101
Seminar at JAEA, 23 rd Jan. 2017 Topological Materials for Spintronis Topological Materials for Spintronis Kentaro Nomura (IMR, Tohoku University) トポロジカル物質におけるスピントロニクス現象

Topological Materials for Spintronis - JAEA...Topological insulator H surface k y x k x y Voltage difference between leftand right spin‐electricity conversion spin‐momentum locking

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Seminar at JAEA, 23rd Jan. 2017

    Topological Materials for SpintronisTopological Materials for Spintronis

    Kentaro Nomura (IMR, Tohoku University)

    トポロジカル物質におけるスピントロニクス現象

  • Topological Materials for SpintronisTopological Materials for Spintronisトポロジカル物質におけるスピントロニクス現象

    Collaborators

    Yasufumi Araki, Gerrit Bauer, Koji Kobayashi, Daichi Kurebayashi,

    Ryota Nakai, Yuya Ominato, Akihiko Sekine,Nobuyuki Okuma(Tokyo) 

    Yuki Shiomi (Tohoku), Eiji Saitoh (Tohoku), Yoichi Ando (Cologne)

    Seminar at JAEA, 23rd Jan. 2017

  • Topological Materials for SpintronisTopological Materials for Spintronisトポロジカル物質におけるスピントロニクス現象

    Seminar at JAEA, 23rd Jan. 2017

    • Topological insulators

    3D Topological insulator

    E

    kx

    ky

    kz

    E

    kxkz

    ky

    • Weyl semimetals

  • Take home message

    TCS AHEV(t)M B

    Kurebayashi, KN 2016

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    V(t)

    (magnetic) Weyl semimetal

    Tim e [nsec]

    0

    0.2

    0.4

    0.6

    -1.5-1

    -0.5

    0 0.5

    1

    1.5

    0 50 100 150 200

    Inp

    ut voltage [

    V ]

    (a)

    Magnetization switchingvia electric voltage

  • Outline

    • Introduction: What is a Weyl semimetal?

    • Magnetization dynamics in Weyl semimetals

    Part I

    Part II

    • Spin-Electricity conversion in topological insulators

  • Outline

    • Introduction: What is a Weyl semimetal?

    • Magnetization dynamics in Weyl semimetals

    Part I

    Part II

    • Spin-Electricity conversion in topological insulators

  • 3D Topological insulator

    E

    kx

    ky

    Kane-Mele, Bernevig-Hughes-Zhang, Moore-Balents, Roy, Fu-Kane-Mele, …

    Topological insulators

    strong SOCweak SOC

    E

    +

    _ +

    _

    Normalinsulator

    Topologicalinsulator

  • 3D Topological insulator

    E

    kx

    ky

    Topological insulators

    strong SOCweak SOC

    E

    +

    _ +

    _

    Normalinsulator

    Topologicalinsulator

    3d Topological insulator materials• Bi1‐xSbx• Bi2Se3, Bi2Te3• Bi‐Sb‐Te‐Se (BSTS)

  • Spintronics phenomena on TI surface

    A.R.Mellnik, et al. Nature 511, 449‐451 (2014)

    Shiomi, et al. Phys. Rev. Lett. 113, 196601 (2004)C.H.Li, et al. Nature Nano. 9, 218‐224 (2014)Y. Fan, et al. Nature Materials 13, 699 (2014)Kondo et al. Nature Phys. 3833 (2016)

