ข้อสอบสามัญเครื่องกล Plant 3/2549

Preview:

Citation preview

  • 8/14/2019 Plant 3/2549

    1/14

    1

    2 (Power Plant / Gas Turbine) 3/2549

    2

    1 50 (X) ( 1 )1. Fission

    . 2-3 . 200 MeV

    . 3 Fission fragments .

    2. Moderator, Control rod Coolant . Moderator Fission

    Fission . Control rod

    Fission. Coolant .

    3. Fission Heat exchanger/Steam generator Secondary loop Turbine . Pressurized water reactor (PWR).. Boiling water reactor (BWR).. Pressurized heavy water reactor (PHWR)..

  • 8/14/2019 Plant 3/2549

    2/14

    2

    2 (Power Plant / Gas Turbine) 3/2549

    4. Pressurized water reactor (PWR) Boiling water reactor (BWR)

    . PWR Turbine . BWR 2 Coolant loops Secondary loop Turbine. Primary loop

    PWR BWR.

    5. Moderator Pressurized heavy water reactor (PHWR).. Low pressurized water (H2O).. High pressurized water (H

    2O).

    . Heavy water (D2O).

    . Liquid sodium.6. PWR

    . Coolant Primary loop

    . Turbine . .

    7. BWR. Coolant Primary loop . Turbine . .

    8. . Greenhouse gas . 18

    . Capacity factor 90% ( USA) base-load.

  • 8/14/2019 Plant 3/2549

    3/14

    3

    2 (Power Plant / Gas Turbine) 3/2549

    9. Radioactive decay _____

    . .

    . .

    10. (t1/2) ()

    ()

    . () . -244 ( 80.8 ) . -233 ( 20.9 ) .

    11. . . . .

    12. Combined cycle

    . SOX. NO

    X

    . Particulates. CO

  • 8/14/2019 Plant 3/2549

    4/14

    4

    2 (Power Plant / Gas Turbine) 3/2549

    13. Fossil

    . SOX. NOX. Particulates. 3

    14. . .

    . . 3

    15. SOX

    . . . .

    16. SOX. Greenhouse effect. . . 3

    17. NOX. NO N2O. NO2 NO3. NO NO2. 3

    18. NOX Fossil. NO. NO2

    . N

    2

    . N2O3

  • 8/14/2019 Plant 3/2549

    5/14

    5

    2 (Power Plant / Gas Turbine) 3/2549

    19. NOX

    . . 2 . 3 . 4

    20. NOX. N O2. N O2

    . N Flame chilling. N

    21. Load-duration curve . . .

    . 22. Load factor

    . . . .

    23. kWh. . . Operating cost. . .

  • 8/14/2019 Plant 3/2549

    6/14

    6

    2 (Power Plant / Gas Turbine) 3/2549

    24. (Variable cost)

    . . . .

    25. . . Load-duration curve

    . .

    26. 2 Demand Demand . (Fixed costs) Operate. (Variable costs).

    . 27. 15-20%

    . . Fixed cost . .

    28. Peak Off-peak. Off-peak. Off-peak. Supply Demand . Peak

  • 8/14/2019 Plant 3/2549

    7/14

    7

    2 (Power Plant / Gas Turbine) 3/2549

    29. Base load

    . Fixed cost . . . Heat rate

    30. 4 .

    . Combined cycle. .

    31. Cogeneration . .

    . . 2 Power Cycles Combined Cycle

    32. Cogeneration Topping Cycle . Power Cycle

    Process. Process

    . Power Cycle

    Process. 2 Power Cycles (Binary Power Cycles)

    33. Cogeneration . Combined Cycle. Gas Turbine Cogeneration

    . Steam Turbine Cogeneration

    . Internal Combustion Engine Cogeneration

  • 8/14/2019 Plant 3/2549

    8/14

    8

    2 (Power Plant / Gas Turbine) 3/2549

    34. Cogeneration

    . Gas Turbine Cogeneration. Steam Turbine Cogeneration. Combined Cycle. Internal Combustion Engine Cogeneration

    35. Back Pressure Steam Turbine Turbine . .

    . .

    36. Steam Turbine Cogeneration . Steam Turbine Cogeneration. Gas Turbine Cogeneration. Combined Cycle Cogeneration. Internal Combustion Engine Cogeneration

    37. Cogeneration 10 . Steam Turbine Cogeneration. Gas Turbine Cogeneration. Combined Cycle Cogeneration. Internal Combustion Engine Cogeneration

    38. Cogeneration . . . .

  • 8/14/2019 Plant 3/2549

    9/14

    9

    2 (Power Plant / Gas Turbine) 3/2549

    39. Steam Turbine Steam Turbine Cogeneration

    . Back-pressure Turbine. Extraction Turbine. Pass-out Turbine.

