51
YSD 11.00 - רררר ררררררר ררררר רררררררררר ררררר רררררר ררררר ררררProf. Yosi Shacham-Diamand Department of Physical Electronics Tel-Aviv University, Ramat-Aviv, 69978 yosish @eng. tau .ac. il Talk to be found at www.eng. tau .ac. il \~ yosish Delivered by Yoram Shapira Introduction to Nano bio technologies, TAU 30 Oct. 2001

YSD 11.00 מבוא לתהליכי מזעור - טכנולוגיות ייצור מערכות מיקרו וננו Prof. Yosi Shacham-Diamand Department of Physical Electronics Tel-Aviv

  • View
    229

  • Download
    3

Embed Size (px)

Citation preview

YSD 11.00

מבוא לתהליכי מזעור - טכנולוגיות ייצור מערכות מיקרו וננו

Prof. Yosi Shacham-DiamandDepartment of Physical Electronics

Tel-Aviv University, Ramat-Aviv, 69978

[email protected] to be found at www.eng.tau.ac.il\~yosish

Delivered by Yoram Shapira

Introduction to Nano bio technologies, TAU 30 Oct. 2001

YSD 11.00Micro and Nano technologies - status

Micro technologies 1/1,000,000 of a meter Devices dimensions

today in the Microelectronics industry ~0.18 m

The dimensions will reach 0.1 m in 2010

~1000 million devices on a chip

Nano technologies 1/1,000,000,000 of a

meter 1000 Billion devices

on a chip Atomic scale devices Not in

production……... yet.

YSD 11.00

Materials Characterization

1970 1980 1990 2000 2010 2020 203010-3

10-1

101

103

105

107

109

30T 160G 6nm

550 20M 0.18m 4nm

0.03 3K 10m 200nm

mip

s

T/D

ie

20µ

200n

20n

2n

Des

ign

Rul

e [m

]

102

104

106

108

1010

1012

Year Courtesy Yoram Shapira, TAU

YSD 11.00

Top-down evolution of Micro-System Technologies

Semiconductor microelectronics, (1960 -),

180B$ (@2000), 17% CAGR

Micro-Electro-Mechanical Systems (1985 - )

Electro-Opto Mechanical Systems (1980 - )

-Bio-

Chem

(1995 - )

Micro-System-Technology (MST) - System on a chip - Integrated electronics, MEMS, Bio, Chemistry & Electro-optics

YSD 11.00MEMS Market and Industry Studies

Not dominated by traditional defense contractorsIn FY97 there were 95 U.S. companies active in MEMSIn FY97 15 U.S. companies represented 90% of the market In FY98 U.S. MEMS program supported 50 small businesses

Sa

les

($

B)

SPC Study

0 100 200 300

Germany

Japan

USA

France

UK

Scandinavia

Korea

China

Switzerland

Taiwan

Australia

Singapore

Number of Organizations

Universities/FederalLabs

Companies

SPC and ATIP Studies

Projected Growth of Worldwide MEMS Market

0

2

4

6

8

10

12

14

1993

Year

1994 1995 1996 1997 1998 1999 2000

YSD 11.00

Source: Research & Development (July 1998)

MEMS Market and Industry Studies

YSD 11.00There are two ways to build a house…...

Top-down

Bottom-up

YSD 11.00

There are two ways to make tools...

Top-down

Bottom-up

YSD 11.00

1940 1960 1980 2000 2020

MACRO

mm

MICRO

um

NANO

nm

solid -state

technology;

miniaturization

chemistry;increasing complexity

macro-

molecules;

biology

Towards Nanotechnology: merging of science & technology disciplines

Source: Rohrer, 1995

15

YSD 11.00

YSD 11.00Micro-technology - Similar to painting &

carving - just on a much smaller scale

Add layers of paint or other matter - remove excess matter

YSD 11.00

Structure of microchips

Silicon substrate (600-800 m)

Active device layer ( 1-2 m)

Interconnect network - 6-7 layers of metallization

YSD 11.00

Chip vertical cross section

אינטל 2000

מתכת

מבודד

מתכת

סיליקון

YSD 11.00

Multi-level metallization

YSD 11.00

Top down approach

Develop micron scale disciplines: Mechanical, biological, chemical and integrate them on a chip with microelectronics

Build “ a system on a chip” Keep miniaturizing it - the

evolutionary methodology

YSD 11.00

What can we put on a silicon chip ?

