177
量子コンピューターの新しい潮流 --- D-Waveのアプローチ @maruyama097 丸山不二夫

量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子コンピューターの新しい潮流 --- D-Waveのアプローチ

@maruyama097 丸山不二夫

Page 2: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

"And therefore, some of the younger students ... you know how it always is, every new idea, it takes a generation or two until it becomes obvious that there's no real problem.” -- Richard P. Feynman

Page 3: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Agenda 

o  Part I D-Waveの量子コンピュータとは何か? n  システムの概略 n  何ができるのか? n  各界の反応

o  Part II コンピューターにとって難しいことを考える n  人間には容易でも、機械には難しいこと

n  人間はもちろん、機械にも計算が難しいこと

n  計算の原理的可能性 Church-Turingの提言

n  現代のコンピュータの限界を考える

Page 4: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Agenda o  Part III 量子コンピュータの世界

n  量子コンピュータの登場 n  量子の振る舞い  n  量子コンピューターと量子ゲート n  量子コンピュータは、何が出来るか?

o  Part IV D-Waveのアプローチ n  D-Waveマシンの動作のモデル n  量子アニーリング n  D-Waveのハードウェア n  D-Waveマシンのプログラミング n  アプリケーション プログラム・サンプル

Page 5: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Part I D-Waveの 量子コンピュータとは何か?

ここでは、Geordie Rose  2012/11/29 “D-Wave Quantum Computing - A Eureka Moment” の内容を紹介して、D-Waveの量子コンピュータとは何か、その概略を示そう http://www.youtube.com/watch?v=cA31kiHEOBs

Page 6: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

D-Waveマシンと D-Wave社創設者 Geordie Rose

Page 7: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 8: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

D-Waveの量子コンピュータチップの ウエファー。シリコンではなくニオブが 使われている。

まず、最初に確認し なければいけないのは、 それが研究用ではなく、 商用の製品であるという ことである。

Page 9: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

D-Waveの量子コンピュータ の心臓部、チップの外形

Page 10: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

ワイアリングとフィルタリング

l  システムの「マザーボード」

l  室温の世界とプロセッサー は、168本の配線で結ばれ ている

l  全ての直流の配線は、外部 からのノイズを取り除くため に、30MHzでフィルタリング されている

l  この写真は、128bitのもの

Page 11: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

l  10kgの金属が、絶対零度に 近い20milli Kelvinの温度に 置かれる。 「宇宙で最も冷たい場所」

l  磁気の影響を遮断している。 3次元全ての方向で、1 nano Teslaに抑えられている。 これは、地球の磁場の強さの 5万分の一のもの。

  プロセッサーの環境 

Page 12: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

  その他の諸元 

l  設置面積 約200平方フィート

l  閉サイクルの冷却装置

l  消費電力 約7.5KW  

Page 13: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

全体の構成図

Pulse Tube Dilution Refrigerator

シールド・ルーム 冷却ポンプとコントロール・ラック

PCインターフェースと ローカル・ユーザー

PCインターフェースと リモート・ユーザー

Page 14: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 15: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

チップの集積度の進化  2013年以降の集積度の変化が 興味深い。この図は、正しくプロット されていない。多分、Dual Core。

Page 16: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

何が出来るのか? Binary Classification

Page 17: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

何が出来るのか? Binary Classification

Page 18: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

何が出来るのか?

Page 19: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

何が出来るのか? 複数のラベルの割り当て

この写真には、どのようなラベルを付ければいいだろうか?

Page 20: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 21: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

何が出来るのか? Unsupervised Feature Learning (UFL)

我々が関心を持つ対象のクラスの特徴を、もっともよく記述 するのは何か?

「空」はイメージした?

「雪」でもいい 「森林」でもいい

Page 22: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

何が出来るのか? Unsupervised Feature Learning (UFL)

これらの対象に、共通するものは何か? アルゴリズムが、いくつかの「特徴」を返す。

Page 23: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Google Glassのソフトを D-Wave上で開発

o  9月に行われた、IDC’s 50th HPC user forumで、GoogleのHartmut Neven は、Google Glassのまばたき検出のアルゴリズムの調整に、D-Wave社の量子コンピューターが使われていることを発表。これは、商用のアプリケーションに、量子コンピュータを使った最初の例になるという。

o  「とてもクールだった。 ... モバイル・デバイスを動かすソフトウェアが、量子コンピュータで設計されうるというアイデアは、とても気に入った。」(G.Rossのblog から) http://dwave.wordpress.com/

Page 24: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

D-Wave 量子コンピュータ に対する各界の反応

D-Waveの量子コンピュータの登場は、ここ10年来のITのイノベーションの中で、もっとも大きなものの一つになるだろう。各界の反応を見ておこう。 Scott AaronsonらのD-Wave批判は、とても興味深いものなのだが、ここでは割愛した。