    Experimental studies

  • Spintronics phenomena on TI surface

    Experimental studies

  • Topological insulator

    E

    kx

    ky

    Spin injection experiments

    Hsurface ky x kx y

    spin‐momentum locking

    z : , real spin

    Voltage difference between left and right

    spin‐electricity conversion

  • Topological insulator

    E

    kx

    ky+

    ++

    +

    __

    __

    Spin injection experiments

    Hsurface ky x kx y

    Voltage difference between left and right

    spin‐electricity conversion

    spin‐momentum locking

    z : , real spin

  • Spin injection experiments

    Topological insulator

    Hsurface ky x kx y

    Voltage difference between left and right

    spin‐electricity conversion

    spin‐momentum locking

    Y. Shiomi, et al. PRL 113, 196601 (2014)

    z : , real spin

  • Spin injection experiments

    ++

    ++

    __

    __

    Hsurface ky x kx y

    Voltage difference between left and right

    spin‐electricity conversion

    spin‐momentum locking

    Y. Shiomi, et al. PRL 113, 196601 (2014)

    z : , real spin

    Topological insulator

    ____

  • Spin injection experiments

    Voltage difference between left and right

    Y. Shiomi, et al. PRL 113, 196601 (2014)

    spin‐electricity conversion

    spin‐momentum locking

    ++

    ++

    __

    __

    Topological insulator

    ____

  • Dumping enhancement• Local spins

    ++

    ++

    __

    __

    Topological insulator

    ____

  • • Surface electrons

    • Local spins

    a JevF

    ẑ S

    Dumping enhancement

    ++

    ++

    __

    __

    Topological insulator

    ____

  • • Surface electrons

    • Local spins

    a JevF

    ẑ S

    Dumping enhancement

    ++

    ++

    __

    __

    Topological insulator

    ____

  • a JevF

    ẑ SdSdt

    H eff S (0 )SdSdt

    The enhanced dumping factor

    • Local spins

    Dumping enhancement

    ++

    ++

    __

    __

    Topological insulator

    ____

  • a JevF

    ẑ S

    The enhanced dumping factor

    3108.7~

    dSdt

    H eff S (0 )SdSdt

    Dumping enhancementY. Shiomi, et al. PRL 113, 196601 (2014)

    ++

    ++

    __

    __

    Topological insulator

    ____

    J ≅ 10 meV

  • Microscopic theory of spin torque

    Relation between

    surface and  x

    y

    z

    __

    __

    Topological insulator

    E (electric field)

    exert a spin torque on the local spin magnetization

    EEdelstein effect

    N. Okuma, KNarXiv:1610.05236

  • Microscopic theory of spin torque

    Torque at the surface

    Relation between

    surface and  x

    y

    z

    __

    __

    Topological insulator

    E (electric field)

    N. Okuma, KNarXiv:1610.05236

  • Microscopic theory of spin torque

    Torque at the surface

    x

    y

    z

    __

    __

    Topological insulator

    E (electric field)

    N. Okuma, KNarXiv:1610.05236

  • Microscopic theory of spin torqueLinear response theory

    = +S A

    Sy

    Sz

    0

    x

    y

    z

    __

    __

    Topological insulator

    E (electric field)

    N. Okuma, KNarXiv:1610.05236

  • Microscopic theory of spin torqueLinear response theory

    = +S A S

    S

    A + 

    N. Okuma, KNarXiv:1610.05236

  • Microscopic theory of spin torqueLinear response theory

    = +S A S

    S

    A + 

    ckck G(k)

    Sqi Sq

    j ij (q)

    (q,n)

    G(k,)

    G(k‐q,n)

    N. Okuma, KNarXiv:1610.05236

  • Microscopic theory of spin torqueLinear response theory

    = +S A S

    S

    A + 

    (q,n)

    G(k‐q,n)

    N. Okuma, KNarXiv:1610.05236

    __

    __

    Topological insulator

    E (electric field)

  • Short summary

    N. Okuma, KNarXiv:1610.05236

    __

    __

    Topological insulator

    E (electric field)

    • Spin-Electricity conversion in topological insulators

    The enhanced dumping factor

    Electrically induced spin current

    Part I

  • Outline

    • Introduction: What is a Weyl semimetal?

    • Magnetization dynamics in Weyl semimetals

    Part I

    Part II

    • Spin-Electricity conversion in topological insulators

  • kykx

    E

    KK’

    K’K’

    K

    K

    What is Weyl a semimetal?

    3-dimensional analogue of “graphene”

    H2D =  pxx + pyy

    H3D =  pxx + pyy + pzz

    2D (Graphene)

    3D (Weyl semimetal)

    Murakami (2007)Wan et al. (2011)Burkov&Balents (2012)Halasz&Balents (2012)….

    E(p) vF px2 py

    2 pz2

    E(p) vF px2 py

    2Wallace (1947)

  • What is Weyl a semimetal?