MEMS - Micro Electro Mechanical Systems

MEOMS - Micro Electro Optical Mechanical Systems

Micro-biological systems Micro-Chemistry, and Microelectronics…..

YSD 11.00

Nanotechnology on Si: MEMS, pollen and red blood cells

Drive gear chain and linkages

a grain of pollen

coagulated red blood cells

YSD 11.00

YSD 11.00

YSD 11.00

מה היתרון של מערכות על שבב ?

ניתן לממש מערכות בחוג סגור על שבב:

בקרה על מערכות אלקטרוניות, חומניות, מכניות, •נוזלים, מגנטים, אופטיות וזרימת מסהעם

שימוש בטכנולוגיות•

MEMS, MEOMS, BIO, CHEMISTRY

מערכות מיקרוסקופיות יכולות ליצור אפקטים הן •ברמה המיקרוסקופית והן ברמה המקרוסקופית.

YSD 11.00(טכמ”מ) טכנולוגיות מערכות ממוזערות

? מהן מערכות ממוזערות

מערכות עם התקנים אלקטרונים, מכניים, כימיים –וביולוגיים בממדים קטנים.

? מה מאפיין מערכות אלו

) System on a chip-SOCמערכת על שבב (–כוללת מספר תת-מערכות ומשלבת מספר פעולות.

למשל ניתן לשלב חישה, חישוב, הפעלה )ACTUATION.תקשורת, ובקרה על אותו שבב ,(

מערכות ממוזערות יכולות לחוש, לחשב ולפעול באופןשישנה את תפישתנו לגבי יכולתנו לקלוט ולשלוט בעולמנו.

Micro Systems Technologies (MST)

YSD 11.00

מדוע לשלב מערכות על אותו שבב ?. שיפור ביצועים - הגדלת מהירות, הורדת הספק )הגדלת 1

זמן שימוש(

. הקטנת נפח, שטח - יותר ניידות, גישה ונוחות.2

בזיווד ואריזת מספר רכיבים ן. הקטנת מחיר - חסכו3ביחד.

יותר . הגדלת אמינות - פחות חיבורים, נפח קטן4

. קלות תכנון - יצירת מערכים גדולים עם אותם 5תאי-יחידה

. הקטנת פרמטרים פרזיטיים - קיבוליות, השראות.6

. חסכון בנפח מגיבים בתהליכים כימים7

YSD 11.00

איך מייצרים מערכות ממוזערות ? המערכות מיוצרות על בסיס טכנולוגיות מיקרואלקטרוניקה

)ICקיימות לייצור המוני של מעגלים משולבים (

,המערכות נמצאות על פני השטח של מצעי מוליכים למחצהזכוכית, חומרים אורגנים או בנפח שלהם.

:ייצור הרכיבים נעשה בעזרת תהליכים כימיים או פיזיקליים

הוספת שכבות או אלמנטים בודדים (תאים, מולקולות..)–

הורדת שכבות - איכול חומר–

שינוי תכונות של שכבות - שינוי מוליכות, תכונות –אופטיות...

YSD 11.00 - מיקרו-עיבוד חומרMICROMACHINING

Single crystal Bulk Micro-machining

Trench

Bridge

Cantilevers

Wafer Surface

Cavity

Nozzle

Membrane

YSD 11.00 - מיקרו-עיבוד חומרMICROMACHINING

Non-crystalline Bulk Micromachining

surface

Cantilevers

Bridge

Trench

Nozzle

Cavity

Membrane

YSD 11.00

Surface Micromachining

עיבוד מכני של שכבות דקות על שבב

YSD 11.00טכנולוגיות ייצור רכיבים מכנים

LIGA*, Deep UV

*Lithographie, Galvanoformung, Abformung

Irradiation

Development

Electroforming Mold Separation

Synchrotron

Resist

Maskmembrane

Substrate

Resiststructure Plastic

moldmaterial

Plasticstructure

Metal

Substrate

Source: IMM (Mainz Institute for Microtechnology)