Page 25: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

「CIAとジェフ・ベゾス、量子コンピュータに賭ける」

o  「アマゾンの創設者のジェフ・ベソスとCIAの投資部門であるIn-Q-Telは、量子力学の不思議さを追求することで、従来型のいかなるコンピュータ・チップよりも大きな計算パワーを解放することが出来ると信じている。ベソスとIn-Q-Telは、こうした見通しに3000万ドルを賭けた、投資家集団の一員である。」

MIT Technology Review 2012/10/04 http://www.technologyreview.com/news/429429/ the-cia-and-jeff-bezos-bet-on-quantum-computing/

Page 26: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

「CIAとジェフ・ベゾス、量子コンピュータに賭ける」

o  「In-Q-Telの第一の「顧客」はCIAである。もう一人は、NSA(National Security Agency)である。両者ともに、自動化された情報収集とその解析に巨額の投資をしていることで知られている。」

o  「Googleの人工知能の研究者は、定期的にD-Waveのコンピュータにインターネットを通じてログインし、それを試している。2011年には、D-Wave社は最初の顧客の契約を獲得した。防衛産業のロッキード・マーティン社は、開発が遅れているF-35戦闘機のような、複雑なプロジェクトのソフトウェアのバグを自動的に検出する為の研究用のコンピュータとして、1000万ドルを支払った。」

http://www.technologyreview.com/news/429429/ the-cia-and-jeff-bezos-bet-on-quantum-computing/

Page 27: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

グーグル、NASAと共同で、量子コンピューターラボを開設 2013/05/16

「グーグルは米国時間16日、量子コンピューター研究を進める新たなラボ「Quantum Artificial Intelligence Lab」の開設を発表した。同研究所は、マウンテンヴューにあるグーグル本社からほど近いNASAのエイムズ研究センター内に置かれ、宇宙科学を専門とする学術団体の大学宇宙研究協会(Universities Space Research Association)とグーグルが共同運営することになる。また同ラボでの研究には、航空宇宙メーカーのロッキード・マーティン社なども試験利用する512量子ビットの量子コンピューター「D-Wave Two」が使用される予定だという。」

http://wired.jp/2013/05/22/google-dwave/ http://www.wired.com/wiredenterprise/2013/05/google-dwave/

Page 28: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

グーグル、NASAと共同で、量子コンピューターラボを開設 2013/05/16

「『われわれは量子コンピューティングが、特に機械学習など計算機科学のもっとも困難な課題の解決に役立つ可能性があると考えています』とグーグルの技術責任者のハートムート・ネヴンは同社のブログに記している。『機械学習は世界のより優れたモデルを構築し、より正確な予想をもたらすものです』 http://googleresearch.blogspot.jp/2013/05/launching-quantum-artificial.html グーグルは、こういったシステムを現実世界の問題解決に利用できるレベルに発達させることを狙っている。」

http://wired.jp/2013/05/22/google-dwave/ http://www.wired.com/wiredenterprise/2013/05/google-dwave/

Page 29: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Part II コンピューターにとって 難しいことを考える

ここでは、量子コンピュータ登場の背景として、現在のコンピュータの能力では解決の難しい問題のいくつかと、現在のコンピュータ・アーキテクチャーが抱える問題を概観しようと思う。そうした問題の存在は、量子コンピュータ登場の単なる「背景」ではなく、その「必然性」を示していると考えることが出来る。

Page 30: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

人間には容易でも、 機械には難しいこと

CMUのLuis von Ahnが考案したCAPTCHAやESPゲームは、こうした問題領域が存在していることを利用している。彼の、Human Computing / Crowd Sourcingというコンセプトも興味深いものである。ただ、こうした領域にコンピュータは、迫ろうとしている。

Page 31: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Most human can pass, but current computer can not pass.

Page 32: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

http://elie.im/blog/security/five-surprising-captcha-schemes/#.UjUKt7zqH9I

Page 33: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

ESPゲーム Human ComputingとCrowd Sourcing

o  「ESPゲーム」では、二人のゲーム参加者に、同一の画像を提示する。一方がその画像について連想した言葉を入力し、他方がその言葉を、出来るだけ少ない回数で当てるというゲーム。

o  このゲームには、別の隠された目的がある。このゲームを通じて、膨大な画像イメージに沢山の人間が与えたラベルを取得出来る。Luis von Ahnは、これを、”Human Computing”と”Crowd Sourcing”と呼んだ。

o  「Peekaboomゲーム」は、その変種。画像全体ではなく、画像の一部が切り出されて、双方に提示される。一つの画像に対して、より詳細なラベルが得られる。

o  GoogleとAhnらは協力して、多くの画像データへのラベル付けを行った。

Page 34: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

http://www.youtube.com/watch?v=tx082gDwGcM

Human Computing / Crowd Sourcing

Page 35: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

人間の自由時間の利用

o  2003年に、ソリティアを遊んだ、人間の総時間は、90億時間。

o ある人たちは、コンピュータの無駄な計算サイクルについて話をしているが、人間の無駄なサイクルについては、どうなんだろう?