    40. Cogeneration Part Load. Gas Turbine Cogeneration. Steam Turbine Cogeneration

    . Combined Cycle Cogeneration. Internal Combustion Engine Cogeneration

    41. 1 MW Cogeneration . Steam Turbine Cogeneration. Gas Turbine Cogeneration. Internal Combustion Engine Cogeneration

    . Combined Cycle Cogeneration42. Cogeneration 1 MW

    4 MW . 40%. 45%. 50%. 60%

    43. Cogeneration 1 MW 1 MW Heat toPower Ratio . 1. 2. 4. 6

  • 8/14/2019 Plant 3/2549

    10/14

    10

    2 (Power Plant / Gas Turbine) 3/2549

    44. Cogeneration Steam Turbine 2

    . Steam Turbine Cogeneration. Gas Turbine Cogeneration. Combined Cycle Cogeneration. Internal Combustion Engine Cogeneration

    45. Cogeneration . Annual Operating Cost . Annual Operating Cost

    . Cogeneration . Cogeneration, Annual Operating Cost

    46. Gas Turbine Cogeneration Combined Cycle Cogeneration . By-pass Stack. Steam Turbine . 2 . Condenser

    47. Cogeneration . Internal Combustion Engine Cogeneration. Gas Turbine Cogeneration. Combined Cycle Cogeneration. Steam Turbine Cogeneration

  • 8/14/2019 Plant 3/2549

    11/14

    11

    2 (Power Plant / Gas Turbine) 3/2549

    48. QHh

    E e 2 .

    .

    .

    .

    49. Cogeneration . Steam Turbine Cogeneration. Gas Turbine Cogeneration. Combined Cycle Cogeneration. Internal Combustion Engine Cogeneration

    50. Internal Combustion Engine Cogeneration

    . . . .

  • 8/14/2019 Plant 3/2549

    12/14

    12

    2 (Power Plant / Gas Turbine) 3/2549

    2 2 ( 25 )

    1. 1 Air Standard Cycle 1 bar 33 o C Compressor 8 1,100 o C Cp = 1.005 kJ/kg-K k = 1.4

    . Isentropic Compressor Gas Turbine.1 Net Work Cycle kg .2 Heat Input Cycle kg .3 Cycle Efficiency

    T2T

    2= T

    1{P

    2/P

    1}

    (k-1)/k= (33+273) (8)

    (1.4-1)/1.4= 554.3 K

    Qin = 2Q3 = cp (T3 T2) 1.005 x ((1100+273)- 554.3) = 822.79 kJ/kg .2 T4T

    4= T

    3/{P

    2/P

    1}

    (k-1)/k= 1373 / (8)

    (1.4-1)/1.4= 757.95 K

    Qout = 4Q1 = cp (T1 T4) = 1.005 x (303 757.95) = - 454.21 kJ/kg

    Net work, W

    W = Qin + Qout = 822.79 - 454.21 = 368.57 kJ/kg .1

    Cycle Efficiency = W/Qin = 365.55 / 822.79 = 0.4479 = 44.8 % .3

  • 8/14/2019 Plant 3/2549

    13/14

    13

    2 (Power Plant / Gas Turbine) 3/2549

    . Isentropic Compressor Gas Turbine 90 %

    .1 Net Work Cycle kg .2 Heat Input Cycle kg .3 Cycle Efficiency

    Isentropic Compressor work, WCI = cp (T

    1 T

    2) = 1.005 x (33+273 - 554.3 ) = - 249.54 kJ/kg

    Compressor work, WC = cp (T1 T2) = WCI/Eff = - 249.54/0.9 = -277.27 kJ/kg

    T2

    = 277.27 / 1.005 306 = 581.89 K

    Isentropic Turbine work, WTI = cp (T3 T4) = 1.005 x (1100+273 - 757.95 ) = 618.11 kJ/kg

    Turbine work, WT = cp (T3 T

    4) = WTI X Eff = 618.11 x 0.9 = 556.31 kJ/kg

    Net work, W = WT + WC = 556.31 - 277.27 = 279.03 kJ/kg .1

    Qin = 2Q3 = cp (T3 T2) 1.005 x ((1100+273) 581.89) = 795.06 kJ/kg .2

    Cycle Efficiency = W/Qin = 279.03 / 795.06 = 0.4479 = 35.06 % .3

    2. (Gas Turbine Cogeneration Plant) 1 Air Standard Cycle 1bar 33 o C Compressor 8 1,100 o C 10 MW Heat Recovery Steam Generator, HRSG (Saturated Steam) 10 bar 120 o C HRSG (Saturated Water) 10 bar Enthalpy = 763kJ/kg (Saturated Steam) 10 bar Enthalpy = 2,778 kJ/kg

  • 8/14/2019 Plant 3/2549

    14/14

    14

    2 (Power Plant / Gas Turbine) 3/2549

    ton/hr

    T4T

    4= T

    3/{P

    2/P

    1}

    (k-1)/k= 1373 / (8)

    (1.4-1)/1.4= 757.95 K

    T2T2 = T1{P2/P1}

    (k-1)/k= (33+273) (8)

    (1.4-1)/1.4= 554.3 K

    Qin = 2Q3 = cp (T3 T2) 1.005 x ((1100+273)- 554.3) = 822.79 kJ/kg

    T4T

    4= T

    3/{P

    2/P

    1}

    (k-1)/k= 1373 / (8)

    (1.4-1)/1.4= 757.95 K

    Qout =

    4Q

    1= c

    p(T

    1 T

    4) = 1.005 x (303 757.95) = - 454.21 kJ/kg

    Net work, W

    W = Qin + Qout = 822.79 - 454.21 = 368.57 kJ/kg

    Mass ()Mg = Power/Net work = 10,000/368.57 = 27.13 kg/s

    Heat from hot gas, Qg = Mg X cp X (Tin Tout)

    Qg = 27.13 x 1.005 x (757.95 - (120 + 273)) = 9,951.4 kW

    Steam mass. Ms = Qg/(h2 h1) = 9,951.4/(2778 763) = 4.94 kg/s = 4.94 x 3.6 = 17.78 ton/h

Recommended