    H2D =  pxx + pyy

    2D (Graphene)

    H3D =  pxx + pyy + pzz

    3D (Weyl semimetal)

    i : pseudo-spin

    sublattice degrees of freedom

    i : real-spin

    magnetic degrees of freedom

    Differences

    (Weak SOC)

    (Strong SOC)

  • Theory and Experiment

    Wan et al. (2011)Murakami (2007)Burkov, Balents (2012)

    H3D =  pxx + pyy + pzz

    3D (Weyl semimetal) i : real-spin

    magnetic degrees of freedom

    (Strong SOC)

    Huang et al. (2015)Xu et al. (2015)Souma et al. (2016)

  • E

    pxpy

    E2 px2 py

    2 pz2 m0

    2

    particle

    hole

    H px1py2 pz3 m04

    • Dirac theory

    Relativistic quantum mechanics

  • E

    pxpy

    E2 px2 py

    2 pz2 m0

    2

    {i , j } 2ij

    H2 pi i m04i

    2

    pipj i ji, j pim0( i4 4 i )

    i m0244

    H px1py2 pz3 m04

    • Dirac theory

    Relativistic quantum mechanics

    matrices

  • E

    pxpy

    E2 px2 py

    2 pz2 m0

    2

    {i , j } 2ij

    H2 pi i m04i

    2

    pipj i ji, j pim0( i4 4 i )

    i m0244

    H px1py2 pz3 m04

    • Dirac theory

    x zy

    x 0 11 0

    y

    0 ii 0

    z

    1 00 1

    matrices

    Relativistic quantum mechanics

  • E2 px2 py

    2 pz2 m0

    2

    {i , j } 2ij

    H px1py2 pz3 m04

    • Dirac theory

    H2 pi i m04i

    2

    pipj i ji, j pim0( i4 4 i )

    i m0244

    00 ,

    00 ,

    00 ,

    00

    1 2 3 4

    E

    pxpy

    i: 4x4 Dirac matrices

    Relativistic quantum mechanics

  • • Weyl theory• Dirac theory

    H px1py 2 pz 3

    i: 2x2 Pauli matrices

    H px1py2 pz3 m04

    E

    pxpy

    massless 

    E

    px py

    i: 4x4 Dirac matrices

    Relativistic quantum mechanics

  • E

    pxpy

    massless 

    E

    px py

    H px1py 2 pz 3H px1py2 pz3 m04

    • Weyl theory• Dirac theory

    Relativistic quantum mechanics

    i: 2x2 Pauli matricesi: 4x4 Dirac matrices

    degenerate non-degenerate

  • m0=0 (massless)  massless 

    Dirac-Weyl semimetals

    H px1py 2 pz 3H px1py2 pz3 m04

    • Weyl semimetal• Dirac semimetal

    i: 2x2 Pauli matricesi: 4x4 Dirac matrices

    degenerate non-degenerate

  • degenerate non-degenerate

    symmetry breaking

    pzpy

    Dirac-Weyl semimetals

    • Weyl semimetal• Dirac semimetal

  • Two types of Weyl semimetals

    • Weyl semimetal with broken space‐inversion symmetry

    Non‐magnetic M=0

    Ferromagnetic M ≠ 0

    • Weyl semimetal with broken time‐reversal symmetry

    ‐Materials: TaAs , NbAs, NbP, TaP, ..

    ‐Only theoretical proposals so far

  • From TI to Weyl SM

    Ferromagnetic M ≠ 0

    • Weyl semimetal with broken time‐reversal symmetry

    ‐Only theoretical proposals so far

    M ≠ 0

    Magnetic Weyl semimetalTopological insulator

    magnetic doping

  • strong SOCweak SOC

    E

    +

    _ +

    _

    Normalinsulator

    Topologicalinsulator

    From TI to Weyl SM

  • strong SOCweak SOC

    E

    +

    _ +

    _

    Normalinsulator

    Topologicalinsulator

    Dirac semimetal

    degenerate

    From TI to Weyl SM

  • strong SOCweak SOC

    E

    +

    _ +

    _

    Normalinsulator

    Topologicalinsulator

    Dirac semimetal

    degenerate

    magneticdopants

    From TI to Weyl SM

  • degenerate non-degenerate

    Burkov, Balents 2011

    magnetic doping

    • Weyl semimetals• Dirac semimetals

    pzpy

    From TI to Weyl SM

  • 0

    10

    20

    30

    40

    50

    60

    70

    -0.3 -0.2 -0.1 0 0.1 0.2 0.3

    Tem

    pera

    rture

    [K]

    M0 [eV]

    high T

    low T

    TheoryKurebayashi, KN. (2014)

    Dirac semimetal

    Weyl semimetal

    M ≠ 0M = 0degenerate non-degenerate

    paramagnetic ferromagnetic

    0

    +

    _ +

    _

    Magnetic ordering

  • Science 339, 1582 (2013)