o エンパイア・ステートビルを作るために、人間が使った時間は、700万時間。

o パナマ運河を作るために、人間が使った時間は、2000万時間。(ソリティアの一日分以下)

Carnegy Melon Univ.  Luis von Ahn

Page 36: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Andrew Ngらの新しい知覚研究と Googleの協力

“Building High-level Features Using Large Scale Unsupervised Learning”  Jeff Dean & Andrew Y. Ng et al 2012年7月 http://arxiv.org/pdf/1112.6209.pdf&embedded=true

Page 37: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Andrew Ngらは、機械だけの力で諸特徴を 学習するアルゴリズムを研究している。Google もそれに協力し、現在は、量子コンピュータの 応用の最も活発な分野の一つになっている。

Page 38: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

o  我々は、ラベル付けされていないデータだけから、高レベルの、クラスに固有の特徴を検出することが出来るかという問題を考察した。例えば、ラベル付けされていないイメージだけから、顔の検出が可能かという問題である。

o  この問題に答える為に、我々は、9層からなるローカルに疎に結合した、プーリングとローカルなコントラストの正規化の機能を備えた自動エンコーダを、大規模な画像データセット(モデルは10億のコネクションを持ち、データセットは、インターネットからダウンロードした200x200ピクセルの一千万個のイメージからなる)上で訓練した。

Page 39: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

o  我々は、このネットワークを、1000台のマシン(16,000コア)のクラスター上で、並行計算モデルと非同期SGDを使って、三日間訓練した。

o  広く受け入れられているように見える直観に反して、我々の実験結果は、顔であるかそうでないかのラベルをイメージにつける必要なしに、顔の検出が可能であることを明らかにした。

o  コントロールの実験では、この特徴の検出は、変換だけでなく、拡大や画面外への回転に対しても、頑健であることを示した。

Page 40: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

The architecture and parameters in one layer of our network.

Page 41: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Face no Face

これが、一千万個の画像 データから、16,000コア のマシンが三日間かけて 抽出した「人間の顔」のイ メージらしい。子供の絵に 似ているのが面白い。

Page 42: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

「学習する機械」についてのビル・ゲイツの言葉

Page 43: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

人間はもちろん、 機械にも計算が難しいこと

計算の仕方が分かっていても、実際にそれを計算するのに、途方もない時間がかかる問題がある。「現実的には」計算出来ないと考えていい。公開鍵暗号は、ある種の問題のこうした性質を利用している。 量子コンピュータが、大きな関心を集めたのは、Shorが、量子コンピュータを使えば、公開鍵暗号の基礎の一つの素因数分解が、現実的な時間で行うことが出来ることを示したからである。

Page 44: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

計算量の理論 P≠NP予想

o  Pは、多項式時間でTuringマシンで解ける問題。 o  NP(Nondeterministic Polynomial)は、その答

えがYESなら、そのチェックが多項式時間で解ける問題。

o  n=pqなる素数p,qを求める問題は、NP問題である。nと同時にpあるいはqが与えられた時、それが条件を満たすかのチェックは、すぐに出来るから。

o  例: 127 x 129 = 29083 ? x ? = 29083 を満たす?を見つけよ。 127 x 129 は、29083か? YES!

Page 45: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

計算量の理論 P≠NP予想

http://www.scottaaronson.com/talks/anthropic.html

Page 46: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

計算の原理的可能性 Church-Turingの提言

計算量の大小とは独立に、どうやっても計算出来ない問題が存在する。また、計算には、いろいろなスタイルがあるのだが、それらは、共通の数学的特徴を持つことが発見された。こうした数学的な特徴を、「計算可能性」として定義しようと言うのが、「Church-Turingの提言」である。

Page 47: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Church–Turing thesis

Wiki http://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis 1943年 Kleene “Recursive Predicates and Quantifiers”

Page 48: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Kleene proposes Church's Thesis

o  “一般帰納関数は、実効的に計算可能である”というこの経験的な事実は、Churchを次のようなテーゼの記述に導いた。 同じテーゼは、チューリングの計算機械の記述のうちにも、暗黙のうちに含まれている。

o  “THESIS I. 全ての実効的に計算可能な関数(実効的に決定可能な述語)は、一般帰納関数である。

Page 49: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

現代のコンピュータの限界を考える

Page 50: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

ノイマン型 コンピュータと そのボトルネック

Page 51: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

http://www.intel.com/technology/silicon/mooreslaw/index.htm

Moore’s Law 40th Anniversary 2005年

1965年

Mooreの法則 回路の集積度

Page 52: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

情報1bitを蓄えるのに必要な電子の数

X

Moore則の限界 Mooreの法則

Multi-Core / Scale-outへ

Page 53: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Kurtweilの「Mooreの法則」の修正 計算能力の指数関数的増大

Ray Kurtweil 2010 JavaOne

Kurtweilの議論の興味 深い点は、半導体のMoore の法則に見られる指数関数的 増大が、半導体に限らないと いう立論である。

Page 54: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Part III 量子コンピュータの世界

