62
Genska terapija Maja Čemažar Institute of Oncology Ljubljana

Vnosni sistemi pri genski terapiji raka in ciljana ...ibk.mf.uni-lj.si/teaching/objave/3GenskaTerapija12a.pdf · Genska terapija - strategije GENE THERAPY STRATEGY GENES Genetic replacement

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Genska terapija

Maja Čemažar

Institute of Oncology Ljubljana

Genska terapija – DNA vakcinacija

• Vnos genskega materiala v celice s terapevtskim

namenom

Genska terapija raka

Klinične študije: več kot 1703, od tega prb. 1098 za zdravljenje raka (65%)

Journal of Gene Medicine http://www.wiley.com/legacy/wileychi/

genmed/clinical/

Zahteve: • Direkten, tkivno specifičen vnos z

visokim nivojem transfekcije

• Regulacija ekspresije vnešenega

gena

• Terapevtska učinkovitost

• Minimalna toksičnost, brez imunske

reakcije

Genska terapija - strategije

GENE THERAPY STRATEGY

GENES

Genetic replacement or correction therapy p53, CTS1, MDA7, Bcl-2-, BclXL-,

survivin- antisense…

Suicide gene

therapy

(gene

chemotherapy)

Endogenous

precursors iNOS, p21

Exogenous

precursors

HSV-tk, CD, CD/HSV-tk fusion; HRP,

IAA

Gene based immunotherapy TNF-α, IFN-γ, IL-12…, tumor associated

antigens (PSA)

Vascular-targeted gene therapy VEGF-antisense, soluble Flt-1,

endostatin, angiostatin, vazostatin, TNF-

α, IL-12

CTS1, Chimeric Tumor Suppressor 1(synthetic variant of wild-type p53); HSV-tk, Herpes Simplex Virus thymidine kinase; CD, Cytosine

Deaminase; HRP, Horseradish Peroxidase; IAA, Indol-3-Acetic Acid; iNOS, inducible Nitric Oxide Synthase; TNF- α, Tumor Necrosis

Factor-α; IL-12, Interleukin-12; PSA, Prostate Specific Antigen; VEGF, Vascular Endothelial Growth Factor.

Ustavitev rasti celice

Smrt celice

Normalna celica – ni učinka

Tumorska celica

Terapevtski gen

inhibira

delovanje

onkogena

KOMPENZACIJA MUTACIJE ONKOGENOV

Ustavitev rasti celice

Smrt celice

Normalna celica – ni učinka

Tumorska celica

Terapevtski

gen

KOMPENZACIJA MUTACIJE TUMORSKIH SUPRESORSKIH GENOV

Učinek na sosednje celice in

tumorsko žilje

Terapevtski protein

Terapevtski

gen-encim

MOLEKULARNA KEMOTERAPIJA

Aktivno zdravilo Neaktivno zdravilo Tumorska celica

Encim

Tumorske vakcine

Tumorska vakcina

Koža

Imunske celice

bezgavka

Aktivirane imunske celice

Imunske celice ubijejo

tumorske celice

TERAPEVTSKE TUMORSKE VAKCINE

Tumorska vakcina

Koža

Imunske celice

bezgavka

Aktivirane imunske celice

Imunske celice in protitelesa ubijejo

tumorske celice

PREVENTIVNE TUMORSKE VAKCINE

protitelesa

Zdrave celice

Načini dostavljanja

genskega materiala

- vektorji

Vektorji:

• virusni vektorji

• nevirusni načini vnosa

• liposomi

• lipopleksi - polimeri

• fizikalne metode - elektroporacija

Virusni vektorji

Retrovirusi Adenovirusi Herpesvirusi AAV

+ Vključevanje v gostiteljev

genom; dolgotrajne

genetske spr.