    Bi2‐yCry(Se1‐x Tex)3

    Cr

    Experiment+

    _+

    _

    degenerate non-degenerate

  • Science 339, 1582 (2013)

    Experiment+

    _+

    _

    degenerate non-degenerate

  • Science 339, 1582 (2013)

    Experiment+

    _+

    _

    degenerate non-degenerate

  • F 12s

    M2 12e

    m2 JMm

    12

    1s

    J2e

    M

    2 12e

    m e JM 2

    local spin electron spin

    M ≠ 0M = 0degenerate non-degenerate

    paramagnetic ferromagnetic

    Magnetic ordering

  • F 12s

    M2 12e

    m2 JMm

    12

    1s

    J2e

    M

    2 12e

    m e JM 2

    local spin electron spin

    M ≠ 0M = 0degenerate non-degenerate

    paramagnetic ferromagnetic

    > 0

  • 12

    1

    GL & gradient expansion

    Araki, KN, PRB 93, 094438 (2016)

    strongweak

    HWeyl ·

    Hexc ·

    M ≠ 0non-degenerate

    ferromagnetic

  • 12

    1

    GL & gradient expansion

    strongweak

    Hexc ·

    Hedgehog Radial vortex∇M ≠ 0, ∇×M = 0 ∇M ≠ 0, ∇×M = 0

    Excited states

    Araki, KN, PRB 93, 094438 (2016)

    HWeyl ·

  • Anomalous transport phenomena

    • Anomalous Hall effect

    in magnetic Weyl semimetals

    • Chiral magnetic effect

    B jCME

    Fukushima, Kharzeev, and Warringa (2008)

    Mz ≠ 0jAHE

    E

  • Anomalous Hall responses

    janomaly AHE

    M×E

    ky

    kxkz

    b(k)

    +_

    kz

    E

    22

    2

    · 00 ·

    Mz ≠ 0jAHE

    E

  • Anomalous Hall responses

    janomaly AHE

    M×E anomaly AHE M B

    Mz ≠ 0

    anomalyB

    + + + +   ++ +   +   +   +

    + + + +   +

    +  +   +  

    +  

    anomaly janomaly

    Mz ≠ 0jAHE

    E

  • Anomalous Hall responses

    janomaly AHE

    M×E anomaly AHE M B

    Mz ≠ 0

    anomalyB

    _ _ _ _   __ _   _   _   _

    _ _ _ _   ___ _

    _

    anomaly janomaly

    Mz ≠ 0jAHE

    E

  • 0

    anomaly

    Anomalous Hall responses

    janomaly AHE

    M×E anomaly AHE M B

    anomaly

    BM

    0

    anomaly anomaly

    Landau levels

  • Chiral anomaly1D Weyl fermions

    k

    Energy

    dkdt

    eEk

    Energy

    H1D dx R ix eAx RL ix eAx L

    L R

  • Chiral anomaly

    dNRdt

    dx e2 E

    1D Weyl fermions

    k

    Energy

    k

    Energy

    H1D dx R ix eAx RL ix eAx L

    L R

    dNLdt

    dx e2 E

    dkdt

    eE

  • Chiral anomaly

    d(NRNL)dt

    dxe E

    d(NRNL)dt

    axial charge

    total charge0

    1D Weyl fermions

    H1D dx R ix eAx RL ix eAx L

    dNRdt

    dx e2 E

    dNLdt

    dx e2 E

  • kz

    Chiral anomaly3D Weyl fermions

    d(NRNL)dt

    0

    axial charge

    total charge

    d(NRNL)dt

    dxe E

    for 1D

    B = 0

  • Chiral anomaly3D Weyl fermions

    d(NRNL)dt

    0

    axial charge

    total charge

    L R NLL BLxLyhc / e

    d(NRNL)dt

    dxe E

    for 1D

    B ≠ 0

  • Chiral anomaly3D Weyl fermions

    d(NRNL)dt

    0

    axial charge

    total charge

    d(NRNL)dt

    d3x 2e2

    (2 )2E B

    L R NLL BLxLyhc / e

    B ≠ 0

  • Chiral anomaly3D Weyl fermions

    d(NRNL)dt

    d(NRNL)dt

    d3x 2e2

    (2 )2E B

    0

    axial charge

    total charge

    a = JM “chiral vector potential”

