

k k

s ss

aaa ax xx x

b x cb x c

p

x x x x

xq x α αα α

β γ β γ

⎡ ⎤⎡ ⎤= + + + + +⎢ ⎥⎢ ⎥

− −− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+⎡ ⎤++ + + +⎢ ⎥

+ + + +⎢ ⎥⎣ ⎦

en donde los terminos cuadráticos no tienen raices reales,

es decir:

Po

, ,,1 ,12 2

2

2

. . .( ) ( )

( )

4 0.

l l

l

l s l sl ls

l l l l

i i

i i

b x cb x c

x x x x

x x

β γ β γ

β γ

β γ

+⎡ ⎤++ + +⎢ ⎥

+ + + +⎢ ⎥⎣ ⎦

+ +

− <

r lo tanto, para integrar basta con saber integrar las funciones:

, con , y con . 2 2( 2) ( 2)

( ) ( )

( )( )

n na a a x b a x bn n

x b x b x c x d x c x

p

d

xq x

+ +≥ ≥

− − + + + +

 

     

11  

Ejemplo

Si =

=

=

7 6 5 4 3 2

2 2 2 2

2 2

2 2

2 2

2 8 13 20 15 16 7 10( 1) ( 2 2) ( 1)

1 2

( )( )

1

3

2 11 ( 1) (

11 ( 1) 2 2 ( 1)

x x x x x x x dxx x x x x

x d

p x dxq x

dx dxx x

xx x x x x x

x

+ + + + + + +=

+ + + + −

⎛ ⎞++ + +⎜ ⎟− − + + + +⎝ ⎠

+ +− −

∫∫

∫Integrando cada una de las cuatro integrales, obtenemos:

2 2

2 2

12 2

22

31) 2 2

1 log( 1),12 2 ,

1( 1)1

(

1 12 2( )( 1) ( 1)

1

1 122 4

) 32

1

xdx dxx x x

dx xx

dxxx

dxx x

dxx x

x x

+

= − =− −

=⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

++ + + +

= −−

−=

−−

+ +

2 22

2

2 22 2

2

2

1

1 32 4

1 4 13

1 13 2 21 14 3 3

4 4

4 3 13 4

dx dx

x

dx dx

x x

x

=⎡ ⎤⎛ ⎞+ +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞= = ⎜ ⎟⎝ ⎠⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

⎢ ⎥ ⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞= ⎜ ⎟⎝ ⎠

∫ ∫

∫ ∫

︵sustituyendo y ︶

2

2 2 22

1 4 3 13 4 ( 1)3

1 42 1

34

1 / 2 13 / 4 3 / 4

dx duu

xu du dx

⎛ ⎞= ⎜ ⎟ +⎝ ⎠⎡ ⎤⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎜ ⎟ +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

+= =

∫ ∫

 

12  

----- ︵usando las formulas de reducción ︶

2 2

2 2

2 2 1 2 2 1

8 139 ( 1)

8 139 ( 1)

8 1 2(2) 3 139 2(2) 2 2(2) 2( 1) ( 1)

duu

duu

u duu u− −

=+

=+

⎡ ⎤−= +⎢ ⎥− −+ +⎣ ⎦

2 2

2

2

8 1 1 139 2 21 18 1 13 arctan( )9 2 21

12

3 18 1 14 23 arctan9 2 2 31

42 134

u duu u

u uu

x

x

x

⎡ ⎤= +⎢ ⎥+ +⎣ ⎦⎡ ⎤= +⎢ ⎥+⎣ ⎦⎡ ⎤⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎛ ⎞⎜ ⎟⎢ ⎥+⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎜ ⎟= +⎢ ⎥⎜ ⎟⎛ ⎞⎢ ⎥⎜ ⎟+⎜ ⎟ ⎝ ⎠⎢ ⎥⎜ ⎟ +⎢ ⎜ ⎟⎢ ⎜ ⎟

⎝ ⎠⎣ ⎦

2

2

2

2 18 1 8 1 2 133 3 arctan9 2 9 2 34 1 1

3 22 1 4 2 13 arctan

9 31 932 4

2 1 4 2 13 arctan1 9 9 334 4

xx

x

x x

x

x x

x x

⎥⎥

⎛ ⎞+⎜ ⎟ ⎛ ⎞+⎝ ⎠= + ⎜ ⎟

⎝ ⎠⎛ ⎞+ +⎜ ⎟⎝ ⎠

⎛ ⎞+ += + ⎜ ⎟

⎝ ⎠⎛ ⎞+ +⎜ ⎟⎝ ⎠

⎛ ⎞+ += + ⎜⎛ ⎞ ⎝+ + +⎜ ⎟

⎝ ⎠

⎟⎠

 

13  

( )

( )

y finalmente,

2 2

2

2 2

2

2

1 2 1 4 2 13 arctan9( 1)

