24
TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale Giuseppe A. Micheli Lezione B.3 Dall’esperimento bernoulliano ai teoremi di convergenza

TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

  • Upload
    afram

  • View
    35

  • Download
    0

Embed Size (px)

DESCRIPTION

TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale Giuseppe A. Micheli. Lezione B.3 Dall’esperimento bernoulliano ai teoremi di convergenza. In questa lezione. - PowerPoint PPT Presentation

Citation preview

Page 1: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

TQuArs – a.a. 2010/11Tecniche quantitative per l’analisi nella ricerca sociale

Giuseppe A. Micheli

Lezione B.3Dall’esperimento bernoulliano

ai teoremi di convergenza

Page 2: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

In questa lezione..

In questa lezione studiamo un modello probabilistico costituito da una molteplicità di esperimenti dello stesso tipo ripetuti. Definiremo il concetto di esperimento ‘bernoulliano’, che ha come esito due sole modalità alternative e ne trarremo quattro spunti:

Svilupperemo la forma che assume la distribuzione di una variabile ottenuta come somma di tanti esperimenti bernoulliani.

Seguiremo due processi di formazione della variabile ‘somma’, secondo il disegno campionario scelto (con/senza reimmissione).

Verificheremo a quali condizioni si può determinare la media e la varianza di questa variabile ‘somma’ a partire da medie e varianze delle variabili costituenti.

Infine rileveremo a quali condizioni processi di combinazione di variabili di questo tipo convergono alla distribuzione Normale.

Page 3: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Il tassello elementare delle variabili casuali

Torniamo a un esempio delle prime lezioni. Una Commissio-ne composta da 11 deputati, 7 del Polo (P) e 4 dell’Ulivo (U), deve nominare un Presidente. I deputati rimettono alla sorte la nomina. Se si tratta di estrarre a sorte un solo presidente la probabilità di eleggere uno del Polo è P(P)=7/11=0,64, quella di uno dell’Ulivo è P(U)=4/11=0,36. Non ci sono altre modalità alternative. Infatti P(P)+P(U)=1. Una Variabile Casua-

le è una successione ordinata di coppie di valori {xi, pi} univo-camente associati, relativi a un esperi-mento probabilistico, dove le xi indicano i valori associati agli esiti dell’esperimento e le pi le corrispon-denti probabilità di estrarre casualmente la modalità xi.

0 1

P(0) P(1)X=

Possiamo sintetizzare queste informazioni in una varia-bile casuale X=“Coalizione del coordinatore”. Trattando-si di due sole modalità alternative l’attenzione si può concentrare sull’accadimento di una di esse, definendo ‘Successo’ l’estrazione di quella modalità e ‘Insuccesso’ quella dell’altra. Si può associare alla prima modalità valore numerico 1 (si tratta davvero di ‘un accadimen-to’, né di meno né di più), alla seconda il valore 0.

Questa ‘legge’ di distribuzione di proba-bilità è la più elementare che esiste: la definiamo ‘variabile di Bernoulli’.

Page 4: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

La distribuzione di Bernoulli

Chiamiamo ellitticamente la probabilità di successo P(1)=p e quella di insuccesso P(0)=q. Di questa distribuzione (discreta, in quanto assume solo valori quantitativi discreti, e ‘notevole’ cioè definita da una ‘regola’ matematica) possiamo tracciare il grafico (un diagramma ad aste) e determinare i parametri di base, media e varianza. Si può dimostrare che:

La media della distribuzione di Bernoulli è E(X)=p

La varianza è V(X)=pq, la deviazione standard X=pq

0 1

q pX=

00,10,20,30,40,50,60,7

0 1

pqppppXVar

ppqpxXE

ppqpxXE

iii

iii

)1()()(

)1()0()(

)1()0()(

2

2

1

2222

2

1

A fianco il diagramma ad aste della variabile “Presidente del Polo”, con p=0,64, q=0,36=1-p, mX=0,64, 2

X=0,23.

Esempio. Si estragga a caso una delle 20 regioni italiane: 11 hanno presidenza di centrodestra, 9 di centrosinistra. La va-riabile “presidente di centrodestra” ha distribuzione

0 1

0,45 0,55X=

Page 5: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Dicotomie ed eventi rariDUE OSSERVAZIONI. La prima è che qualunque variabile qualunque variabile può essere ricondotta a forma dicotomica.può essere ricondotta a forma dicotomica.