Okužba delečih in nedelečih

se c., učinkovit prenos

genov, poceni

produkcija

Okužba delečih in nedelečih

se c; potencialno podaljšana

ekspresija genov

Okužba delečih in

nedelečih c., nizko

imunogeni

- Okužba samo delečih se

celic, majhna količina

genetskega materiala,

insercijska mutageneza

Prehodna ekspresija (se ne

vključijo v gostiteljev

genom); antiadenovirusni

odg. gostitelja

Toksičnost povezana z

litično infekcijo

Majhna količina

genetskega materiala;

za replikacijo

potrebujejo “helper”

viruse

Nevirusni načini vnosa

• Direktno injiciranje gole DNK

• Hidrodinamično injiciranje

• Liposomi

• Peptidi

• Ultrazvok

• Laser

• Biobalistični način

• Elektroporacija

Electroporation based gene therapy: principle

Pulse After pulse

Insertion Translocation Expression

Time

Permeabilization and electrophoresis

Tumor

Electrodes

Plasmid DNA injection

DNA injection

Expression of GFP

tumor muscle

Electric pulses

generator

Electric

pulses

generator

Optimization of electrotransfection

•Comparison to other methods

•Time dependence of transfection

•Different electrical parameters

•Timing of the procedure

•Tumor histological properties

Transfection efficiency in solid tumours in vivo – comparison of different transfection methods

B16 P22 SaF T24

Tra

nsfe

ction (

%)

0.01

0.1

1

10 DNA only

EP1+DNA

EP2+DNA

Liposomes+DNA-LD

LDEP

Lipos. + Peptides+ DNA-LPD

LPDEP

Cemazar et al Cancer Gene Therapy 2002;9:399-406

Electroporation (600 V/cm, 5 ms, 1 Hz, 8 pulses) of tumours increases GFP (40 g pEGFP-N1) expression

Pre x 4

Pre EP epi x 4

2 days epi x 4

2 days epi x 20 Rat No. 7

Intravital miscroscopy – spatial and time dependent distribution

Electrotransfection in B16 melanoma and SA-1 sarcoma –

comparison of different electric pulse protocols

Luciferase activity as a function of LV pulse amplitude

1HV+8LV; HV: 1x0.1 ms, 1200 V/cm; LV: 8x 50 ms, increasing V

8x5 m

s 600V/cm

ŘÁ��

80V/cm

100V/cm

120V/cm

140V/cm

160V/cm

Lucifera

se a

ctivity (

pg luc/m

g t

um

our)

0

50

100

150

200

250

300

Control L

uc only

8x5 m

s 600V/cm

8x0.1

ms 1

300V/cm

80V/cm

120V/cm

140V/cm

160V/cm

B16 SA-1

Cliniporator EU project

Transfection efficiency in solid tumours in vivo – timing of the procedure

Cemazar et al Current Drug Delivery 2006;3:77-81; Mesojednik et al, Gene Therapy 2007; 14(17):1261-1269

Time of DNA injection prior to electroporation (min)

control - 60 - 30 - 15 - 10 - 5 -0.5

Tra

nsfe

ctio

n (

pg

Lu

cife

rase

/ m

g t

um

or)

0.001

0.01

1

10

100LPB

SA-1

EAT

B16F1

* * *

Electrotransfection of mouse muscle

in vivo non-invasive imaging

ex vivo spatial distribution on frozen muscle sections

Injection (25µl) od DNA in the

tibialis cranialis muscle

Application of electric pulses

Parameters of electrotransfection

Electric parameters pEGFP-N1dose/20 l Time lag

1 HV (600 V/cm, 100 s) + 1 LV (80 V/cm, 400 ms, 1Hz) 20 g 10 min

1 HV (600 V/cm, 100 s) + 4 LV (80 V/cm, 100 ms, 1Hz) 20 g 10 min

1 HV (600 V/cm, 100 s) + 8 LV (80 V/cm, 50 ms, 2Hz) 20 g 10 min

6 LV (100 V/cm, 60 ms, 1Hz) 20 g 10 min

8 LV (200 V/cm, 20 ms, 1Hz) 20 g 10 min

1 HV + 4 LV 20 g 5 s

1 HV + 4 LV 20 g 1 min

1 HV + 4 LV 20 g 3 min

1 HV + 4 LV 20 g 5 min

1 HV + 4 LV 20 g 10 min

1 HV + 4 LV 20 g 20 min

1 HV + 4 LV 20 g 30 min

1 HV + 4 LV 20 g 60 min

1 HV + 4 LV 20 g 120 min

1 HV + 4 LV 1 g 5 s

1 HV + 4 LV 5 g 5 s

1 HV + 4 LV 10 g 5 s

1 HV + 4 LV 20 g 5 s

1 HV + 4 LV 30 g 5 s

Electrotransfection of mouse muscle – influence of timing

Time after transfection (weeks)

0 10 20 30 40

Norm

ali

sed

mea

n f

luore

scen

ce (

a.u

.)