2 1 4 2 13 arctan9 33 1

3 1 2 622 2 2 2

1 22

33 1

32 2

x xdxx x x x

x d

x xx x

x xdx dxx x x x

x

xx x

⎛ ⎞+ += + ⎜ ⎟+ + ⎝ ⎠+

⎛ ⎞+ += + ⎜ ⎟

⎝ ⎠+ +

+ += =

+ + + ++

=

+

++ + ∫

∫ ∫

sustituyendo: y

2

2 2

2 2

2

2 42 2

1 2 2 1 42 22 2 2 21 1 12 2) 22 2 2 ( 1) 1

2 2, (2 2) , 1

dxx x

x dx dxx x x x

x dx dxx x x

u x x du x dx w x dw dx

++ ++

= ++ + + +

= + ++ + + +

= + + = + = + =

∫ ∫

∫ ∫

2

2

22

1 1 122 11 log( ) 2 arctan( )21 log( 2 2) 2 arcta

3 1 log

n( 1)

( 2 2) 2 arctan( 12

2

)2 2

x

du dwu w

dx x x

w

x

xx

u

x x

x+

= + + + ++ +

= ++

= +

= + + + +

∫ ∫

∫  

        

14  

( ) ( )( )

( )

Ejemplo

222

22

222

2

2 21

2 1 1 2

1

1 2

1

12

1( 2

12

)

1 12

3

1 14

d dxx x

dxx

x

xx

dx

x

x

=⎡ ⎤+ + +⎢ ⎥⎣ ⎦

=⎡ ⎤+ +⎣ ⎦

=⎡ ⎤+⎛ ⎞

+⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

=⎡ +⎛ ⎞

+⎢⎜ ⎟⎝ ⎠

+ +

︵sustituyendo y ︶

2

22

2 2

1 1 124 21 1

2

1 12 2

1 124 ( 1)

dx

dxx

xu du dx

duu

⎤⎥

⎢ ⎥⎦

=⎡ ⎤+⎛ ⎞

+⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

+= =

=+

︵usando las formulas de reducción ︶

2 2

2 2

2

2 14 ( 1)

2 1 1 14 2 21 12 1 1 arctan( )

4 2 21

duu

u duu u

u uu

=+

⎡ ⎤= +⎢ ⎥+ +⎣ ⎦

⎡ ⎤= +⎢ ⎥+⎣ ⎦

∫ 

15  

2

2

12 1 1 12 arctan

4 2 2 21 12

1 1 2 1 1arctan4 4 2 212 2

2

1 14

xx

x

x x

x

x

x

⎡ ⎤+⎢ ⎥+⎛ ⎞⎢ ⎥= + ⎜ ⎟⎢ ⎥⎝ ⎠+⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+ +⎛ ⎞= + ⎜ ⎟

⎝ ⎠+⎛ ⎞+⎜ ⎟

⎝ ⎠

+=

( )

2

2

1 1 2 1ar

2 1 1arcta

ctan4 82 3

n2 22

2

41

x xx

x

x

+⎛ ⎞+ ⎜ ⎟

⎝ ⎠+ +

+ +⎛ ⎞= + ⎜ ⎟+ + ⎝ ⎠  

16  

( ) ( )( )

( )

Ejemplo

2222 2

22

222

2

1

2 2 2 3

1

2 3

1

1

23 13

1 19 2

( 4 )

13

7dx

x x

dxx

dx

dx

x

xx

x

=⎡ ⎤+ + +⎢ ⎥⎣ ⎦

=⎡ ⎤+ +⎣ ⎦

=⎡ ⎤⎛ ⎞+⎢ ⎥+⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

=⎡⎛ ⎞+

+⎜ ⎟⎝ ⎠⎣

+ + ∫

︵sustituyendo y ︶

2

22

2 2

1 1 139 32 1

3

2 13 3

1 139 ( 1)

dx

dxx

xu du dx

duu

⎤⎢ ⎥⎢ ⎥⎦

=⎡ ⎤⎛ ⎞+⎢ ⎥+⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

+= =

=+

︵usando las formulas de reducción ︶

2 2

2 2

3 19 ( 1)

3 1 1 19 2 21 1

duu

u duu u

=+

⎡ ⎤= +⎢ ⎥+ +⎣ ⎦

   

17  

2

2

2

3 1 1 arctan( )9 2 21

3 1 3 1 arctan( )9 2 9 21

23 1 3 1 23 arctan

9 2 9 2 32 13

u uu

u uu

xx

x

⎡ ⎤= +⎢ ⎥+⎣ ⎦

= ++

+⎛ ⎞+

= + ⎜ ⎟⎝ ⎠⎛ ⎞+

+⎜ ⎟⎝ ⎠

( )

2

2

2

1 2 3 2arctan6 18 323 1

3

1 2 3 2arctan6 18 323 3

3

1 2 3 2arctan6 18 32 3

x x

x

x x

x

x x

x

⎛ ⎞+ += + ⎜ ⎟⎛ ⎞ ⎝ ⎠⎛ ⎞+⎜ ⎟+⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞+ += + ⎜ ⎟

⎝ ⎠⎛ ⎞++⎜ ⎟

⎝ ⎠

⎛ ⎞+ += + ⎜ ⎟

⎝ ⎠+ +

2

21 2 3 2arctan6 18

1 2 3 2arctan6 184 7 3

4 4 3 3x x

x xx x

x x⎛ ⎞+ +

= + ⎜ ⎟

⎛ ⎞+ +

+

= + ⎜ ⎟+

+ ⎠

+

+ ⎠