Per esempio: le regioni italiane hanno tassi di occupazione maschile a 25 e 34 anni compresi tra il 55% (Calabria) e il 91% (Trentino): posso aggregarli in forma di variabile di-screta o per classi. Ma se fisso una soglia minima (l’80%) di occupazione di fatto trasformo la mia variabile quantitativa discreta (X=tasso di occupazione) in una variabile dicotomi-ca “Regioni sotto la soglia fissata di occupazione”, con pro-babilità di estrarre una regione sotto la soglia p=10/20.

La seconda osservazione è che una distribuzione di Ber-noulli con p pari (o vicina) a 0,5 è una distribuzione simmetrica. Invece quanto più lontano è p da 0,5 (o molto più basso o molto più alto) la distribuzione sarà asimme-trica. Per questa particolare variabile maggiore è la asimmetria maggiore è la varianza.

In particolare parliamo di eventi rari quando la probabilità di successo è molto bassa (per es. la probabilità che un anzia-no debba ricorrere a una struttura residenziale assistita è generalmente stimata dall’OMS intorno al 3%).

0

0,2

0,4

0,6

0,8

1

0 1

=0,97x0,03=0,17

0

0,2

0,4

0,6

0,8

1

0 1

=0,5x0,5=0,50

Page 6: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Reiterare esperimenti bernoulliani

Un’estrazione casuale da una popolazione dicotomica con probabilità di successo P(X) costante e indipendente da altre estrazioni si dice esperimento bernoulliano.

Ma è raro che possa interessarci un singolo esperimento. Avremo in genere cam-pionamenti costituiti da una sequenza di s estrazioni “con reimmissione nell’urna” (detti campionamenti ‘bernoulliani’), e cercheremo di capire quanti ‘successi’ (accadimenti del carattere sotto osservazione) si sono realizzati in s estrazioni.

Torniamo alla commissione parlamentare e al caso in cui essa debba sorteggiare ogni settimana un presidente. A ognuno degli 11 assessori può capitare di essere estratto più volte: ogni estrazione è indipendente dalle precedenti.

A ogni estrazione la probabilità che esca un deputato del Polo è pari al rapporto tra componenti del Polo in Commissione (7) e totale dei componenti (11) [P(P)=0,636, costante]. La distribuzione di Bernoulli X=“un presidente proveniente dal Polo” è:

0 1

q=0,364 p=0,636X=

Page 7: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Combinare i risultati di due esperimenti

Ripetiamo il sorteggio tra i deputati. Su due sorteggi quelli andati al Polo possono essere due, uno o nessuno. Riportando le modalità dell’esperimento in forma di tabella a doppia entrata, possiamo capire in quali casi troviamo 0 delegati del Polo, in quali uno e così via. Per esempio, nella combinazione inscritta in un cir-colo esce uno del Polo al primo sorteggio (probabilità p) e uno dell’ Ulivo (proba-bilità q) al secondo: il numero di delegati del Polo sorteggiati è quindi 1.

XI XII 0 1

00

q*q 1

q*pq

11

p*q2

p*pp

q p 1

Qual’è la probabilità di questa combinazioneQual’è la probabilità di questa combinazione? Sappiamo che in generale P(PU)=P(P)xP(U/P) (sesto postulato del calcolo delle probabilità), e quindi cambia molto se i due esperimenti sono influenzati l’uno dall’altro. Donde l’utilità di fare l’ipotesi di indipendenza tra le due variabili XI e XII. In tal caso infatti P(PU)=P(P)xP(U). Per e-sempio P(10)=p*q.

Ma il risultato “1” (un eletto del Polo su 2) si può ottenere anche con la sequenza “primo sorteg-giato dell’Ulivo, secondo del Polo”, con probabili-tà q*p di accadere. Le due sequenze {P,U} e {U,P} sono tra loro disgiunte, quindi la proba-bilità complessiva è la somma delle probabilità…

Così la somma di due variabili bernoulliane indipendenti dà luogo a una nuova variabile:

0 1 2

q2 2pq p2X(2)=

Page 8: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Da due a tre a ‘n’ esperimenti ripetuti

X(2) XIII 0 1

00

q2*q

1q2

*pq2

11

2pq*q2

2pq*p2pq

22

p2*q

3p2

*pp2

q p 1

La distribuzione di probabilità di una se-quenza di due esperimenti bernoulliani ha una sua forma particolare. Ai valori X=0,1,2 associa come probabilità i pro-dotti delle probabilità ponderati per i coefficienti binomiali (vedi il triangolo di Tartaglia) corrispondenti.

