Introduction to Aspen Plus-2012

Preview:

DESCRIPTION

Introduction to Aspen Plus

Citation preview

Introduction to Aspen PlusShort Courses on Computer Applications for ChE Students

Speaker: Yi-Chang Wu ( 吳義章 )d98524013@ntu.edu.tw

PSE LaboratoryDepartment of Chemical Engineering

Nation Taiwan University

• Extractive Distillation

Extractive distillation column

Entrainer recovery column

F2

XIPA=0.999

IPA-water feed (FF)

Entrainer feed (FE)

Entrainer recycle

Entrainer makeup

D2

B2

NFE

NFF

NF2

NT = 41NFE = 7NFF = 35

NT = 24NF2 = 9

XWater=0.999D2

P = 3 atm T = 25oC F = 100 kmol/hr X IPA =0.5 X WATER =0.5

What is Aspen PlusWhat is Aspen Plus

• Aspen Plus is a market-leading process modeling tool for conceptual design, optimization, and performance monitoring for the chemical, polymer, specialty chemical, metals and minerals, and coal power industries.

3Ref: http://www.aspentech.com/products/aspen-plus.cfm

What Aspen Plus providesWhat Aspen Plus provides

• Physical Property Models– World’s largest database of pure component and phase equilibrium

data for conventional chemicals, electrolytes, solids, and polymers– Regularly updated with data from U. S. National Institute of Standards

and Technology (NIST)

• Comprehensive Library of Unit Operation Models– Addresses a wide range of solid, liquid, and gas processing equipment– Extends steady-state simulation to dynamic simulation for safety and

controllability studies, sizing relief valves, and optimizing transition, startup, and shutdown policies

– Enables you build your own libraries using Aspen Custom Modeler or programming languages (User-defined models)

Ref: Aspen Plus® Product Brochure4

More DetailedMore Detailed

• Properties analysis– Properties of pure component and mixtures (Enthalpy,

density, viscosity, heat capacity,…etc)– Phase equilibrium (VLE, VLLE, azeotrope calculation…etc)– Parameters estimation for properties models (UNIFAC method

for binary parameters, Joback method for boiling points…etc)– Data regression from experimental deta

• Process simulation– pump, compressor, valve, tank, heat exchanger, CSTR, PFR,

distillation column, extraction column, absorber, filter, crystallizer…etc

5

What course Aspen Plus What course Aspen Plus can be employed forcan be employed for

• MASS AND ENERGY BALANCES• PHYSICAL CHEMISTRY• CHEMICAL ENGINEERING THERMODYNAMICS • CHEMICAL REACTION ENGINEERING • UNIT OPERATIONS• PROCESS DESIGN • PROCESS CONTROL

6

Lesson ObjectivesLesson Objectives

• Familiar with the interface of Aspen Plus• Learn how to use properties analysis• Learn how to setup a basic process simulation

7

Problem Formulation 1: Calculation Problem Formulation 1: Calculation the mixing properties of two stream the mixing properties of two stream

1

23

4

Mixer Pump

1 2 3 4Mole Flow kmol/hr

WATER 10 0 ? ? BUOH 0 9 ? ? BUAC 0 6 ? ?

Total Flow kmol/hr 10 15 ? ?Temperature C 50 80 ? ?Pressure bar 1 1 1 10

Enthalpy kcal/mol ? ? ? ?Entropy cal/mol-K ? ? ? ?Density kmol/cum ? ? ? ?

8

Mass Balance

Energy Balance Enthalpy Entropy…

Problem Formulation 2: Problem Formulation 2: Flash SeparationFlash Separation

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

T=105 CP=1atm

What are flowrates and compositions of the two outlets?

0.0 0.2 0.4 0.6 0.8 1.0100

105

110

115

120

T (

o C)

xWater

and yWater

T-x T-y

Problem Formulation 3: Dehydration of Problem Formulation 3: Dehydration of Acetic Acid by Distillation Column Acetic Acid by Distillation Column

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

y Wat

er

xWater

1

2

39

Saturated Feed P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5

xwater=0.99

xHAc=0.9940

20Water

Acetic Acid

Water

Acetic Acid

Reflux ratio ?

Duty ?

(Optional)(Optional)

OutlineOutline

• Startup in Aspen Plus (Basic Input) (45 min)– User Interface– Basic Input: Setup, Components, Properties.

