45
TERMOQUÍMICA TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente la energía calorífica que acompaña a la reacción química. Es la parte de la Química que se encarga del estudio del intercambio de calor de un sistema químico con el exterior. Hay sistemas químicos que evolucionan de reactivos a productos desprendiendo energía. Son las reacciones exotérmicas. Otros sistemas químicos evolucionan de reactivos a productos absorbiendo energía, Son las reacciones endotérmicas.

TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Embed Size (px)

Citation preview

Page 1: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

TERMOQUÍMICATERMOQUÍMICATERMODINÁMICA QUÍMICA estudia las relaciones

existentes entre la energía y los cambios químicos.

TERMOQUÍMICA es la parte que estudia específicamente la energía calorífica que acompaña a la reacción química. Es la parte de la Química que se encarga del estudio del intercambio de calor de un sistema químico con el exterior.

Hay sistemas químicos que evolucionan de reactivos a productos desprendiendo energía. Son las reacciones exotérmicas.

Otros sistemas químicos evolucionan de reactivos a productos absorbiendo energía, Son las reacciones endotérmicas.

Page 2: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

SISTEMA Y ENTORNO

SISTEMA

ENTORNO

ENERGÍA

• SISTEMA Parte pequeña del universo que se aísla para someter a estudio.

• El resto se denomina ENTORNO.• Pueden ser:

– Abiertos (intercambia materia y energía).

– Cerrados (no intercambia materia y sí energía).

– Aislados (no intercambia ni materia ni energía).

• En reacciones químicas...SISTEMAS = Sustancias

químicas

Page 3: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Termodinámicamente la descripción del estado de un

sistema se realiza mediante los valores de

determinadas propiedades macroscópicas denominadas variables termodinámicas,

tales como p, V, T, concentración ...

Las propiedades microscópicas no son

calculables por la existencia de miles de partículas en los

procesos (Nav)

Las variables macroscópicas nos dan el comportamiento global del

sistema

Page 4: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Macroscópicamente las variables termodinámicas, podemos clasificarlas en:

Extensivas: su valor depende de la cantidad total de materia del sistema (masa, moles, volumen…)

Intensivas: su valor es independiente de la cantidad total de materia del sistema (pH, T….)

No todas estas variables son independientes, basta conocer los valores de un pequeño número de ellas para caracterizar el sistema. Estas variables independientes se denominan variables de estado.

Magnitudes que pueden variar a lo largo de un proceso (por ejemplo, en el transcurso de una reacción química) .Presión. Temperatura.

Volumen. Concentración.

Page 5: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Variación de la función de estado

F

F

F = función de estado

Tienen un valor único para cada estado del sistema.

Su variación solo depende del estado inicial y final y no del camino desarrollado.

• SI son: Presión, temperatura, energía interna, entalpía.

• NO son: calor, trabajo

Dentro de las variables termodinámicas se

encuentran las FUNCIONES DE ESTADO

Page 6: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

CALORCALOR

Q > 0Q > 0CALORCALOR

Q < 0Q < 0

TRABAJOTRABAJO

W < 0W < 0TRABAJOTRABAJO

W > 0W > 0

Expansión ∆V> 0 Compresión ∆V< 0

Page 7: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

TRABAJO TERMODINÁMICO

W = - F x h

= -(p x A) x h

= - p V

W = - pext V

Expansión irreversible

En un proceso irreversible las modificaciones del sistema no son de equilibrio.

Page 8: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Expansión Reversible

V

1P

2

Pext < Pint

Pext

Pint

Pext

Pint

Pext = Pint

2 2

1 1

V V

ext gasV VW P dV P dV

• Gas Ideal nRTW dV

V

• G I y T=cte dVW nRT

V 2

1

V

V

W nRT Ln

Reversible

Una transformación es reversible si se realiza mediante sucesivos estados de equilibrio,

siendo posible invertir el proceso.

Page 9: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

PRIMER PRINCIPIO DE LA TERMODINÁMICA

• ENERGÍA INTERNA (U) es la energía total del sistema.Es imposible calcularla, por su complejidad

– Su variación sí se mide.

• U = Q + W

Q y W > 0 si se realizan a favor del sistema.

• U es función de estado.

Refleja el Principio de conservación de la energía para los procesos termodinámicos

“La cantidad de energía intercambiada permanece constante cualquiera que sea la transformación realizada, siendo igual a la variación total de la energía del sistema”

Page 10: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Energía interna, U:Energía total (cinética y potencial) del sistema.

•Energía cinética traslacional.