量子コンピュータ研究には、約30年の歴史がある。ここでは、その歴史を振り返るとともに、その基本的な原理について触れようと思う。量子コンピュータ研究の主流からみれば、D-Waveのアプローチは、異端的なものであることに留意してほしい。

Page 55: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子コンピュータの登場

「量子コンピュータ」は、今から約30年前のファインマンの洞察を発端とする。ドイッチェがそれを定式化し、それが現在のコンピュータの限界を超えうることを明確に示した。ただ、「量子コンピュータ」が広く注目され研究者が爆発的に増大したのは、Shorが、量子コンピュータによる素因数分解のアルゴリズムを発見してからであった。

Page 56: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

ファインマンの 洞察

1982年

Page 57: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Simulating Physics with Computers

1982年 Richard P. Feynman http://www.cs.berkeley.edu/~christos/classics/Feynman.pdf

Page 58: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

自然をシミュレートするコンピュータ

o  コンピューターが、正確に自然と同じように振る舞う、正確なシミュレーションが存在する可能性について話そうと思う。それが証明されて、そのコンピュータのタイプが先に説明したようなものであるなら、必然的に、有限の大きさの時空の中で起きる全てのものは、有限な数の論理的な操作で正確に分析可能でなければならないことになるだろう。

Page 59: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子論的システムは、古典的なコンピューターでシミュレートされるか?

o  量子論的なシステムは、古典的な万能計算機で、確率論的にシミュレートされるだろうか? 別の言い方をすれば、コンピューターは、量子論的なシステムが行うのと、同じ確率を与えるだろうか? コンピューターを今まで述べてきたような古典的なものだとすれば(前節で述べたような量子論的なものではないとすれば)、また法則はすべて変更されないままで、ごまかしもないとすれば、答えは明らかにノーである。

Page 60: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子コンピュータ -- 万能量子シミュレーター

o  それは、新しいタイプのコンピューター、量子コンピューター?で可能になるだろう。 私が理解する限りでは、それは量子論的なシステムによって、量子コンピューターの要素によって、シミュレート出来るようになることは、いまや、明らかになった。それはチューリング・マシンではない。別のタイプのマシンである。

Page 61: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

ドイッチェ

新しい原理の 確立

1985年

Page 62: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Quantum theory, the Church-Turing principle and the universal quantum computer

1985年 David Deutsch http://www.cs.berkeley.edu/~christos/classics/Deutsch_quantum_theory.pdf

Page 63: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Church-Turing-Deutche Thesis

o  Church-Turingの仮説の基礎には、暗黙の物理学的主張があることが考察される。 この物理学的主張は、次のような物理学的原理として、明確に表現することが出来る。 「有限な方法で実現可能な物理システムは、有限な手段によって操作される万能計算機械のモデルで完全にシミュレート可能である。」

o  古典物理学と万能チューリング・マシンは、前者は連続的で後者は離散的であるので、この原理には従っていない。

Page 64: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

万能量子コンピューター

o  チューリング・マシンのクラスの量子論的一般化である計算機械のクラスが記述され、量子論と、この「万能量子コンピューター」が、先の原理と両立可能であることが示される。

o  この万能量子コンピューターをまねた計算機械は、原理的には、構築可能である。そしてそれは、いかなるチューリング・マシンによっても再生不可能な、多くの目覚ましい特徴を持つであろう。

Page 65: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Quantum Parallelism

o  これらの中には、非帰納的な計算は含まれていない。しかし、「量子並行計算」が含まれる。その方法によれば、古典的な制限の下でのコンピューターよりはるかに高速に、ある種の確率論的問題を万能量子コンピューターが実行出来る。

o  こうした特質の直観的な説明は、エヴェレット以外の量子論の解釈ではすべて、堪え難い緊張をもたらす。

Page 66: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

ドイッチェは、物理学者としては、エベレットとともに、量子力学の多世界解釈(「パラレル・ワールド」=並行宇宙論)の熱心な提唱者として知られていた。 現在でも、そうした立場は変わっていないようである。彼は量子コンピュータが超並行計算を可能にすることをMultiverseで説明している。 ちなみに、D-Wave社のblogページは、”Hack The Multiverse” と名付けられている。

Page 67: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

n個のqubitで、2n個の並行計算が可能

Page 68: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子コンピューターは、パラレル宇宙の間の コラボレーションに、有用な仕事を実行させる ことを可能にする最初のテクノロジーになる であろう。

Page 69: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

ショア

量子コンピュータによる 素因数分解アルゴリズム

の発見

1994年

Page 70: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

1995年 Peter W. Shor http://arxiv.org/pdf/quant-ph/9508027v2.pdf

Page 71: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子の振る舞い  -- SuperpositionとEntanglement

ここでは量子の、いくつかの奇妙な振る舞いについて述べる。こうした現象は、「直観」に反しているように見えるが、自然界では「現実」に起きていることである。自然が現実にそうなっていることは、初等・中等教育にも意識的に反映すべきことだと筆者は考えている。