    L R

  • Chiral anomaly3D Weyl fermions

    d(NRNL)dt

    d(NRNL)dt

    a = JM “chiral vector potential”

    d3x 2e2

    (2 )2(E B e b)

    JM

    d3x 2e2

    (2 )2(E be B)

    Zyusin & Burkov (2012), Liu, Ye, Qi (2013)

  • Chiral anomaly

    d(NRNL)dt

    d(NRNL)dt

    d3x 2e2

    (2 )2(E be B)

    d3x 2e2

    (2 )2(E B e b)

    JM

    j e

    2

    2 2(E b e B)

    Zyusin & Burkov (2012), Liu, Ye, Qi (2013)

  • Chiral anomaly

    d(NRNL)dt

    d(NRNL)dt

    d3x 2e2

    (2 )2(E be B)

    d3x 2e2

    (2 )2(E B e b)

    JM janomaly

    Zyusin & Burkov (2012), Liu, Ye, Qi (2013)

    j e

    2

    2 2(E b e B)

  • Chiral anomaly

    JM janomaly

    janomaly e2

    2 2JM E

    anomaly e2

    2 2JM B

    Zyusin & Burkov (2012), Liu, Ye, Qi (2013)

    janomalyE

    Mz ≠ 0

    j e

    2

    2 2(E b e B)

  • Weyl fermions in B field

    NLL BLxLyhc / e

    0th Landau level :

    nth Landau level :

    (n=±1, ±2, ±3,…)

    MM

    AHE AHEM̂ Bcharge density

    0LL

    (not resistivity)

    0LL

  • · · ·

    Gate-tuned magnetization dynamics

    Charging Gate voltage

    Zeeman Anisotropy

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    anomaly AHE M B

    V(t)

  • Gate-tuned magnetization dynamics

    · · ·

    Zeeman Anisotropy

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    Charging Gate voltage12

    charge density

    Kurebayashi, KN 2016

    anomaly AHE M B

    V(t)

  • Charging Gate voltage12

    · · ·

    Gate-tuned magnetization dynamics

    Zeeman Anisotropy

    Zeeman

    Charging

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    Mx

    My

    MzB

    Kurebayashi, KN 2016

    V(t)

  • Charging Gate voltage12

    · · ·

    Gate-tuned magnetization dynamics

    Zeeman Anisotropy

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    Charging

    Charging

    Mx

    My

    MzB

    Zeeman

    Kurebayashi, KN 2016

    +  +  +  +  +  +  +  +

    _  _  _  _  _  _  _  _V(t)

  • Charging Gate voltage12

    · · ·

    Gate-tuned magnetization dynamics

    Zeeman Anisotropy

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    V

  • Charging Gate voltage12

    · · ·

    Gate-tuned magnetization dynamics

    Zeeman Anisotropy

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    V > 0

    Charging

    Mx

    My

    MzB

    TCS AHEV(t)M B

    Kurebayashi, KN 2016

    +  +  +  +  +  +  +  +

    _  _  _  _  _  _  _  _

    V(t)

    Charge‐induced spin torqueKN, Kurebaashi, 2015

  • Charging Gate voltage12

    · · ·

    Gate-tuned magnetization dynamics

    Zeeman Anisotropy

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    V > 0

    Charging

    Mx

    My

    MzB

    TCS AHEV(t)M B

    Kurebayashi, KN 2016

    V(t)

  • Gate-tuned magnetization dynamics

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    V > 0

    Charging

    Mx

    My

    MzB

    TCS AHEV(t)M B

    Kurebayashi, KN 2016

    V(t)

  • Gate-tuned magnetization dynamics

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    Tim e [nsec]

    0

    0.2

    0.4

    0.6

    -1.5-1

    -0.5

    0 0.5

    1

    1.5

    0 50 100 150 200

    Inp

    ut voltage [

    V ]

    (a)

    TCS AHEV(t)M B

    Kurebayashi, KN 2016

    V(t)

  • Gate-tuned magnetization dynamics

    spin current

    jspin gr

    4

    dM̂dt

    (b )

    B

    Metal

    Insulator

    W SM

    Metal

    V(t)

    -15

    -1-0.5

    0 0.5

    1

    -1 -0.5 0 0.5 1

    -1

    -0.5

    0

    0.5

    1(b ) B

    Tim e [nsec]

    Inp

    ut voltage [

    V ]