0 1 2

q2 2pq p2X(2)= XI+XII=

Verificate voi che media e varianza sono:

E[X(2)]=2p Var[X(2)]=2pq

Ma ora si può andare avanti, sorteggiando un terzo delegato, e sommando quindi la variabile XIII con la variabile appena calcolata X(2).

Calcolando nella distribuzione congiunta le pro-babilità composte e poi sommando quelle che corrispondono a somme identiche (caselle cer-chiate) perveniamo a una nuova variabile ana-loga alla precedente:

0 1 2 3

q3 3pq2 3p2q p3X(3)= XI +XII+XIII= dove E[X(3)]=3p; V[X(3)]=3pq

Page 9: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Il triangolo di Tartaglia

q p

q2 2qp p2

q3 3q2p 3qp2 p3

q4 4q3p 6q2p2 4qp3 1p4

q5 5q4p 10q3p2 10q2p3 5qp4 1p5

q6 6q5p 15q4p2 20q3p3 15q2b4 6qp5 1p6

N

h

Ricapitoliamo.

Se combino due esperimenti bernoulliani con probabilità costante p la distri-buzione della somma è X={0,1,2} con corrispondenti numerosità {q2,2qp,p2}.

Se combino tre di questi esperimenti bernoulliani la distribuzione della somma è X={0,1,2,3} con corrispondenti numerosità {q3,3q2p,3qp2,p3}. E così via..

Cavolo. Sono i termini dello sviluppo delle successive potenze di un binomio; e i coefficienti numerici sono i “coefficienti binomiali”; e tutto questo, termini e coefficienti, sappiamo condensarlo nel magico “triangolo” di Tartaglia.

123)..2)(1(

)1)..(2)(1(

hhh

hNNNN

Allora possiamo lanciarci a calcolare le probabilità, per esempio, di cinque

presidenze del Polo su 6 settimane, o anche tut-te e sei! O di altre com-binazioni intermedie...

Page 10: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

La distribuzione binomiale.364 .636

.133 .463 .404

.048 .253 .442 .257

.017 .123 .322 .374 .164

.006 .056 .195 .341 .298 .104

.002 .025 .107 .248 .325 .227 .066

… … … … … … … …

Ecco le risposte (nella sesta riga in blu). Data la compo-sizione dell’urna (7 del Polo e 4 dell’Ulivo) c’è un 6,6% di probabilità per il Polo di fare l’en plein (6 presidenti in 6 settimane). E la com-posizione più frequente o ‘modale’ è 2U+4P in ordine vario (prob=32,5%).

Ogni riga esprime dunque le probabilità di 0,1,2,..x ‘successi’ su n esperimenti bernoulliani identici. La somma di ogni riga (controllate!) è uno. Sintetizziamo questi risultati in forma di regola. Ecco la distribuzione di probabilità binomiale:

x = 0, 1, 2, .. N

X =

p(x) = px qn-x N x

La distribuzione binomiale corrisponde dunque all’esito di un processo di

somma di tanti esperimenti bernoulliani ripetuti identici tra loro.

Page 11: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Evoluzione della distribuzione binomiale

00,10,20,30,40,5

0 1 2 3 xxii

ppii

0

0,1

0,2

0,3

0,4

0 1 2 3 4 5 6 xxii

Una distribuzione binomiale è totalmente definita da due parametri: il numero n degli esperimenti sem-plici combinati e la probabilità p costante di ‘suc-cesso’, cioè di accadimento dell’evento a cui siamo interessati. Per brevità la indicheremo con Bin(n,p).