Page 72: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

  Superposition(重ねあわせ)

Superpositionとは、量子が、「同時」に二つの状態を取ることである。観測すると、一つの状態しか観測されないのであるが。

Page 73: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 74: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

光を半分は通し半分は反射する、ハーフミラーを45度の角度で 光の進路に置く。光は、二つの検出器に届く。光子一個で実験 を繰り返すと、ある光子は検出器1に、ある光子は検出器2に届 く。その確率は等しい。ここに不思議なことはない。

Page 75: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

ハーフミラー二つと鏡二つを組み合わせて、上のような装置を 作る。光は干渉をおこして、検出器の一方にしか届かなくなる。 奇妙なことは、光子一個で実験しても、このことは変わらない。 一個の光子は、二つの道を「同時」に通っている。

Page 76: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

もっと奇妙なことは、光路の一方を塞ぐと、光は両方の検出器に 届くようになる。光子一個で考えると、行く手を阻まれた光子は、 そのことを、他方の光子に伝えて(どっちも自分自身なのだが)、 その性質を変えているように見える。

Page 77: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

2012年 Winelandのノーベル賞記念講演から http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/

wineland-lecture_slides.pdf

Page 78: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Superpositionは、量子レベルだけでの 現象ではない。ある種の装置を使えば、 それはマクロな現象として現れる。

Page 79: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

  Entanglement(もつれあい)

「量子もつれ」は、量子のあいだに特別の相関関係が生まれる現象である。「Superposition」が現象としては既に19世紀末に確認され、20世紀に入って量子論の成立とともに理論化が進んだのに対して「entanglement」が実験的に確証されたのは、20世紀の後半である。アインシュタインは、量子論の矛盾を示すものとして、Entanglementに注目していた。

Page 80: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 81: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

http://etdialogs.wordpress.com/2012/02/

Page 82: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

1935年 EPRの逆理 Einstein, Podolsky, Rosen

Page 83: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

1982年 Aspectの実験

Page 84: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 85: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

http://www.sciencenews.org/view/feature/id/65060/description/ Everyday_Entanglement

量子通信 量子テレポーテーション

「パラドックス」から 通信の「原理」へ

Page 86: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子コンピューターと量子ゲート

これまで、量子コンピュータの実現を目指す研究の主流は、汎用の量子論理回路、量子ゲートの実装とそれを組み合わせたシステムの構築に向けられてきた。

Page 87: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子コンピュータ関連でノーベル賞

o  2012年度のノーベル物理学賞は、「量子世界での粒子のコントロール」への貢献で、イオン・トラップ、光子トラップのSerge Harocheと David J. Wineland に与えられた。

o  授賞理由は、次のようなものであった。 「両氏は、独立に、以前には達成出来ないと考えられていたやりかたで、個々の粒子を量子力学的な性質を保存したまま、計測し操作する手法を発明し発展させた。」

http://www.nobelprize.org/nobel_prizes/physics/ laureates/2012/press.html

Page 88: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

http://blogs.yahoo.co.jp/cat_falcon/9937052.html

量子ゲートの例: CNOTゲート

Page 89: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

http://blogs.yahoo.co.jp/cat_falcon/9937052.html

量子ゲートの記法と対応する ユニタリ行列

Page 90: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Introduction to Quantum Information Science / Oxford Graduate Text

Shorのアルゴリズムの中心部分 量子フーリエ変換を実現する量子回路

Page 91: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Introduction to Quantum Information Science / Oxford Graduate Text

Page 92: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

「量子ゲート」によるアプローチの問題 「回路図」と「回路」

o  ある問題を解く為の、量子ゲートの「回路図」を作ることと、その「量子回路」を現実につくることは、別の問題である。そして前者より後者の方が、はるかに難しい。

o  現状は、「回路図」が出来ていても、その「回路」の実現のところで足踏みをしている。 いつの日か、現在のLSI製造システムのように、回路図を作れば回路が出来るようになるのかもしれないのだが。

Page 93: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

「量子ゲート」によるアプローチの問題 量子コンピュータのアーキテクチャ

o  「量子ゲート」のアプローチでは、「アルゴリズム」は、直接、「ハードウェア」のワイアリングで表現されることになる。

o  このこと自体は問題ではなく当然のことなのだが、明らかに、「ソフトウェア」という抽象のレベルには向いていない。それは、シリコン上で半導体を設計している人のコンピュータとの関係と同じである。

o  別の言い方をすれば、「量子ゲート」の研究は、おそらくは「ハードとソフト」から構成されるであろう「万能量子コンピュータ」のアークテクチャの研究には届いていない。

Page 94: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子コンピュータは、何が出来るか? Shorアルゴリズム実装の成功例

“EXPERIMENTAL QUANTUM COMPUTATION WITH NUCLEAR SPINS IN LIQUID SOLUTION” Lieven M. K. Vandersypen July 2001 http://arxiv.org/pdf/quant-ph/0205193v1.pdf

Page 95: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Overview of quantum computing experiments.