•Rotación molecular.

•Energía vibracional.

•Atracciones

intermoleculares.

•Enlaces químicos.

Page 11: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Calor a volumen constante (Qv) Proceso isocórico

• Es el intercambio de energía en un recipiente cerrado que no cambia de volumen.

• Si V= constante, es decir, V = 0 W = 0

Qv = U

Qv = n CV T (Calor molar a volumen constante. CV – Tabuladas o f(T))

Page 12: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Calor a presión constante (Qp) Proceso isobárico

• La mayoría de los procesos químicos ocurren a presión constante, normalmente la atmosférica.

• Si p = cte W = – p · V U = Qp – p · V

• U2 – U1 = Qp – p · (V2 – V1)

• Qp + U1 + p · V1 = U2 + p · V2

H1 H2 (entalpía)

H1= U1 + p · V1; H2= U2 + p · V2

H = U + p V = Qp• H es una función de estado a presión

constante.(Sólo calculable su variación)

DIAGRAMAS ENTÁLPICOS

Reactivos

En

talp

ía (

H)

Productos

H > 0

Reac. endotérmica

En

talp

ía (

H)

Reactivos

Productos

H < 0

Reac. exotérmica

Page 13: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

H = U + p · V

• Aplicando la ecuación de los gases: p · V = n · R · T

• y si p y T son constantes la ecuación se cumplirá para los estados inicial y final: p · V = n · R · T

H = U + n · R · T

Page 14: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

• En reacciones a volumen constante

Qv = U • Y a presión constante

Qp = H Como H = U + p · V

Qp – Qv = p · V = n · R · T

Relación Qv con Qp -Gases

Page 15: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Relación Qv con Qp (sólidos y líquidos)

• En reacciones de sólidos y líquidos apenas se produce variación de volumen y ...

Qv Qp

• es decir:

U H

Page 16: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ejemplo: Determinar la variación de energía interna para el proceso de combustión de 1 mol de propano a 25ºC y 1 atm, si la variación de entalpía, en estas condiciones, vale – 2219,8 kJ.

C3H8 (g) + 5 O2 (g) 3 CO2 (g) + 4 H2O (l) H = –2219,8

kJ

Calculamos n en estado gaseoso

nreactivos = 1+5 = 6 ; nproductos = 3 n = – 3

Sustituyendo en U = H – n · R · T =

– 2219 kJ + 3 mol · (8,3 J/mol.K) · 298 K = –2214 kJ

U = – 2212 kJ

Page 17: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ecuaciones termoquímicas• Expresan tanto los reactivos como los productos indicando entre

paréntesis su estado físico, y a continuación la variación energética expresada como H (habitualmente como H0).

Ejemplos: CH4(g) + 2 O2(g) CO2(g) + 2 H2O(l); H0 = –890 kJ

H2(g) + ½ O2(g) H2O(g); H0 = –241’4 kJ

H depende del número de moles que se forman o producen. Por tanto, si se ajusta poniendo coeficientes dobles, habrá que multiplicar H0 por 2:

2 H2(g) + O2(g) 2 H2O(g) ; H0 = 2· (–241’4 kJ)

Con frecuencia, suelen usarse coeficientes fraccionarios para ajustar las ecuaciones:

H2(g) + ½ O2(g) H2O(g) ; H0 = –241’4 kJ

Page 18: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Entalpía de reacción

Es el incremento entálpico de una reacción a presión constante, y equivale al calor puesto en juego en la reacción.

HR = ∑Hproductos – ∑Hreactivos

Podemos calcularla a partir de las entalpías de formación de las distintas sustancias.

• Para poder comparar los calores de diferentes reacciones se define un estado de referencia; estado estándar o condiciones estándar que se corresponde con el estado más estable de una sustancia a una presión de 1 atm y 298 ºK (25 ºC) de temperatura, y se refiere a un mol de sustancia.

• Se expresa como H0 y se mide en J/mol o kJ/mol.

H0R= ∑H0productos – ∑H0

reactivos

Page 19: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Entalpía de formación (calor de formación).

• Es el incremento entálpico (Hf) que se produce en la reacción de formación de un mol de un determinado compuesto a partir de los elementos en estado físico normal

• En condiciones estándar tenemos la “Entalpía de formación estándar” Se expresa como Hf

0. Se trata de un “calor molar”, es decir, el cociente entre H0

R y el número de moles formados de producto.

• Por tanto, se mide en kJ/mol.