0

1

2

3

4

Background fluorescence intensity

5s

1min

3min

5min

10 min

20min

30min

60min

120min

*

Time lag between DNA injection and application of electric pulses (min)

020406080100120

Mea

n a

rea

of

tra

nsf

ecti

on

(%

)

0

5

10

15

20

EP

*

Tevz et al.TCRT 2008; 7(2): 91-106

Electrotransfection of mouse muscle – dependence on DNA amount injected

Dose of plasmid DNA (g)

0 5 10 15 20 25 30

Mea

n a

rea

of

tra

nsf

ecti

on

(%

)

0

5

10

15

20

25

30

Time after transfection (week)

0 10 20 30 40 50 60

No

rmal

ized

mea

n f

luo

resc

ence

(a.

u.)

0

1

2

3

41ug

5 ug

10 ug

20 ug

30 ug

Background fluorescence intensity

*

Tevz et al.TCRT 2008; 7(2): 91-106

Electrogene therapy - combination of electroporation with plasmids encoding

therapeutic genes

•Tumour supressor gene p53

•Interleukin 12 (IL-12)

•miRNA against k-ras

•siRNA against CD105 (endoglin)

p53 is a sensor of different forms of stress

Stress conditions

Non-genotoxic stress: hypoxia, temp. changes, depletion of ribonucleotides, growth factors, microtubules; redox changes, cytokines

Genotoxic stress: UV, X, g rays,

carcinogens, chemotherapuetic drugs

Oncogenic stress: oncogenes

Modulation of p53 activity

p53

p53 p53

Induction of target genes Binding to proteins

Cell cycle Angiogenesis Apoptosis DNA repair

Genomic integrity Growth control

Senescence

Repetitive electrogenetherapy with p53wt in a mouse models

Time after treatment (days)

0 2 4 6 8 10 12 14 16 18 20 22

Tum

our

volu

me (

mm

3)

30

50

80

300

500

800

100

Control

EP(EGT)

p53

pCMV

EGTpCMV

EGTp53

Time after treatment (days)

0 2 4 6 8 10 12 14 16 18

30

50

80

300

500

800

100

Control

EP(EGT)

pCMV

p53

EGTpCMV

EGTp53

21.4% tumour cures 12.5 % tumour cures

Grošel et al DNA Cell Biol 2006,25:674-683

LPB – wt p53 SA-1 – mt p53

Electrogenetherapy with p53wt of human tumor xenografts

Days after treatment

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Tum

our

volu

me (

mm

3)

30

50

80

200

300

500

100

ControlElectric pulses

p53wt

Electrogenetherapy with p53wt

pCMV

Electrogenetherapy with pCMV

Treatment of human tumor xenograft PC3 with electrogenetherapy with p53wt resulted in pronounced antitumour effect.

PC3 prostatic carcinoma

Cemazar et al DNA Cell Biol 2003; 12 765-75

Interleukin-12 antitumor effect

IL-12 has direct cytotoxic

effect, activates potent anti-

angiogenic mechanisms

Il-12 Induces responses of

Th1 cells and cytotoxic T

lymphocytes, NK cells

Recombinant mIL-12 has no cytotoxic effect on tumor cells in vitro

0 mg/m

l

1 pg/ml

10 pg/ml

100 pg/ml

1 ng/ml

10 ng/ml

100 ng/ml

Su

rviv

al f

ract

ion

0,01

0,1

1

SA-1

LBP

Intramuscular mIL-12 gene electrotransfer has good antitumor effect on subcutaneous solid tumors

Time after gene electrotransfer (days)

0 5 10 15 20 25 30 35 40

Tum

or

vo

lum

e (

mm

3)

