8
Thermal Analyses Stefano Basso INAF – Astronomical Observatory of Brera November 18 th , 2008

Thermal Analyses Stefano Basso INAF – Astronomical Observatory of Brera November 18 th, 2008

Embed Size (px)

Citation preview

Page 1: Thermal Analyses Stefano Basso INAF – Astronomical Observatory of Brera November 18 th, 2008

Thermal Analyses

Stefano Basso

INAF – Astronomical Observatory of Brera

November 18th, 2008

Page 2: Thermal Analyses Stefano Basso INAF – Astronomical Observatory of Brera November 18 th, 2008

Q=10 !flusso termico [W] sulla linea superiore interna del tubo

D1=0.19013 !Diametro della prima lente (quella vicino al cielo)s1=0.025 !spessore totale dlla lenteR1=0.2549 !raggio di curvaturay1=0.40857 !distanza dalla superficie piana della 5a lenteMP, EX, 1, 20E10 ! Young's modulus for material ref. no. 1 MP, DENS, 1, 8890 ! Density for material ref. no. 1 MP, NUXY, 1, 0.3 ! Modulo di Poisson for material ref. no. 1MP, CTEX, 1, 13E-6MP, C, 1, 800 ! calore specifico MP, KXX, 1, 0.8 ! conducibilità termica MP,EMIS,1,0.94

D2=0.12111 !Diametro della seconda lentes2=0.02066 !spessore totale della lenteR2=0.19291 !raggio di curvaturay2=0.33049 !distanza dalla superficie piana della 5a lente

D3=0.11742 !Diametro della terza lentes3=0.01766 !spessore totale della lenteR3=0.96921 !raggio di curvaturay3=0.252 !distanza dalla superficie piana della 5a lente

D4=0.13122 !Diametro della quarta lentes4=0.035 !spessore totale della lenteR4sky=0.2221 !raggio di curvaturaR4ccd=0.20611 !raggio di curvaturay4=0.21492 !distanza dalla superficie piana della 5a lente

D5=0.192 !Diametro della quinta lente (quella vicino al CCD)s5=0.008 !spessore della lente (in asse)R5=0.12089 !raggio di curvaturay5=0.0 ! ORIGINE degli assilato5=0.136

Dtubo=0.25 !Dati geometrici del tuboStubo=0.002htubo=0.5

yCCD=0.01 !distanza del CCD dall'origine.sCCD=0.01 !spessore del CCDlatoCCD=lato5

MP, EX, 6, 1 ! Young's modulus for material ref. no. 1 MP, DENS, 6, 8890 ! Density for material ref. no. 1 MP, NUXY, 6, 0.3 ! Modulo di Poisson for material ref. no. 1MP, CTEX, 6, 1.3E-6MP, C, 6, 515 ! calore specifico MP, KXX, 6, 10.15 ! conducibilità termica

ET, 1, SOLID70 !Brick conduzione termica a 8 nodi

Mesh

Page 3: Thermal Analyses Stefano Basso INAF – Astronomical Observatory of Brera November 18 th, 2008

CCD Temperature: -50°C

tube:

Emissivity out) 0.1 (out) – 0.94 (in)

Thermal conductivity (k): 10 W / (m K)

Thermal input

Page 4: Thermal Analyses Stefano Basso INAF – Astronomical Observatory of Brera November 18 th, 2008

T (ultima lente)

0

1

2

3

4

5

6

7

8

9

10

11

12

10 100

distanza CCD/ultima lente [mm]

[°C

]

Thermal radial gradient

Page 5: Thermal Analyses Stefano Basso INAF – Astronomical Observatory of Brera November 18 th, 2008

EQV stress

0

1

2

3

4

5

6

7

8

9

10

11

10 100

distanza CCD/ultima lente [mm]

[MP

a]

Mechanical stresses

Page 6: Thermal Analyses Stefano Basso INAF – Astronomical Observatory of Brera November 18 th, 2008

Q=1W

Thermal load (heaters)

Page 7: Thermal Analyses Stefano Basso INAF – Astronomical Observatory of Brera November 18 th, 2008

Q=10W

L1: -75°C / -71°C

L2: -65 °C / -63°C

L3: -67°C

L4: -71°C / -70°C

L5: -76°C / -70°C

Thermal load (heaters)

Page 8: Thermal Analyses Stefano Basso INAF – Astronomical Observatory of Brera November 18 th, 2008

• The temperature differences between the different lenses in a telescope without heaters will be very high

• The thermal gradient (in radial direction) in the lens near the CCD will be in the range of few degrees

• The distance of the last lens from the CCD does not influence the thermal gradient in a significant way

• The stress in the glass will be in the range of 2-10 MPa

• The thermal baffle is needed to reduce the view factor to the space for the first lens

• The thermal load needed to uniform the temperature (5-10 deg) would be about 10 W for each telescope (it could decrease optimizing the design). The design of the heat flow from the CCD assembly would be very useful with conducting links.

Conclusions