Mold cavity

Mold Filling

Absorberstructure

Mold Insert

YSD 11.00Wafer-to-Wafer Bonding

Create etch stops and gap in back

Fuse silicon

Process top and etch mass

Etch beam and bond Pyrex

Pyrex Air gap forsqueeze filmdamping

Device wafer

Mass wafer

Built-inover-accelerationstops

Sensingelements and interconnections

Mass wafer

YSD 11.00

MEMS - Micro-Electro-Mechanical-SystemsBUILDING THE MACHINE TOOL FOR THE MICROWORLD

YSD 11.00תהליכי ייצור במיקרואלקטרוניקה - מבוא

Thicker filmsdeeper etchesfewer steps

Removal of underlyingmaterials to releasemechanical structures

Special probing, sectioning and handling procedures to protect released parts

Encapsulate some parts of device but expose others

Test more than just electrical functions

DEPOSITION OF

MATERIAL

PATTERN TRANSFER

REMOVAL OF

MATERIAL

Multiple Processing Cycles

PROBE TESTING

SECTIONING INDIVIDUAL DIE

ASSEMBLY INTO PACKAGE

PACKAGE SEAL

FINAL TEST

YSD 11.00

דוגמה א’ - מערכת קשר ממוזערת

YSD 11.00

Off-chip high-Q mechanical components present bottlenecks to miniaturization replace themwith mechanical versions Univ. of Michigan

MEMS for Signal Processing

Wrist Communicator

Electrode

Anc

Micromechanical Filter

CouplingResonatorsSpring

0

-10

-20

-30

-40

-50

-60

358 359 360 361 362

Frequency [kHz]

Tra

nsm

issi

on

[d

B]

Single-ChipVersion

VCOVCO

XstalOsc.

ReceiverBlockDiagram

BasebandElectronics

Antenna

LNA LNA Mixer Mixer

MEMS

Board-Level Implementation

TransistorElectronics

IF Filter(Xstal)

IF Filter(SAW)

RF Filter(ceramic)

YSD 11.00Wrist Communicator

SEM micrograph showing the high aspect ratio feature of the MEM tunable cap.

Single Crystal SiliconSuperior Mechanical PropertiesHigh Aspect Ratio (20 to 1)Higher LinearityLarge Tuning Ratio (> 6.5 to 1)

Highlights of the Rockwell MEMS Tunable Capacitor

אתגרים טכנולוגים:

אנטנה, מעגלים לברירת תדרים,•

גודל, משקל, הספק•

פתרון בטכמ”מ:

החלף אלקטרוניקה ברכיבים מכנים למימוש מסננים,

)DEMODULATORS(מתנדים, מאפננים וממצי אפנון

YSD 11.00Wrist Communicator

BalancedElectrodes

CouplingSprings

Resonators

BalancedElectrodes

Sixth-Order Bandpass Filter in MEMS Technology (200 x 700 m)

Univ. of MichiganMEMS for Signal Processing

YSD 11.00

דוגמה ב’ - חיישן משולב

YSD 11.00

Micro Airborne Sensor/Communicator

MEMS-Based Power Generation & Energy

Conversion

MEMSActuator

Inertial Measurement

UnitWhip

Antenna

MEMS Mass Data Storage

MEMS Microphone

MEMS UncooledIR Sensor

MEMS Optical

Communicator

a

MEMSStructural Material

YSD 11.00

40 m

Lancet width = 170 m Needle width = 150 m

דוגמה ג’ - מיקרומחטים

YSD 11.00ננוטכנולוגיות - השלב הבא...

שילוב בין טכנולוגיות מיקרו לננו - אפשרי כיום•

טכנולוגיות ננו מתקדמות - עדיין לא קיימות•

טכנולוגיות ננו מתקדמות - עדיין יצטרכו ממשק•) INTERFACE ,לעולם החיצון, לאלקטרוניקה (

אופטיקה , מכניקה. קרוב לוודאי שהממשק יהיה בטכנולוגיות מזעור הדומות לטכנולוגיות

מיקרואלקטרוניקה ומיקרו-אלקטרומכניקה כיום.

YSD 11.001989 :Atomic manipulation by STM

IBM logo – 35 Xenon atoms

IBM Almaden Research Center, San Jose

The enabling tool – STM (Scanning Tunneling Microscope)

Can be used not only to image a surface with atomic resolution, but also to manipulate individual atoms and molecules.