25

35

50

75

250

350

10

100Control

EP

pORF-mIL12

EGT (13/18)

EGT (5/18)

Time after gene electrotransfer (days)

0 5 10 15 20 25 30T

um

or

vo

lum

e (

mm

3)

25

35

50

75

250

350

10

100

Control

EP

pORF-mIL12

EGT (24/28)

EGT (4/28)

SA-1 LPB

28% CR 13% CR

TREATMENT 1 WEEK 2 WEEKS 4 WEEKS

Antitumor effectiveness of mIL-12 gene electrotransfer – intratumoral vs. peritumoral

Intratumoral EGT resulted in high level of complete responses (18/20 tumors) with significant inhibition of tumor growth in the remaining 2 tumors.

A - INTRATUMORAL DELIVERY

TIME AFTER GENE ELECTROTRANSFER (days)

0 5 10 15 20 25 30 35 40 45 50 55 60

TU

MO

R V

OLU

ME

(m

m3 )

7

20

30

50

70

200

300

500

10

100

Control i.t.

EP i.t.

DNA i.t.

EGT i.t. (animals with CR - 18/20)

EGT i.t. (animals without CR - 2/20)

B - PERITUMORAL DELIVERY

TIME AFTER GENE ELECTROTRANSFER (days)

0 5 10 15 20 25 30 35 40 45 50 55 60T

UM

OR

VO

LUM

E (

mm

3 )

7

20

30

50

70

200

300

500

10

100

Control p.t.

EP p.t.

DNA p.t.

EGT p.t. (animals withCR - 3/19)

EGT p.t. (animals without CR - 16/19)

Pavlin et al. Cancer Biol Ther 2009; 8:2112-2120

90% CR 16% CR

Peritumoral EGT resulted in lower complete response rate (3/19 tumors), with remaining 16/19 showing significant delay in tumor growth.

Gene electrotransfer induces local and systemic release of IL-12 and IFN-γ and has antitumor effect on distant untreated tumors

Control EP i.t. EP p.t. DNA i.t. DNA p.t. EGT i.t. EGT p.t.

SE

RU

M C

ON

CE

TR

AT

ION

(pg

/ml)

0

20

40

60

80

100

120

IL-12

IFN-g

*

*

*

*

Control EP i.t. EP p.t. DNA i.t. DNA p.t. EGT i.t. EGT p.t.

INT

RA

TU

MO

RA

L C

ON

CE

NT

RA

TIO

N(p

g/m

g of

tum

or ti

ssue

)

0

20000

40000

60000

80000

IL-12

IFN-g *

*

*

*

SERUM

TUMOR

TIME AFTER TREATMENT (days)

0 5 10 15 20 25 30 35 40

TU

MO

R V

OLU

ME

(m

m3 )

7

30

50

70

300

500

10

100

Control i.t.

Control p.t.

EP i.t.

EP p.t.

DNA i.t.

DNA p.t.

EGT i.t.

EGT p.t.

Control i.t.

Control p.t.

EP i.t.

EP p.t.

DNA i.t.

DNA p.t.

EGT i.t.

EGT p.t.

Treated tumors Untreated tumors

Growth curves of distant untreated tumors

Pavlin et al. Cancer Biol Ther 2009; 8:2112-2120

Systemic mIL-12 release (electrotransfection of muscle) and local tumor irradiation

Local mIL-12 release (electrotransfection of tumor) and local tumor irradiation

IL-12 gene therapy combined with tumor irradiation

Time after gene electrotransfer (days)

0 5 10 15 20 25 30 35 100

Per

cen

t o

f cu

res

(%)

0

20

40

60

80

100

GEP

IR

Time after gene electrotransfer (days)

0 5 10 15 20 25 30 100

Per

cen

t o

f cu

res

(%)

0

20

40

60

80

100 Control

EP

pORF-mIL-12

GET

IR 10Gy

EP+IR

mIL-12+IR

GET+IR

IR

GEP

SA-1

LPB

Intramuscular mIL-12 gene electrotransfer has radiosensitizing effect on solid subcutaneous tumors