• Properties Analysis (1 hour)– Pure Component– Mixtures (phase equilibrium)

• Running Simulation (1 hour)– Blocks (Unit Operations)– Streams (flow streams)– Results

11

Introduction to Aspen Plus – Part 1Startup in Aspen Plus

12

Start with Aspen Plus

Aspen Plus User Interface

Aspen Plus StartupAspen Plus Startup

14

Interface of Aspen PlusInterface of Aspen Plus

Process Flowsheet Windows

Model Library (View| Model Library )

Stream

HelpSetupComponentsPropertiesStreamsBlocksData BrowserNext

Check ResultStopReinitializeStepStartControl Panel

Process Flowsheet Windows

Model Library (View| Model Library )

Status message15

More InformationMore Information

Help for Commands for Controlling Simulations 16

Data BrowserData Browser

• The Data Browser is a sheet and form viewer with a hierarchical tree view of the available simulation input, results, and objects that have been defined

17

Basic InputBasic Input

• The minimum required inputs to run a simulation are:– Setup– Components– Properties– Streams– Blocks

Property Analysis

Process Simulation

18

Setup – SpecificationSetup – SpecificationRun Type

Input mode

19

Components – SpecificationComponents – Specification

Input componentswith Component name or Formula

20

Input componentsInput components

Remark: If available, are

21

SpecificationSpecification

To do this Click this buttonFind components in the databanks FindDefine a custom component that is not in a databank

User Defined

Generate electrolyte components and reactions from components you entered

Elec Wizard

Reorder the components you have specified

Reorder

Review databank data for components you have specified (Retrieved physical property parameters from databanks.)

Review

22

Find ComponentsFind Components

Click “Find”

23

Find Components (cont’d)Find Components (cont’d)

24

PropertiesProperties

Process type(narrow the number ofmethods available)

Base method: IDEAL, NRTL, UNIQAC, UNIFAC…

25

Property Method Selection – AssistantProperty Method Selection – Assistant

Interactive help in choosing a property method

26

Specify Component typeChemical Systems

Is the system at high pressure?(NO)

Two liquid phases

Assistant WizardAssistant Wizard

27

28

Property Method Choice

Polar orT < Tci

No

Yes

Property Methods Decision Diagram

Electrolyte

No Pseudo Components

Pr < 0.1 & T < Tci

No

Yes

ELECNRTL

Yes

PENG-ROBPR-BM

LK-PLOCKRK-SOAVE

RKS-BM

No High Pressure?

CHAO-SEAGRAYSON

BK10

BK10IDEAL

Yes

No

Interaction ParametersAvailable?

Interaction ParametersAvailable?

Yes

No

PSRKRKSMHV2

SR-POLARPRWS

RKSWSPRMHV2

RKSMHV2

Liq-Liq

Liq-Liq

Yes

No

Yes

No

NRTLUNIQAC

etc.

WILSONNRTL

UNIQACetc.

UNIF-LL

UNIFACUNIF-LBYUNIF-DMD

Yes

No

Yes

No

Vapor-phase Association?

WILSON, WILS-RK, WILS-LR, WILS-GLR, NRTL, NRTL-RK, NRTL-2,

UNIQUAC, UNIQ-RK, UNIQ-2, UNIFAC, UNIF-LL, UNIF-LBY, UNIF-DMB

WILS-HF

WILS-NTH, WILS-HOC, NRTL-NTH, NRTL-HOC, UNIQ-NTJ, UNIQ-HOC,

UNIF-HOC

Degree of Polymerization

No

Yes

Hexamers

Dimers

A

A

A

A

A

Reference: http://www.et.byu.edu/groups/uolab/files/aspentech/

Thermodynamic Model – NRTLThermodynamic Model – NRTL

NRTL

29

NRTL – Binary ParametersNRTL – Binary Parameters

Click “NRTL” and then built-in binary parameters appear automatically if available.

30

Access Properties Models and Access Properties Models and ParametersParameters

31

Review Databank Data

Review Databank DataReview Databank Data

Description of each parameter

Including:Ideal gas heat of formation at 298.15 KIdeal gas Gibbs free energy of formation at 298.15 KHeat of vaporization at TBNormal boiling pointStandard liquid volume at 60°F….

32

Pure Component Pure Component Temperature-Dependent PropertiesTemperature-Dependent Properties

CPIGDP-1 ideal gas heat capacity

CPSDIP-1 Solid heat capacity

DNLDIP-1 Liquid density

DHVLDP-1 Heat of vaporization

PLXANT-1 Extended Antoine Equation

MULDIP Liquid viscosity

KLDIP Liquid thermal conductivity

SIGDIP Liquid surface tension

UFGRP UNIFAC functional group

33

Example: PLXANT-1 Example: PLXANT-1 (Extended Antoine Equation)(Extended Antoine Equation)

?