Ejemplos: C(s) + O2(g) CO2(g) Hf 0 = – 393’13 kJ/molH2(g) + ½ O2(g) H2O(l) Hf

0 = – 285’8 kJ/mol

La entalpía de formación estándar Hfº es la variación de calor correspondiente a la formación de 1 mol de la sustancia en el estado estándar a partir de sus elementos en los estados de agregación más estables a 1 atm y 298 ºK. (Para los compuestos más significativos están tabuladas)

Page 20: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Cálculo de HR0 (calor de reacción)

HR0 = np Hf

0(productos)– nr Hf

0(reactivos)

Por convenio, Hf0 de todos los elementos en su estado

más estable es nula. También consideramos las moléculas diatómicas de los elementos H2, N2, F2, Cl2, O2, I2.

Es importante especificar el estado de agregación de las sustancias que participan en la reacción dado que los valores pueden ser distintos.

El valor de las entalpías estándar de formación indica la estabilidad de los compuestos, a mayor calor desprendido en su formación mayor será la estabilidad, y necesitará mayor aporte de calor para su descomposición.

Page 21: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ejemplo: Conocidas las entalpías estándar de formación del butano (C4H10), agua líquida y CO2, cuyos valores son respectivamente –124’7, –285’8 y –393’5 kJ/mol, calcular la entalpía estándar de combustión del butano.

• La reacción de combustión del butano es:

C4H10(g) +13/2O2(g) 4 CO2(g) + 5H2O(l) H0combustión= ?

Teniendo en cuenta que Hf0(O2) = 0 (Al ser un elemento)

H0 = npHf0(product.) – nrHf

0(reactivos) = 4 mol(– 393’5 kJ/mol) + 5 mol(– 285’8 kJ/mol) –1 mol(– 124’7 kJ/mol) = – 2878’3 kJ

• Luego la entalpía estándar de combustión será:

H0combustión = – 2878’3 kJ/mol

Page 22: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ley de HessHR en una reacción química es

constante con independencia de que la reacción se produzca en una o más etapas.

• Recuerda que H es función de estado.

• Por tanto, si una ecuación química se puede expresar como combinación lineal de otras, podremos igualmente calcular H de la reacción global combinando los H de cada una de las reacciones.

Page 23: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ejemplo: Dadas las reacciones:(1) H2(g) + ½ O2(g) H2O(g) H1

0 = – 241’8 kJ/mol (2) H2(g) + ½ O2(g) H2O(l) H2

0 = – 285’8 kJ/mol

calcular la entalpía de vaporización del agua en

condiciones estándar. La reacción de vaporización es...

(3) H2O(l) H2O(g) H03 = ?

(3) puede expresarse como (1) – (2), luego

H03 = H0

1 – H02 =

– 241’8 kJ/mol – (–285’8 kJ/mol) = 44 kJ/mol

H0vaporización = 44 kJ /mol

Page 24: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Esquema de la ley de Hess

H10 = – 241’8 kJ

H20 = – 285’8 kJ

H30 = 44 kJ

HH2(g) + ½ O2(g)

H2O(g)

H2O(l)

Page 25: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ejercicio: Conocidas las entalpías estándar de formación del butano (C4H10), agua líquida y CO2, cuyos valores son respectivamente –124’7, –285’8 y –393’5 kJ/mol, calcular la entalpía estándar de combustión del butano.

Si utilizamos la ley de Hess, la reacción:

(4) C4H10(g) +13/2O2(g) 4 CO2(g) + 5H2O(l) H0comb=?

Puede obtenerse a partir de:

(1) H2(g) + ½ O2(g) H2O(l) H10 = – 285’8 kJ/mol

(2) C(s) + O2(g) CO2(g) H20 = – 393’5 kJ/mol

(3) 4 C(s) + 5 H2(g) C4H10(g) H30 = – 124’7 kJ/mol

Combinando las reacciones (4) = 4 · (2) + 5 · (1) – (3)

4 C(s) + 4 O2(g) +5 H2(g) + 5/2 O2(g) + C4H10(g) 4 CO2(g) + 5H2O(l) + 4 C(s) + 5 H2(g)

(Las Hf0 de los elementos es nula)

H04 = 4 mol(–393’5 kJ/mol) + 5 mol(–285’8 kJ/mol) – 1 mol(– 124’7 kJ/mol) = – 2878’3 kJ/mol

Page 26: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Energía de enlace o entalpía de enlace.