Costruiamo i diagrammi ad aste delle due distribu-zioni binomiali con p=0,636 e rispettivamente n=3 e n=6. Ciò che si vede – a buon senso intuibile – è che al crescere di n il campo di variazione di X si allarga verso destra, e di conseguenza le probabilità si abbassano (la somma deve essere 1). In gene-rale al crescere di n la distribuzione binomiale si al crescere di n la distribuzione binomiale si espande indefinitamenteespande indefinitamente.

Possiamo quindi aspettarci che crescano sia media che varianza. In effetti avevamo già trovato che: se X Bin(2,p) allora m(X)=2p e V(X)=2pq; se X Bin(3,p) allora m(X)=3p e V(X)=3pq …

Esiste forse una regola per calcolare media e varianza di una variabile somma? Sì!

Bin(3;0,636)Bin(3;0,636)

Bin(6;0,636)Bin(6;0,636)

Page 12: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Media e varianza di una somma di variabili

«La media della somma (o della differenza) di due variabili è pari alla somma (o alla differenza) tra le medie delle variabili componenti»

Vale infatti una regola generale, qualunque siano le distribuzioni coinvolte:

E(XY) = ij(xiyj)*pij =

= ij xi*pij ijyj*pij =

= ixi*j pij jyj*i pij =

= i xi pi j yj pj =

= E(X) E(Y) c.v.d.Per la varianza non vale una regola così semplice:

«La varianza della somma (o differenza) di due variabili è pari alla som-ma (sempre) delle varianze delle variabili componenti, più (meno) una quantità detta Covarianza»

V(XY)=ij(xiyj)–E(XY)2pij=ijxiyj–mX–(mY)2pij=ij(xi–mX)(yj–mY)2pij=

=ij(xi–mX)2pij+ij(yj–mY)2pij 2*ij(xi–mX)*(yj-mY)pij=

=i(xi–mX)2pi + j(yj–mY)2pj 2cov(XY) =

= Var(X) + Var(Y) 2cov(XY) q.e.d.

chiamiamo covarianza o Cov(XY) l’espressione cerchiata

E(XY) = E(X) E(Y)

V(XY)= Var(X) + Var(Y) 2Cov(XY)

Page 13: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

(cos’è davvero la covarianza?)

La varianza di una variabile somma è dunque qualcosa di più (o di meno) della pura somma delle varianze. Essa dipende anche dalla covarianza

Cov(X,Y) = ij[(xi – mX)*(yj–mY)]*pij

Dove, come sappiamo pij esprime la Prob [(X=xi)(Y=yj)].

La covarianza è una misura importantissima in analisi bivariata (e quindi la ritroveremo tra qualche lezione). Si può mostrare che se X e Y sono v.c. indipen-denti (nel qual caso pij=pi*pj) la Cov(X,Y) si annulla e vale la regola particolare:

Per capire il ruolo di Cov(X,Y) nella somma di variabili basta ricordare il sesto po-stulato del calcolo delle probabilità: “Se A e B sono insiemi di eventi indipendenti allora P(AB)=P(A)*P(B)”. Analogamente se X e Y sono v.c. indipendenti, allora pij=P[(X=xi)(Y=yj)]=pi*pj e in questo caso la covarianza Cov(X,Y) si annulla:

ij(xi – mX)*(yj–mY)pij =ixi –mXpij*jyj–mYpij =ixi –mXpi * jyj–mYpj =0*0=0

«La varianza della somma (o della differenza) di due variabili tra loro indipendenti è pari alla somma (sempre) delle varianze»

V(XY)= Var(X) + Var(Y)

Page 14: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Asimmetria e distribuzione binomiale

La Binomiale è la distribuzione di probabilità della somma di n esperimenti bernoulliani identici tra loro (p costante) ma anche tra loro indipendenti. Quindi

0

0,1

0,2

0,3

0,4

0 1 2 3 4 5 xxii

ppii

00,10,20,30,40,5

0 1 2 3 4 5

Bin(5;0,50)Bin(5;0,50)

m=2,5;m=2,5;=1,12

Bin(5;0,25)Bin(5;0,25)

m=1,25;m=1,25;=0,88

Ma se la prova prevede per ogni test quattro risposte alternative, di cui una sola è giusta (carognata!) la probabilità di azzeccare a caso la risposta giusta scende a p=0,25 le probabilità di ottenere 4 e 5 successi diventano P(4)=0,015;P(5)=0,001 e le vostre chances complessive di farcela scendono a meno del 2%.