Page 96: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

15の素因数分解の為に、 単純化された量子回路

Page 97: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

7つのスピンを持つ物質

NMR

Page 98: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

15は、3と5に素因数分解された! (らしい)

Page 99: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Part IV D-Wave のアプローチ

“D-wave is developing a system build around superconducting processors designed to enable quantum annealing algorithms” -- Geordie Rose

Page 100: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

「汎用ゲートモデル」の問題点 by Geordie Rose

o  エネルギーの固有状態のsuperpositionを維持して利用する必要がある。その状態は全く「不自然」なもので、極めて破れやすい。

o  「量子エラー訂正」のオーバーヘッドが大きく、高速で高いクォリティのフィードバックを必要とする。

o  必要とされる高速のコントロールは、スケールするのが難しい。

o  プロセッサーのアーキテクチャーについての研究は、全く進んでいない。

D-Wave - Natural Quantum Computation (Google Tech talks 2010/10) http://www.youtube.com/watch?v=56qR0iX5A4o

Page 101: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Roseの述懐

o  ゲート・モデルが、どうしたら動くようになるのか、全く見えなかった。2003年には、決断をしなければと思うようになった。選択肢は二つあった。一つは、研究をあきらめること。もう一つの選択は、何か他のものを作ることだった。

o  この時、1999年の4月にScience誌に掲載された、Brookeらの”Quantum Annealing of a disordered magnet”という論文に注目した。彼らは、計算を古典的なスピン問題に変換して、それを量子アニーリング効果を使って解くことを提案していた。

Page 102: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Roseの述懐

o  二つの重要なアイデアが生まれた。 o  一つは、古典的なスピン問題を攻略する超伝導

プロセッサーを作ること。 o  あと一つは、プロセッサーが有用な解を高速で返

すように、量子効果を利用することである。

Page 103: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

D-Waveマシンの動作のモデル

ここでは、D-Wave社のチュートリアル  “Quantum Computing Primer”にしたがって、D-Waveマシンの動作のモデルを紹介する。それは、「古典的スピン問題」のいい説明にもなっている。 http://www.dwavesys.com/en/dev-tutorial-intro.html

Page 104: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

いくつかのスイッチがあったとしよう。この例では、5つのスイッチがある。それぞれのスイッチには、数字が割り当てられている。+1,+0.2,+0.5, -0.7,-0.8,+0.4のように。これをbiasと呼ぼう。

Page 105: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

スイッチは、ONまたはOFFの状態を取るものとしよう。 この例では、3つのスイッチがOFFで、2つのスイッチがONの状態になっている。スイッチがONの時には+1を、スイッチがOFFの時には-1を割り当てよう。

OFF

-1

OFF

-1

OFF

-1

OFF

-1

ON

+1

ON

+1

Page 106: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

それぞれのスイッチに割り当てられたbiasの値と、スイッチのON,OFFの状態を表す+1,-1を掛けた数字を、全部足しあわせた量を考えてみよう。この例の場合には、その量は、-3.6になる。

Page 107: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

式で書くと次のようになる。

hは、それぞれの スイッチに割り当てら れたbiasの値

sは、それぞれの スイッチのON,OFFの 状態に対応した、 +1,-1の値

Page 108: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

次のような問題を考える。 「biasが与えられた時、このE(s)を最小にするスイッチの状態を求めよ。」

hは、それぞれの スイッチに割り当てら れたbiasの値

sは、それぞれの スイッチのON,OFFの 状態に対応した、 +1,-1の値

Page 109: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

この問題を解くのは、簡単である。 biasがマイナスの時にはスイッチをONにし、biasがプラスの時にはスイッチをOFFにすれば、全ての項がマイナスになり最小値を与える。先の例が、答えになっている。

Page 110: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

問題を少し難しくしよう。今までは、一つのスイッチにbiasが割り当てられていただけだったが、今度は、二つのスイッチのあいだに、weight Jを割り当てよう。 この例では、それぞれのスイッチに、bias +1と -0.8が、二つのスイッチのあいだに、weight -1 が割り当てられている。

Page 111: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

E(s)の値は、二つのスイッチのON,OFFに応じて、次のように計算される。OFF,OFFの時、最小値を取る。 ON,ON +1 x +1 -1 x +1 x +1 =-0.8 -0.8 x +1 ON,OFF +1 x +1 -1 x +1 x -1 =+1.2 -0.8 x -1 OFF,ON +1 x -1 -1 x -1 x +1 =-0.8 -0.8 x +1 OFF,OFF +1 x -1 -1 x -1 x -1 =-2.8 -0.8 x -1

Page 112: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

スイッチが5個だから、スイッチのON,OFFの組み合わせは、2^5=32通り。その全てについてE(s)を計算して、最小のものを選べばいい。ただ、スイッチの数が増えると、場合の数が増えて、急に難しくなる。

これはどうだろう?