“Es la energía necesaria para romper o formar un mol de un enlaces de sustancia en estado gaseoso a presión constante”

En el caso de moléculas diatómicas es igual que la energía de disociación:

A—B(g) A(g) + B(g) Hdis = Eenlace= Ee

Ejemplo: H2(g) 2 H(g) H = 436 kJ/mol

Es positiva (es necesario aportar energía al sistema)

Es difícil de medir y puesto que la entalpía de enlace depende de la molécula se tabulan valores promedios entre las diferentes posibilidades de enlaces interatómicos.

Se suele calcular aplicando la ley de Hess.

Page 27: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Cálculo de HR0 a partir de las

Energía de enlace (disociación).

Aplicando la ley de Hess en cualquier caso se obtiene la siguiente fórmula:

H0 = ni · Ee(enl. rotos) – nj · Ee(enl.formados)

en donde ni representa el número de enlaces rotos y formados de cada tipo.

Este método se considera menos fiable que los cálculos con entalpías de formación, al no ser precisos los valores de las energías de enlace. Pero muy utilizado en reacciones orgánicas

Page 28: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ejercicio: Calcula el calor de combustión de propano a partir de los datos de energía de enlace de la tabla.

C3H8 + 5 O2 3 CO2 + 4 H2O

Enlaces rotos: 8 C–H, 2 C–C y 5 O=O

Enlaces formados:

6 C=O y 8 O–H

Hc0 = Ee(e. rotos) – Ee(e. form.)

H0 = 8 Ee(C–H) + 2 Ee(C–C) + 5 Ee(O=O) – [6 Ee(C=O) + 8 Ee(O–H)]

H0 = 8·413 kJ + 2·347 kJ +5·499 kJ – (6·745 kJ + 8·460 kJ) = –1657 kJ

H0comb(C3H8) = –1657 kJ/mol

Enlace Ee (kJ/mol)

H–H 436

C–C 347

C=C 620

CC 812

O=O 499

Cl–C 243

C–H 413

C–O 315

C=O 745

O–H 460

Cl–H 432

Page 29: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ejemplo: Calcular la energía del enlace H—Cl en el cloruro de hidrógeno conociendo Hf

0(HCl) cuyo valor es –92,3 kJ/mol y las entalpías de disociación del H2 y del Cl2 que son 436,0 kJ/mol y 243,4 kJ/mol, respectivamente.

La reacción de disociación del HCl será:

(4) HCl(g) H(g) + Cl(g) H04= ?

Las reacciones conocidas son:

(1) ½H2(g) + ½Cl2(g) HCl(g) H01 = –92,3 kJ/mol

(2) H2(g) 2H(g) H02 = 436,0 kJ/mol

(3) Cl2(g) 2Cl(g) H03 = 243,4 kJ/mol

Aplicando la ley de Hess (4) = –(1) + ½(2) + ½(3)

H04 = –(– 92,3 kJ ) + ½(436,0 kJ) + ½(243,4 kJ) = 432,0 kJ

Ee(HCl) = 432,0 kJ/mol

Page 30: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ejemplo: Sabiendo que las energía de los siguientes enlaces (kJ/mol): C=C : 611; C–C : 347; C–H : 413 y H–H : 436, calcular el valor de H0 de la reacción de hidrogenación del eteno.

Reacción: CH2=CH2(g) + H2(g) CH3–CH3(g)

En el proceso se rompe un enlace C=C y otro H–H y se forman 2 enlaces C–H nuevos (el etano tiene 6 mientras que el eteno tenía sólo 4) y un enlace C–C.

H0 = Ee(enl. rotos) – Ee(enl. formados) =

H0 = 1Ee(C=C) + 1 Ee(H–H) – 1Ee(C–C) – 2 Ee(C–H)

H0 = 1 mol · 611 kJ/mol + 1mol · 436 kJ/mol – (1 mol · 347 kJ/mol + 2 mol · 413 kJ/mol) = –126 kJ

Page 31: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Entalpías de combustión

Entalpía de Combustión H en la reacción de oxidación de un mol de unasustancia.

Si la sustancia está constituida por C, N, Cl, S o H, se obtendrá CO2(g), N2(g), Cl2(g), SO2(g) y H2O(l). Si hay otro elemento se forma el óxido más estable correspondiente al elemento

Son utilizadas para calcular experimentalmente los calores de formación de los compuestos. Para determinar el valor numérico se emplea la bomba calorimétrica

Calor

Qr = -Qcalorim = m ce T

m masa del cuerpo kgCe calor específico J kg-1 K-1 (cal/g ºC)T variación de temperatura K

Q = m LL calor latente de fusión o ebullición J/kg

Page 32: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ejercicio: Las entalpías de combustión de la glucosa (C6H12O6) y del etanol (C2H5OH) son –2815 kJ/mol y –1372 kJ/mol, respectivamente. Con estos datos determina la energía intercambiada en la fermentación de un mol de glucosa, reacción en la que se produce etanol y CO2. ¿Es exotérmica la reacción?