Se X Bin(n,p) mX=np 2X=npq e X=npq.

L’evoluzione della Binomiale dipende dal parametro p. Se p=0,5 esa conserverà la simmetria anche al crescere delle prove che si vengono sommando. Se l’evento è invece più raro la Binomiale ne risentirà.

Supponiamo che vogliate partecipare a una prova di selezione, consistente in 5 test a risposta chiusa (sì-no) non avendo studiato un accidente. Rispondendo a caso a ogni test avrete probabilità p=0,5 di azzeccar-lo. Dopo 5 test (vedi figura) le probabilità di ottenere 4 e 5 successi saranno P(4)=0,156; P(5)=0,031. Se per la sufficienza bastano quattro risposte giuste, avrete il 18,7% di probabilità di farcela. Mica male!

Page 15: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Forma della binomiale al crescere di enne

00,050,10,150,20,250,3

xxii

ppii

0

0,05

0,1

0,15

0,2

Bin(10;0,50)Bin(10;0,50)

m=5,00;m=5,00;=1,58

Bin(20;0,50)Bin(20;0,50)

m=10,0;m=10,0;=2,24

S’è già visto che se XBin(n,p) la media è np e X=npq. Quindi al crescere di n (cioè al moltiplicarsi degli esperimenti bernoulliani, o della dimensione del cam-pione estratto) la distribuzione sposta il suo baricentro verso destra e si disperde indefinitamente. Ma la cosa più sorprendente riguarda la forma…

00,050,10,150,20,250,3

0 2 4 6 8 10

00,050,10,150,20,25

00,10,2

0,30,40,5

0 2 4 6 8 10

Bin(10;0,25)Bin(10;0,25)

m=2,50;m=2,50;=1,37

Bin(20;0,25)Bin(20;0,25)

m=5,00;m=5,00;=1,94

Bin(10;0,10)Bin(10;0,10)

m=1,00;m=1,00;=0,95

0

0,1

0,2

0,3

Bin(20;0,10)Bin(20;0,10)

m=2,00;m=2,00;=1,34

Page 16: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Convergenza della binomiale alla simmetria

00,050,10,150,20,25

00,050,10,150,20,25

Bin(30;0,25)Bin(30;0,25)

m=7,50;m=7,50;=2,37

Bin(30;0,10)Bin(30;0,10)

m=3,00;m=3,00;=1,64

Se p=1/2 è già simmetrica la v. di Ber-noulli e tale resta la Bin(n,p) per ogni n

Se p=1/4 la binomiale già per n=10 ha forma simmetrica, figurarsi per n=30.

Ma anche se p=1/10 (eventi rari) man mano che la curva al crescere di n si sposta assume una forma simmetrica..

0

0

0,3

00

In blu Bin(10;1/4)In blu Bin(10;1/4)

In rosso Bin(20;1/4)In rosso Bin(20;1/4)

In grigio Bin(30;1/4)In grigio Bin(30;1/4)

Una regola generale sembrerebbe essere che per n>30 qualunque binomiale tende a convergere a una forma simmetrica…

Per evidenziare la tendenza alla sim-metria disegniamo la binomiale in for-ma continua (scorretto ma efficace!)

Page 17: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Campioni non bernoulliani e convergenza alla binomiale

Dato un ‘esperimento bernoulliano’ ripetuto s volte su una popolazione di N elementi, di cui k di un tipo e (N-k) di un altro:

Se il campionamento avviene ‘con reimmissione’, le s estrazioni sono tra loro indipendenti con probabilità costante e la probabilità di estrarre h ‘successi’ su s è definita dalla legge di distribuzione BINOMIALE.

Se il campionamento avviene ‘senza reimmissione’ la probabilità ‘di successo’ è condizionata dall’esito delle prove precedenti e la probabilità di estrarre h ‘successi’ su s è definita dalla legge di distribuzione IPERGEOMETRICA.

Le due distribuzioni differiscono, ma solo per piccole dimensioni della popola-zione. Detta k/n=p e ricordando che la numerosità complessiva è quella del campione, è possibile confrontare media e varianza delle due variabili: 

Dunque l’ipergeometrica ha di-spersione minore, ma tende a convergere alla Binomiale al crescere dell’ammontare com-plessivo N della popolazione e dello scarto tra dimensione N della popolazione e dimensione s del campione.