Page 113: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

 この式を最小に出来るか? 

Page 114: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子アニーリング

Page 115: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

http://ichiya.com/Cutlery/HowScissors/page4.html

焼きなまし 焼き入れ 焼き戻し

Page 116: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

金属やガラスの熱処理操作の一。 金属・ガラスをある温度に加熱したのち、 ゆっくりと冷却すること

http://www.weblio.jp/content/ %E7%84%BC%E3%81%8D%E9%88%8D%E3%81%97

Page 117: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

スイッチが、ON,OFF両方の状態をとるSuperpositionの状態で、高いエネルギーを加える。

Page 118: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

加えるエネルギーを、少しずつ下げていく。

Page 119: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

OFF

OFF ON

OFF

ON

ON

加えるエネルギーがゼロになると、E(s)が最小になるような状態に落ち着く。この時のスイッチの状態を読み出せば、E(s)を最小にする問題の解が得られる。

Page 120: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

得られるス ピンの向き 上下方向

加えるエネル ギーの向き   横方向

Page 121: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

http://www.sciencedirect.com/science/article/pii/S037015731200347X

gradient descent method

Page 122: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 123: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

D-Waveのハードウェアと 機械語レベルのプログラミング

Page 124: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

SQUID superconducting quantum interference device

D-Waveマシンの qubitを構成して いるのは、SQUID である

Page 125: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

いくつかの技術的 な理由から、複数 のSQUIDが組み 合わされて、一つ のqubitを構成し ている。

Qubit

Qubitの実際の形状 チップ上のQubitは、 長い矩形状に引き延 ばされて、その周囲 にいくつかの周辺素 子が配列されている。

Page 126: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 127: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 128: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 129: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

縦四列、横四列に配置された8個のqubitの模式図 青色の部分は、couplerと呼ばれ、交差するqubit 同士を結合する。

Page 130: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

プログラム可能なプロセッサーの 二つのタイプ qubitとcoupler

Page 131: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

プログラム可能なプロセッサー・デバイス  

Page 132: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

問題をハードウェアで解く 例: 2変数の場合

Page 133: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

3変数の場合  

Page 134: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

3変数の場合  

エネルギーの最小値は、 量子アニーリングで自動的 に見つかる

Page 135: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

機械語レベルのプログラミング

D-Waveのマシン語レベルのプログラムとは、 hi と Jij を与えること。

Page 136: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Superposition状態の 量子ビットが入力

最良のビットの配置が 出力される   

エネルギーを最小にする問題と して、プログラムを与える

量子アニーリング

Page 137: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

        量子アニーリング

すべてのqubitが superpositionにある状態から始める

 8個のqubitなら、可能な 28の状態が同時に  存在することになる

Page 138: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

        量子アニーリング

superposition状態が破れると、h, Jの設定に   応じて、それぞれのノードは、エネルギーが最小   になるような、+1 または -1の値に落ち着く。

Page 139: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

技術的なことになるが、この図は、 external couplerがqubit間を どのように結合しているかを示して いて、興味深いものだ。

Page 140: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

プロセッサーの処理

1.  (h、J)の値を、サブシステムを利用してセットする。 2.  チップが操作可能な温度にまで下がるのを待つ。 3.  QA(Quantum Annealing)アルゴリズムを実行する。 4.  Readoutサブシステムを利用して、全てのqubitの値を

読み出す。 5.  2-4のプロセスを、ユーザーがセットした回数繰り返す。

Page 141: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

D-Waveマシンのプログラミング 生成関数と最適化問題への還元

ここでは、D-Wave社のコンパイラーBlackboxと、それに基づいたプログラミングの手法について説明する。 generating functionは、objective function とも呼ばれているようだ。

Page 142: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

なぜ、コンパイラーが必要か?

o  D-Waveマシン・チップの量子アニーリングに基づく、「計算」の実行能力は強力だが、ハードウェア・レベルで(hi , Jij)を与えるという形でプログラムを組むのは困難である。なにより、解くべき問題と機械語レベルのプログラムとの対応が見えにくい。

o  D-Waveマシンでのプログラム開発は、基本的に、問題に対応した「生成関数」を定義し、その最小値を求める問題に還元する形で行われる。その「生成関数」を、コンパイラーが、ハードウェア・レベルでのエネルギーの基底状態を求める問題に変換する。

Page 143: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

キー・コンセプトは、「生成関数」

o  まず最初に、開発者は、入力として0か1のビット列を取り、実数値を出力する関数をコードする。開発者によって与えられたこの関数を、生成関数(generating function)、G(x)と呼ぶ。

o  数学的には、生成関数を次のように書く。       G(x1, x2, ..., xN) ここで、xkは、0か1の値を取る変数で、この例では、全部でN個ある。G(x1, x2, ..., xN) によって返される値は、実数でなければならない。

Page 144: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

生成関数の例

o  生成関数の簡単な例を挙げてみよう。     G(x1,x2)=x1+2x2

o  この例の場合、N=2個の変数がある。そして、関数 G(x1,x2) は、実数値を取る(この例では整数値だが、もちろん、問題ない) 可能な入力の組み合わせは、 2N = 4 で四通りある。それらを全部書けば、次のようになる。      G(0,0)=0,      G(1,0)=1,      G(0,1)=2,      G(1,1)=3.