Tevž et al. J Gene Med 2009; 11:1125-1137

Day 0 Day 7 Day 14

mIL-12 gene electrotransfer has radiosensitizing effect on induced lung metastases

Control EP

pORF-mIL12

-24h GETIR 4 Gy

GET+IR

Per

cen

t o

f m

etas

tase

s (%

)

0

20

40

60

80

100

120

Control EGT +IR

19% 30%

0.5% *

PF = 1.3

IR 4 Gy

Intratumoral IL-12 gene electrotransfer combined with irradiation comparison between 1x EGT vs 3x EGT

Single intratumoral mIL-12 electrogene therapy has antitumor and also radiosensitizing effect on SA-1 sarcoma

Three intratumoral mIL-12 electrogene therapies have better antitumor and radiosensitizing effect on SA-1 sarcoma compared to single treatment

Improvement in therapeutic index, as a result of adding single intratumoral electrogene therapy with mIL-12 (20µg of plasmid DNA) to radiotherapy, for treatment of murine SA-1 sarcoma.

Dry desquamation < 20 % of irradiated area

Dose modifying factor (DMF) of single mIL-12 electrogene therapy on SA-1 sarcoma is

2,17

At the same level of skin damage, dry desquamation, in combined therapy a 44% higher probability of local tumor control than with irradiation alone was observed.

Improvements in the physical targeting ability of radiotherapy +

Understanding of the molecular mechanism involved in the cellular response to ionizing radiation +

Progress in gene therapy techniques

Transcriptional targeting

Radio-gene therapy

• Additive effect

• Synergistic (supra-additive) effect

• Radiation can enhance the “bystander effect” of gene therapy

Kamensek U, Radiol Oncol 2008; 42(3): 115-35

Add

itivi

ty

Syn

ergi

sm

Radiation dose

Effe

ct

Radiotherapy

+

Gene therapy

Radiotherapy

Gene therapy

Tumor irradiation combined with IL-12 gene therapy controlled by p21 radio-inducible promoter

Promoters of radiation inducible genes, that are activated by clinically relevant

doses of irradiation, can be exploited to control transgenes expression

spatially and temporally within the irradiated tumor tissue.

Promoter of gene p21 + gene for IL-12

Stimulation of immune response

Tumor growth delay after radio-gene therapy with p21-mIL12 or pORFmIL12 plasmid

Time (days)

0 5 10 15 20 25 30

Tum

or v

olum

e (m

m3 )

40

60

80

200

400

100

Control

p21+EP

p21+EP+IR

pORF+EP

pORF+EP+IR

Time (days)

0 5 10 15 20 25 30

Tum

or v

olum

e (m

m3 )

40

60

80

200

400

100

Control

p21+EP+IR

pORF+EP

pORF+EP+IR

EP

IR

EP+IR

p21

p21+IR

pORF

pORF+IR

RESULTS

EP electroporation IR irradiation p21 intratumoral injection of p21-mIL12 plasmid pORF intratumoral injection of pORF-mIL12 plasmid

Treatment of colon carcinoma by miRNA for K-ras by gene electrotransfer

miRNA against k-ras

IZBIRA PRIMERNE SEKVENCE siRNA

LIPOFEKCIJA Z siRNA-KRAS (3)

siRNA-KRAS 53

CCU UGA CGA UAC AGC UAA U

AUU AGC UGU AUC GUC AAG G

siRNA-KRAS 111

GGA UUC CUA CAG GAA GCA A

UUG CUU CCU GUA GGA AUC C

siRNA-KRAS 393

GGA CUU AGC AAG AAG UUA U

AUA ACU UCU UGC UAA GUC C

siRNA-53 siRNA-111 siRNA-393

K-r

as

mR

NA

/ 1

8S

mR

NA

(%

)