    -0.015-0.01

    -0.005 0

    0.005 0.01

    0.015

    -0.004-0.002

    0 0.002 0.004 0.006 0.008 0.01

    0 0.5 1 1.5 2Kurebayashi, KN 2016

    AC voltage

    V(t) > 0

    V(t)

  • Chiral magnetic effect

    00

    pz

    ·

    · ·

    py · ·

    Anomalous Hall effect

    Chiral magnetic effect

    Chiral magnetic effect vanishes in equilibrium

    M

  • Inhomogeneous Weyl semimetal

    real space

    antiparallel parallel

    Doped local spins

  • Inhomogeneous Weyl semimetal

    kx

    kz

    kxky

    real space

    k space

    antiparallel parallel

  • Magnetotransport in Weyl semimetal

    kx

    kz

    kxky

    real space

    k space

    I

    antiparallel parallel

    I

    ↑↓ 0 ↑↑ 0

    Ideal magnetotransport!

    Transmission probability from left to right is zero

  • Magnetotransport in Weyl semimetal

    kx

    kz

    kxky

    real space

    k space

    I

    antiparallel parallel

    disorder

    I

    ↑↓

    ↑↑

    cond

    uctance

    K. Kobayashi

  • Domain wall in Weyl semimetal

    Axial vector potential

    ·

    · ·

    0Axial magnetic field

    A. YoshidaY. Araki

  • Domain wall in Weyl semimetal

    Axial vector potential

    ·

    · ·

    0Axial magnetic field

    A. YoshidaY. Araki

  • Domain wall in Weyl semimetal

    Axial vector potential

    ·

    · ·

    0

    2

    Equilibrium current

    Axial magnetic field

  • Domain wall in Weyl semimetal

    Axial vector potential

    ·

    · ·

    0

    2

    Equilibrium current

    2

    Chiral magnetic effectc.f.

  • Domain wall in Weyl semimetal

    Axial vector potential

    Yasufumi Araki et al. (2016)

    ·

    · ·

    Electric charge on the domain wall

  • Electrical domain wall motion

    Magnetic Weyl semimetal

    E field

    Electric charge on the domain wall

    ↑↓ 0

  • Electrical domain wall motion

    Magnetic Weyl semimetal

    A less-dissipation spintronics device

    Electric charge on the domain wall

    E(t)

  • Chiral magnetic effects

    2

    /

    /

    2

    B ≠ 0

  • Chiral magnetic effects

    2

    2

    /

    /

    Electrical current

    22

    B ≠ 0

  • Chiral magnetic effects

    2

    2

    /

    /

    2

    Electrical current Axial current

    2 2

  • Chiral magnetic effects

    2

    00 ·

    2

    Spin density Axial current

    D. Kurebayashi

  • Chiral magnetic effects

    Charge‐induced spin torque

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    V(t)

    Local spin magnetization

    2

    Spin density

    D. Kurebayashi

  • Chiral magnetic effects

    Charge‐induced spin torque

    z

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)

    V(t)

    Local spin magnetization

    Tim e [nsec]

    0

    0.2

    0.4

    0.6

    -1.5-1

    -0.5

    0 0.5

    1

    1.5

    0 50 100 150 200

    Inp

    ut voltag

    e [

    V ]

    (a)

    D. Kurebayashi

  • Summary• We demonstrated magnetization switching

    and spin pumping by the charge-induced torquez

    yx

    V(t)

    B

    Metal

    Insu lator

    W SM d

    d0

    (a)TCS AHEV(t)M B

    • Helicity-induced magnetoresistenceand domain wall motion in Weyl semimetals

  • Yasufumi Araki(Ass. Prof.)Daichi Kurebayashi(D2) Koji Kobayashi(PD)Yuya Ominato(PD)Akihide Yoshida(M1)

    Acknowledgement

    References

    [1] D. Kurebayashi and K. Nomura, J. Phys. Soc. Jpn. 83, 063709 (2014).[2] K. Nomura and D. Kurebayashi, Phys. Rev. Lett. 115, 127201 (2015).[3] D. Kurebayashi and K. Nomura, arXiv:1604.03326[4] Y. Araki and K. Nomura, Phys. Rev. B 93, 094438 (2016).[5] Y. Araki, A. Yoshida, and K. Nomura, Phys. Rev. B 93, 094438 (2016).

    CollaboratorsIMR theory group