Media Varianza

Binomiale s*p s*p*q

Ipergeometrica s*p s*p*q*(N-s)/(N-1)

L’ipergeometrica ha media uguale alla corri-spondente binomiale e varianza moltiplicata per il rapporto (N-s)/(N-1)<1. Rapporto che tende a 1 al crescere di N e dello scarto N-s.

Page 18: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

La variabile ‘media’

Chiusa la parentesi, torniamo al tema della convergenza e riepiloghiamo. Siano X1, X2, .. Xn, n variabili tra loro indipendenti e con uguale media e varianza 2. La

v.c. somma ha V(iXi)=iV(Xi)=n2 e E(iXi)=iE(Xi)=n*.

Nel caso particolare in cui Xi sia una Bernoulli con =p e 2=pq, la Bin(n,p) somma di n esperimenti bernoulliani avrà media np e varianza npq.

Abbiamo seguito graficamente l’evoluzione della Binomiale. Per n crescente la distribuzione tende a una forma simmetrica e campanulare accattivante, ma (che guaio) che si espande e si disperde indefinitamente.

Dimostrarlo richiede pochi passi. Date le proprietà di media e varianza E(k*X)=k*E(X) e V(k*X)=k2

*V(X) si ottiene:

E(xi)/n=(1/n)*E(xi)=

=(1/n)*E(xi)=(1/n)*n=

V(xi)/n=(1/n2)*V(xi)=

=(1/n2)*V(xi)=(1/n2)n2=2/n

Ma cosa succede se teniamo fermo il campo di variazione della variabile che si ottiene per combinazione delle varia-bili elementari considerando non la som-ma bensì la media di n v.c. indipen-denti e identicamente distribuite?

Si può provare che essa ha media EE((xxii)/n)/n==, V(xi)/n=2/n e deviazione standard E(xE(xii))==//nn.

Page 19: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

La variabile ‘media’ e la convergenza stocastica

Facciamo il punto della situazione, usando sempre come base la binomiale.

La variabile Somma di n esperimenti bernoulliani identici tra loro e indipendenti si distribuisce secondo una Binomiale con media np e deviazione standard npqnpq. Al crescere del numero n di estrazioni la curva assume forma simmetrica campanulare, ma con crescente dispersione e traslazione verso destra.

Se considero invece la variabile Media degli stessi n esperimenti bernoulliani, essa si distribuisce secondo una Binomiale con media p e deviazione standard //nn= [[pq/n]pq/n]. Al crescere del numero n di estrazioni la curva assumerà allora ancora forma simmetrica campanulare e per giunta centrata sul parametro p della popola-zione, ma con crescente concentrazione intorno a tale parametro.

Poiché /n0 per n se prendiamo un intorno di p piccolo quanto si vuole la probabilità di osservare modalità in tale intorno crescerà indefinitamente. Si dice che la v.c. media di n v.c. con media converge stocasticamente a per n

Dunque, con la variabile Somma la forma simmetrica si disperde senza limiti, con la variabile Media essa tende al limite a concentrarsi intorno a un solo punto. Nessuna di queste due combinazioni di variabili (somma e media) produce una successione che converga a una forma standard. Come possiamo ‘tenere fermo’ il campo di variazione della combinazione lineare delle Xi?

Page 20: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

La variabile ‘somma di v.c. standardizzate’

Ma noi conosciamo il modo di ‘tenere ferme’ sia la posizione centrale che la dispersione di una v.c.: standardizzandola. Consideriamo allora n v.c. qualunque, indipendenti e identicamente distribuite (anche skew, non importa!), e costruiamo la successione delle v.v. somma standardizzate:

La nuova distribuzione converge non a un valore ma a una forma riconoscibile ed esprimibile matema-ticamente. Si parla di convergenza in leggeconvergenza in legge.

S1=X1 Z1 =(S1-) /

S2=X1+X2 Z2 =(S2-2) / [2]

S3=X1+X2+X3 Z1 =(S1-3) / [3]

Sn=Xi Zn =(Sn-n) / [n]

0

5 6 7 8 9 10 11

Per esempio, se X Bin(n,p) la varia-bile Somma stan-dardizzata è pari a Zn=(Sn-np)/(npq) per ogni n.