Las reacciones de combustión son, respectivamente:(1) C6H12O6 + 6 O2 6 CO2 + 6 H2O ; H1 = – 2815 kJ

(2) C2H5OH + 3 O2 2 CO2 + 3 H2O ; H2 = – 1372 kJ

La reacción de fermentación de la glucosa es: (3) C6H12O6 2 C2H5OH +2 CO2 H3 = ?

(3) puede expresarse como (1) – 2· (2), luego

H3 = H1 – 2·H2 = – 2815 kJ – 2· (– 1372 kJ)

H3 = – 71 kJ /mol y la reacción es exotérmica.

Page 33: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Entalpías de disolución

Calor desprendido o absorbido en la disolución de un mol de cualquier sustancia (sólida, líquida o gaseosa) en un disolvente.

Si el proceso se realiza a presión atmosférica constante, el calor de disolución o entalpía de disolución vendrá dado por:

H= Hdisolución – Hcomponentes iniciales

Sólo podemos calcular la variación de entalpía y no los valores entálpicos de las diferentes sustancias; algunos valores están tabulados.

Page 34: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Concepto de Entropía (S)Es una medida del desorden del sistema que sí puede

medirse y tabularse.

S = Sfinal – Sinicial Existen tablas de S0 (entropía molar estándar) de

diferentes sustancias.

En una reacción química: S0 = np· S0

productos – nr· S0reactivos

La entropía es una función de estado.Las unidades de S son J/K mol o cal/ºC molSe introduce en el segundo principio de la Termodinámica

para informar del grado de desorden de un sistema

Page 35: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ejemplo: Calcula S0 para las siguientes reacciones químicas: a) N2(g) + O2(g) 2 NO(g);

b) 3 H2(g) + N2(g) 2 NH3(g). Datos: S0 (J·mol–1·K–1): H2(g) = 130,6; O2(g) =205; N2(g) = 191,5; NO(g) = 210,7; NH3(g) =192,3

S0 = np· S0productos – nr· S0

reactivos

a) S0 = 2 mol · 210,7 J ·mol–1 ·K–1 –

(191,5 J·K–1 + 205 J·K–1 ) = 24,9 J·K–1

b) S0 = 2·192,3 J·K–1 –

(3 mol ·130,6 J· mol–1·K–1 + 191,5 J·K–1 ) S0= –198,7 J·K–1

Page 36: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Segundo principio de la Termodinámica.La variación de entalpía nos indica si la reacción es exotérmica o

endotérmica, pero no si tiene lugar de forma espontánea.

“En cualquier proceso espontáneo la entropía total del universo tiende a aumentar siempre”.

Suniverso = Ssistema + Sentorno 0

A veces el sistema pierde entropía (se ordena) espontáneamente. En dichos casos el entorno se desordena.

Tercer principio de la Termodinámica

“La entropía de cualquier sustancia a 0 K es igual a 0” (máximo orden).

Equivale a decir que no se puede bajar de dicha temperatura.

Las S de los elementos en condiciones estándar no son 0 sino que es positiva.

Page 37: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

En procesos reversibles (la entropía del universo permanece constante), y si la temperatura es constante se puede calcular S de un sistema como:

Qrev

S = — T

y si el proceso químico se produce a presión constante: (Qp = H)

Hsistema – Hsistema Ssistema = ——— ; Sentorno= ————

T T

Sreacción se mide en J·K–1.

En procesos irreversibles la entropía del universo siempre aumenta, y se cumple que

Qrev

S > — T

La entropía no se conserva.

Page 38: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Variación de la entropíaConsiderando la entropía como el grado de desorden molecular del

sistema, es decir, cuanto mayor sea el orden interno del sistema , menor será su entropía; y si el desorden aumenta, lo hace la entropía. Podemos deducir:

CAMBIOS DE ESTADO: S (sólido)< S (líquido) < S (gas)

DISOLUCIÓN DE UN SÓLIDO EN UN LÍQUIDO

S (disolución)> S (soluto) + S (disolvente)

MEZCLA DE GASES

S (mezcla de gases)> S (gas1) + S (gas2) + ….