0

20

40

60

80

100

120

LF

LF + siRNA-K-ras

LF + siRNA-ctrl

***

*

*

*

*

*

**

qRT-PCR analiza

LF

LF + siRNA-K-ras53

LF + siRNA-ctrl53

LF + siRNA-K-ras393

LF + siRNA-ctrl393

De

lež p

reživ

elih

ce

lic

0,0

0,2

0,4

0,6

0,8

1,0

1,2

*

IZBIRA PRIMERNE SEKVENCE siRNA

WESTERN BLOT ANALIZA TEST KLONOGENOSTI

1 Kontrola

2 LF

3 LF + siRNA-K-ras53

4 LF + siRNA-ctrl53

5 LF + siRNA-K-ras393

6 LF + siRNA-ctrl393

K-ras

Aktin

PRIPRAVA PLAZMIDNE DNA, KI KODIRA miRNA-K-ras

Dobre lastnosti:

SPECIFIČNO DELUJOČE

STABILNE

NI STRANSKIH UČINKOV

IN VITRO ELEKTROTRANSFEKCIJA

IN VITRO ELEKTROTRANSFEKCIJA CELIC LoVo S PLAZMIDNO DNA, KI KODIRA miRNA-K-ras

pmiRNA-K-ras

pmiRNA-ctrl EP

pmiRNA-K-ras + EP

pmiRNA-ctrl + EP

mR

NA

K-r

as / 1

8S

mR

NA

(%

)

0

20

40

60

80

100

120

pmiRNA-K-ras

pmiRNA-ctrl EP

pmiRNA-K-ras + EP

pmiRNA-ctrl + EP

De

lež p

reživ

elih

ce

lic

0,0

0,2

0,4

0,6

0,8

1,0

1,2

**

qRT-PCR ANALIZA TEST KLONOGENOSTI

WESTERN BLOT

1 Kontrola

2 pmiRNA-K-ras

3 pmiRNA-ctrl

4 EP

5 pmiRNA-K-ra + EP

6 pmiRNA-ctrl + EP

K-ras

Aktin

IN VIVO ELEKTROTRANSFEKCIJA TUMORJEV LoVo S PLAZMIDNO DNA, KI KODIRA miRNA-K-ras

Dnevi

0 5 10 15 20 25 30

Vo

lum

en

tu

mo

rja

(m

m3

)

30

40

50

60

80

200

300

100

Kontrola

EP

pmiRNA-K-ras

pmiRNA-ctrl

pmiRNA-K-ras + EP

pmiRNA-ctrl + EP

pmiRNA-K-ras

pmiRNA-ctrl EP

pmiRNA-K-ras + EP

pmiRNA-ctrl + EP

K-r

as m

RN

A / 1

8 S

mR

NA

(%

)

0

20

40

60

80

100

120

*

qRT-PCR ANALIZA

1 Kontrola

2 EP

3 pmiRNA-K-ras

4 pmiRNA-ctrl

5 pmiRNA-K-ra + EP

6 pmiRNA-ctrl + EP

K-ras

Aktin

Utišanje endoglina (CD105) v humanih endotelnih celicah in mišjih tumorjih TS/A

• Endoglin je homodimernih membranski glikoprotein

• Je koreceptor TGFb receptorskega sistema

• Njgova ekspresija je povišana v aktiviranih endotelnih celicah v čvrstih tumorjih

LF

siRNA 5

29

siRNA 2

40

siRNA 2

41

siRNA C

trl

endoglin

mR

NA

/ P

OL2 m

RN

A

0,0

0,2

0,4

0,6

0,8

1,0

1,2

*

* *

*

qRT-PCR

Survival

LF

siRNA 5

29

siRNA 2

40

siRNA 2

41

siRNA C

trl

surv

ival (%

of

contr

ol)

0

20

40

60

80

100

1203th day after lipofection

7th day after lipofection

**

*

Vpliv 1x in 3x elektroprenosa siRNA proti endoglinu na rast podkožnih TS/A tumorjev

Število tumorskih kapilar je po 3x terapiji zmanjšano

Veterinary oncology

Human clinical trials

Electrogene therapy – clinical experience

Intramuscular delivery of plasmid, encoding hIL-12 in canine patients with various spontaneously arising tumors

Patients and methods 7 patients with different histological types of tumors:

• Mast cell tumors (Mct) (3 pts.)

• Mammary adenocarcinoma (2 pts.)