0

0 10 20 30 40 50 60 70 80 90 100

0

-4 -3 -2 -1 0 1 2 3 4

v.c. Mediav.c. Media

v.c. Sommav.c. Somma

Page 21: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Il teorema del limite centraleLa definizione di convergenza ‘in legge’ obbliga a entrare nel mondo ‘alto’ della matematica. Facciamolo in punta di piedi. C’è convergen-za in legge quando la funzione di densità di una variabile che si modifica in funzio-ne di un ‘contatore’ n (per esempio il nume-ro di esperimenti bernoulliani, o di estrazioni in un campione) tende per n, a combacia-re con una forma limite indipendente da n.

Enunciato formale:«Data una suc-cessione di v.c. X1..Xn, di cui siano note le funzioni di ripartizione (cu-mulate) F1(X),F2(X)..Fn(X) si dice che Xn, converge in legge alla v.c. X per n quando limn Fn(X)= F(X), salvo punti di discontinuità».

Per primo fu De Moivre (1733) a dimostrare che la binomiale con p=0,5, stan-dardizzata, converge in leg-ge al crescere delle prove n, alla normale N(np,npq).

Ma il risultato più importante va sotto il nome

di…

Teorema del limite centrale: «Siano X1,X2..Xn n variabili qualunque, indi-pendenti e identicamente distribuite, con media e varianza 2. Sia Sn = X1+X2+..+Xn la successione delle va-riabili Somma con media n e varian-za n2. E sia Zn=(Sn-n)/[n] la v.c. standardizzata ricavata da Sn. Si di-mostra che la successione {Zn} converge in legge alla Normale ridotta N(0,1)» (Lindeberg-Levy).

Page 22: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

La distribuzione Normale ridotta

E’ evidente l’importanza del Teorema del Limite. Esso dice che la distribuzione limite di una somma standardizzata di varia-bili (indipendenti tra loro), qua-lunque esse siano purché iden-tiche, è sempre di tipo N(0,1): una distribuzione universale, che non dipende da nessun parametro!

0

-4 -3 -2 -1 0 1 2 3 4mmm+m-m-2 m+2

34,1%

2,3%

13,6%

34,1%

13,6%

2,3%

f(-1<x<1)=68,2%

2

2

2

1)()1,0(

z

ezfN

L’area sottesa alla L’area sottesa alla curva in un curva in un intervallo dato è intervallo dato è dunque fissadunque fissa e e tabulabile. tabulabile.

Page 23: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

La tavola della Normale ridotta

Per usare la tavola della N(0,1) si cerca nella prima colonna (z=inte-ro+primo decimale) e prima riga (secondo decimale) l’estremo su-periore zz di un inter-vallo 0<Z<zz (zz=0 corri-sponde alla media): all’incrocio tra riga e colonna di entrata si individua la probabilità di quella regione: f(0<Z<zz)=(z). Per es.

f(0<Z<1,961,96)=0,475

e quindi:

f(-1,96-1,96<Z<1,961,96)= =2(z)=0,95=95%

Page 24: TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale

Richiamo: come usare la tavola

La tavola si limita a ‘tabulare’ le probabilità del campo di esistenza positivo della Normale ridotta. Il motivo è chiaro: poiché la curva è simmetrica, il campo di esistenza negativo è perfettamente speculare. Per esempio (come abbiamo appena visto) f(-zz<Z<0)=(-z)=(z). Ricapitoliamo qui sotto alcuni esercizi di buon senso di calcolo di regioni via via più complesse:

Se z=1,96

(z)=0,475

0

-4 -3 -2 -1 0 1 2 3 4

(z)

0

-4 -3 -2 -1 0 1 2 3 4

0,5-(z)

0

-4 -3 -2 -1 0 1 2 3 4

0,5+(z)

0,5(z)

(w)+(z)

(w)=(-w) (z)

0

-4 -3 -2 -1 0 1 2 3 4

Prob.di una regione su-periore allamedia e in-feriore a z

(z) Prob.di una regione su-periore a z,superiore alla media

Prob.di una regione dalvalore mini-mo fino a z(cumulata)

Prob.di una regione ir-regolare in-torno alla

media