Page 145: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

アプリケーション プログラム・サンプル

D-Wave社のTutorialには、現実世界の問題を生成関数を見つけることで解く、多くのアプリケーション・レベルのプログラム例が挙げられている。ここでは、そのいくつかを紹介する。 http://www.dwavesys.com/en/dev-tutorials.html

Page 146: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 147: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 148: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

部分和問題: 例:5つの数字 {-7,-3,-2,5,8} からいくつかの数字を選んで、和をゼロにせよ。

答え  {-2, -3, 5}

Page 149: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

それぞれの数字を、0か1の値を取る、生成関数の変数に対応させる

Page 150: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

次のような生成関数が考えられる。

Page 151: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

o  なぜ、2乗しているのか? 量子コンピュータは、generating functionが最小になる値を探す。2乗なしだと、G(1,1,1,0,0) = -12が最小の値として返ってくる。

o  ただ、見落としがある。この関数は、全ての引数がゼロの時にもゼロになるのだが、これは求めるものではない。この解を除外する為に、generating functionを、次の形にする。

Page 152: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

D-Waveマシンの出力

>> The best bit string we found was: [0 1 1 1 0] >> The subset this corresponds to is: [-3, -2, 5] >> Its energy is: 0 >> We found a solution... this set has a subset that sums to zero

http://www.dwavesys.com/en/dev-tutorial-getting-started.html

Page 153: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

巡回セールスマン問題

http://www.dwavesys.com/en/dev-tutorial-tsp.html

Page 154: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 155: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

問題の設定

1.  最小の長さの経路を探す。可能な限り短い経路を選ぶこと。

2.  全てのノードを、正確に一回だけ訪れるものとする。こうした要請を満たす経路を選ぶこと。

3.  選ばれた経路は、単純なループであることとする。すなわち、地図上のノードと同じ数の辺を含む経路を選ぶこと。

Page 156: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

生成関数への翻訳の準備

o  全てのノードと辺に番号を振る。 o  生成関数は、可能な全ての経路(問題の条件を満たして

いるとは限らない)の辺を表現している[0,1,0,1,1,...,]の形のベクターWを引数に取る。 ここで、i番目の1は、辺iが経路に含まれていることを、0は、この辺が経路に含まれないことを表す。

o  それぞれの辺xには、[node_index1, node_index2, length]の形のデータが割り当てられている。ここでnode_index1, node_index2は、辺xの両端のノード、lengthは辺xの長さを表している。

o  全ての辺の長さからなるベクター[l1, l2, l3, ...., lN]をEとする。

Page 157: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

問題の生成関数への翻訳

o  条件1に対応する生成関数G1は、経路の長さ、すなわち経路上にある全ての辺の長さの和だから、ベクターWとベクターEの内積で与えられる。       G1=E ・ W

o  条件2に対応する生成関数G2は、次の形になる。 ここでAは、この項がゼロ以外の値を取る時に与えられるペナルティで大きな値にしておく。(次のBも同じである)

o  条件3に対応する生成関数G3は、次の形になる。

o  よって求める生成関数Gは、 G=G1+G2+G3 である。

Page 158: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Quantum Unsupervised Feature Learning (QUFL)

http://www.dwavesys.com/en/dev-tutorial-qufl.html

Page 159: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 160: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子コンピュータでの Supervised Feature Learning

Page 161: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

量子コンピュータでの Unsupervised Feature Learning

Page 162: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Unsupervised Feature Learningとその量子アルゴリズム

o  Unsupervised Feature Learning (UFL)は、量子コンピュータの応用で、もっとも期待されている分野の一つである。現在のコンピュータでは、16,000コアのクラスターを三日間動かし続けて得る結論を、量子コンピュータは、瞬時に得る可能性があるからである。

o  残念ながら、Quantum Unsupervised Feature Learning (QUFL)と呼ばれるそのアルゴリズムを紹介することは、ここでは割愛した。

o  その背景にある理論自体、筆者がまだ良く理解出来ていないことが大きいのだが、とても興味深いものに思える。参考資料に、この分野の代表的な研究者である、Andrew Ngの講演スライドの一部を紹介した。

Page 163: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

参考資料

Page 164: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ

Unsupervised Feature Learning and Deep Learning

2011年 Andrew Ng http://icml2011speechvision.files.wordpress.com/2011/06/visionaudio.pdf

Page 165: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 166: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 167: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 168: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 169: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 170: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 171: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 172: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 173: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 174: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 175: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 176: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ
Page 177: 量子コンピュータの新しい潮流 -- D-Waveのアプローチ