• Osteosarcoma (1 pt)

• Malignant histiocytosis (1 pt) Plasmid:

• pORF-hIL12 (Invivogen, Toulouse, France)

• 1 mg/i.m. delivery

EP delivery:

• 1 high voltage pulse (600 V/cm, 100 μs) + 4 low voltage pulses (80 V/cm, 100 ms, 1 Hz))

• Electric pulses generator Cliniporator® (Igea s.r.l., Italy)

Follow-up:

• 7, 14, 28 days after procedure

Results

patient Patient data Tumor type Therapy hIL-12 conc.

cIFN-γ conc. Outcome

1 Boxer, 7 years, male

Mast cell tumor

Gradus III

Surgery

Chemotherapy

EGT

17 pg/mL

246.8 pg/mL CR

(o.p. 36 months)

2

Boxer, 3 years, female

Mast cell tumor

Gradus II

Surgery

EGT

n.d. 6.5 pg/ml CR

(o.p. 36 months)

3 Lhasa-apso,

14 years, female

Mast cell tumor

Gradus III

Recurrence after surgery

Chemotherapy

EGT

n.d. 80 pg/ml

PD

euth. 6 months after the procedure

4 Bernese mountain dog

6 years, male

Malignant hystiocytosis Chemotherapy

EGT

n.d. 104,2 pg/ml

SD

euth. 7 months after the procedure

Average survival after surgical therapy in MCT: Gradus II - 7 – 18 months Gradus III – 3 - 4 months

- Survival times of all of these patients was significantly longer than reported in literature for respective tumor types (but very low no. of patients)

- IL-12 and/or IFN-γ was detected in serum samples of 4 patients at various time points after the procedure

Average survival after surgical therapy in mal. hystiocyosis after chemotherapy: 4 months

Intratumoral delivery plasmid, encoding hIL-12 in canine patients with mast cell tumors

Patients and methods

11 Mct nodules in 8 dogs

No. of performed EGT sessions:

• 1xEGT in 3/11 nodules

• 2xEGT in 5/11 nodules

• 3xEGT in 1/11 nodules

• 4xEGT in 2/11 nodules

Measurements of tumor size

Determination of hIL12 and cIFN-γ in serum

1, 2 and 4 week after EGT

Surgical removal of tumors in 5/8 dogs →

histology

Patient Nodule T. volume before EGT

(cm3)

clinical stage Post EGT therapy

Follow up after 1st EGT (mon.)

Response at the end of follow up

1 1 0.25 I / 36 SD Euth., not related to MCT

2 1 2.3 I Surgery 24 CR without recurrence

3 1 3.2 II CCNU

(4 cycles) 12 SD stable disease

4 1 0.6 II ECT 13 CR without recurrence

2 1.2 Surgery CR without recurrence

5 1 2.9 III Surgery 10 CR without recurrence

6 1 0.03 II / 44 SD stable disease

2 0.27 / SD

7 1 25.4 III Surgery 2 PD Euth. due to PD

8 1 0.45 III CCNU

(3 cycles) 5 PD Euth. due to PD

2 0.03

Results

• Reduction in tumor size in 9/11 tumors for 25-85% of tumor volume

• Detection of both measured cytokines in multiple serum samples:

IL-12 (3/8 patients): 1-12 pg/mL

IFN-γ (3/8 patients): 74-815 pg/mL

Antitumor effectiveness of hIL-12 therapy

Boxer, dog #2

Tumor histology

a. MCT before EGT

(orange arrow: mast cells)

b. MCT after EGT:

-Reduction in no. of mast cells

-Infiltration with inflammatory cells

First electrogene clinical trial with IL-12 on subcutaneous melanoma metastases

Antitumor effectiveness of treated and non-treated melanoma metastases

Preparations for gene electrotransfer clinical trial

Angioskin EU FP6 project

Transfection efficiency Therapeutic outcome

Electric field Distribution

Plasmid construction

and administration

Tissue properties

Inflammation; Immune response

Blood flow modification

Tissue damage

Electrode design

Electric pulse parameters

Factors influencing transfection efficiency and therapeutic outcome of in vivo electrotransfection

Cemazar et al. Curr Pharm Design 2006; 12 (29): 3817-3825