AUMENTO DE LA TEMPERATURA

S (T alta)> S (T baja)

REACCIÓN QUÍMICA CON AUMENTO DE MOLES

S (productos)> S (reactivos)

Aunque, el aumento de entropía del sistema normalmente favorece su espontaneidad no siempre se cumple, dado que la entropía que debe aumentar para que sea espontáneo es la del Universo

Page 39: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Energía libre de Gibbs (G)(energía libre o entalpía libre).

Para predecir si un proceso termodinámico es espontáneo o no, debemos tener en cuenta la variación entálpica y la entrópica, que por si solas no lo indican.

Por ello se define una nueva función de estado la “ENERGÍA LIBRE DE GIBBS (G)” como:

G = H – T · S

Tiene unidades de energía, no podemos calcular su valor absoluto, pero si su variación. A temperatura y presión constantes se cumple que:

G = H – T · S

En condiciones estándar: G0 = H0 – T· S0

Al igual que el incremento entálpico el incremento de energía libre de una reacción puede obtenerse a partir de Gf

0 de reactivos y productos:

G0 = npGf0

(productos)– nrGf0

(reactivos)

Page 40: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Si en un sistema H < 0 (exotérmica) y S >0, podemos asegurar que la reacción es espontánea, por lo tanto, teniendo en cuenta que

G = H – T · S

En los procesos isobáricos (p cte) e isotermos (T cte) se cumple que serán procesos espontáneos cuando G < 0.

De forma general, tendremos que:

• Si G. > 0 la reacción no es espontánea

• Si G. = 0 el sistema está en equilibrio

• Si G < 0 el proceso es espontáneo.

Page 41: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Energía libre y Espontaneidad de las reacciones químicas

Reactivos

En

ergí

a lib

re (

G)

Productos

G > 0 En

ergí

a lib

re (

G)

Reactivos

Productos

G < 0

Reacción espontánea

T, p = ctes. T, p = ctes.

Reacción no espontánea

Page 42: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Espontaneidad en las reacciones químicas.• No siempre las reacciones exotérmicas son

espontáneas.• Hay reacciones endotérmicas espontáneas:

– Evaporación de líquidos.– Disolución de sales...

Ejemplos de reacciones endotérmicas espontáneas:

NH4Cl(s) NH4+(aq) + Cl– (aq) H0 = 14’7 kJ

H2O(l) H2O(g) H0 = 44’0 kJ

Page 43: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Una reacción es espontánea cuando G (H – T x S) es negativo.

Según sean positivos o negativos los valores de H y S (T siempre es positiva) se cumplirá que:

H < 0 y S > 0 G < 0 Espontánea H > 0 y S < 0 G > 0 No espontánea H < 0 y S < 0 G < 0 a T bajas

G > 0 a T altas H > 0 y S > 0 G < 0 a T altas

G > 0 a T bajas

Espontaneidad en las reacciones químicas.

Page 44: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

H > 0S > 0

Espontánea a temperaturas altas

H < 0S > 0

Espontánea a todas las temperaturas

H < 0S < 0

Espontánea a temperaturas bajas

H > 0S < 0

No Espontánea a cualquier temperaturas

H

S

Espontaneidad en las reacciones químicas.

Page 45: TERMOQUÍMICA TERMODINÁMICA QUÍMICA estudia las relaciones existentes entre la energía y los cambios químicos. TERMOQUÍMICA es la parte que estudia específicamente

Ejemplo: ¿Será o no espontánea la siguiente reacción 2H2O2(l) 2H2O (l) + O2(g) en condiciones estándar? Datos: H0

f (kJ/mol) H2O(l) = –285,8; H2O2(l) = –187,8 ; S0

(J·mol 1 K·1) H2O(l) = 69,9; H2O2(l) = 109,6; O2(g) =205,0.

H0 = npHf0

(productos)– nrHf0

(reactivos) =

= 2 Hf0(H2O) + Hf

0(O2) – 2 Hf0(H2O2) =

2 mol(–285,8 kJ/mol) – 2 mol(–187,8 kJ/mol) = –196,0 kJ S0 = np· S0

productos – nr· S0reactivos =

2 S0(H2O) + S0(O2) – 2 S0(H2O2) =

2 mol(69,9 J/mol·K) + 1 mol(205, J/mol·K) – 2mol(109,6 J/mol·K) = 126,0 J / K = 0,126 kJ / K

G0 = H0 – T · S0 = –196,0 kJ – 298 K · 0,126 kJ/ K =

G0 = – 233,5 kJ luego será espontánea