YSD 11.00What is Nanotechnology ?

The classic talk, “There's Plenty of Room at the Bottom” was given by Richard Feynman on December 29th 1959 at the annual meeting of the American Physical Society at the California Institute of Technology (Caltech)

“Why cannot we write the entire 24 volumes of the Encyclopedia Britannica on the head of a pin?”

“Biology is not simply writing information; it is doing something about it. A biological system can be exceedingly small.”

“I want to build a billion tiny factories, models of each other, which are manufacturing simultaneously,drilling holes, stamping parts, and so on.”

YSD 11.00

With the tools of the nanotechnology trade becoming better defined, the ability to create new materials and devices by placing every atom and molecule in the right place is moving closer to reality.

Ralph C. Merckle, Xerox

Nanotechnology: An art and science that has evolved to arrange conditions so that atoms spontaneously assemble into particular molecular structures.

New terms such as “self assembly”, “molecular machines”, represent a new “bottom up” approach: building structures from atoms and molecules.

What is Nanotechnology ?

YSD 11.00

Molecular engineering: An approach to the development of general capabilities for molecular manipulation

K. Eric Drexler, Proc. Natl. Acad. Sci. USA Vol. 78, No. 9 pp. 5275-5278, September 1981 Chemistry

section

Biochemical systems exhibit a "microtechnology" quite different from ours: they are not built down from the macroscopic level but up from the atomic.

Biochemical microtechnology provides a beachhead at the molecular level from which to develop new molecular systems by providing a variety of "tools” and "devices" to use and to copy.

כיצד לממש מבני ננו ?

YSD 11.00

Table 1. Comparison of macroscopic and microscopic componentsTechnology Function Molecular example(s)

Struts, beams,casings

Transmit force, holdpositions

Microtubules, cellulose, mineralstructures

Cables Transmit tension CollagenFasteners, glue Connect parts Intermolecular forcesSolenoids,actuators

Move thingsConformation-changing proteins,

actin/myosinMotors Turn shafts Flagellar motorDrive shafts Transmit torque Bacterial flagellaBearings Support moving parts Sigma bondsContainers Hold fluids VesiclesPipes Carry fluids Various tubular structuresPumps Move fluids Flagella, membrane proteins

Conveyor belts Move componentsRNA moved by fixed ribosome (partial

analog)Clamps Hold workpieces Enzymatic binding sitesTools Modify workpieces Metallic complexes, functional groupsProduction lines Construct devices Enzyme systems, ribosomesNumerical controlsystems

Store and read programs Genetic system

דוגמה לפוטנציאל העתידי של טכנולגיות ננו

YSD 11.00

Molecular technology has obvious application to the storage and processing of information

Molecular devices can interact directly with the ultimate molecular components of the cell and thus serve as probes in studying processes within the cell

What is Nanotechnology ?

YSD 11.00

“I am not afraid to consider the final question as to whether, ultimately---in the great future---we can arrange the atoms the

way we want; the very atoms, all the way down !

The principles of physics do not speak against the possibility of maneuvering things atom by atom.

…a development which I think cannot be avoided.”

“There's Plenty of Room at the Bottom”

Richard Feynman 29/12/1959

YSD 11.00 Development of the ability to design protein molecules will make possible the construction of molecular machines. These machines can build second-generation machines able to perform extremely general synthesis of three-dimensional molecular structures, thus permitting construction of devices and materials to complex atomic specifications. This capability has implications for technology in general and in particular for computation and characterization, manipulation, and repair of biological materials

YSD 11.00What is Nanotechnology ?

•Wet nanotechnology: Similar to living cell technology: assembly of carbon based molecules in a liquid

environment

•Dry nanotechnology: Technology of organic and inorganic molecules

in air or vacuum environment

YSD 11.00

YSD 11.00Nanomachines

YSD 11.00

Large scale industrial nanotechnology

Develop new techniques to produce food, medicine, etc.

Build machines, materials, and devices with the ultimate finesse that life has always used: atom by atom, on the same nanometer scale as the machinery in living cells

Energy production. Replace / complement microelectronics as

leading enabling technology

YSD 11.00

Nano self-replicated machines