Corresponding Model

Click “ ?” and then click where you don’t know ↖

34

Example: CPIGDP-1 Example: CPIGDP-1 (Ideal Gas Heat Capacity Equation)(Ideal Gas Heat Capacity Equation)

?

Corresponding Model

35

SummarySummary

So far, we have finished the basic settings including setup, components, and properties.This is enough to perform properties analysis.

36

File Formats in Aspen PlusFile Formats in Aspen Plus

37

File Type Extension Format Description

Document *.apw Binary File containing simulation input and results andintermediate convergence information

Backup *.bkp ASCII Archive file containing simulation input andresults

History *.his Text Detailed calculation history and diagnosticmessages

Problem Description

*.appdf Binary File containing arrays and intermediateconvergence information used in the simulationcalculations

Introduction to Aspen Plus – Part 2Properties Analysis in Aspen Plus

38

Overview of Property AnalysisOverview of Property Analysis

Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

39

RemindingReminding

• When you start properties analysis, you MUST specify components , properties model, and corresponding model parameters. (Refer to Part I)

40

Properties Analysis – Pure Component Properties Analysis – Pure Component

Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

41

Properties Analysis – Pure Component Properties Analysis – Pure Component

42

Available PropertiesAvailable PropertiesProperty (thermodynamic) Property (transport)

Availability Free energy Thermal conductivityConstant pressure

heat capacity Enthalpy Surface tension

Heat capacity ratio Fugacity coefficient ViscosityConstant volume heat

capacityFugacity coefficient pressure correction

Free energy departure Vapor pressure Free energy departure

pressure correction Density

Enthalpy departure EntropyEnthalpy departure pressure correction Volume

Enthalpy of vaporization Sonic velocity

Entropy departure 43

Example1: CP (Heat Capacity)Example1: CP (Heat Capacity)

1. Select property (CP)

2. Select phase

3. Select component

4. Specify range of temperature

5. Specify pressure

6. Select property method

7. click Go to generate the results

Add “N-butyl-acetate”

44

Example1: Calculation Results of CPExample1: Calculation Results of CP

Data results 45

Example2: H (Enthalpy)Example2: H (Enthalpy)

1. Select property (H)

2. Select phase

3. Select component

4. Specify range of temperature

5. Specify pressure

6. Select property method

7. click Go to generate the results46

Example: Calculation Results of HExample: Calculation Results of H

Data results

47

Properties Analysis – Binary ComponentsProperties Analysis – Binary Components

Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

48

Properties Analysis – Binary ComponentsProperties Analysis – Binary Components

Binary Component Properties AnalysisBinary Component Properties Analysis

Use this Analysis type To generate

Txy Temperature-compositions diagram at constant pressure

Pxy Pressure-compositions diagram at constant temperature

Gibbs energy of mixing

Gibbs energy of mixing diagram as a function of liquid compositions. The Aspen Physical Property System uses this diagram to determine whether the binary system will form two liquid phases at a given temperature and pressure.

Example: T-XYExample: T-XY1. Select analysis type (Txy)

2. Select phase (VLE, VLLE)

2. Select two component

4. Specify composition range

5. Specify pressure

6. Select property method

3. Select compositions basis

7. click Go to generate the results

Example: calculation result of T-XYExample: calculation result of T-XY

Data results

Example: Generate XY plotExample: Generate XY plot

Click “plot wizard” to generate XY plot

Example: Generate XY plot (cont’d)Example: Generate XY plot (cont’d)

Property Analysis – GenericProperty Analysis – Generic

Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

55

Properties Analysis – TernaryProperties Analysis – Ternary

Ternary MapTernary Map

4. Select phase (VLE, LLE)

1. Select three component

5. Specify pressure

3. Select property method

2. Specify number of tie line

7. click Go to generate the results

6. Specify temperature (if LLE is slected)

Calculation Result of Ternary Map (LLE)Calculation Result of Ternary Map (LLE)

Data results

Property Analysis – Conceptual DesignProperty Analysis – Conceptual Design

Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

59

(Optional)

Conceptual DesignConceptual Design

Azeotrope AnalysisAzeotrope Analysis

Azeotrope AnalysisAzeotrope Analysis

4. Select phase (VLE, LLE)

1. Select components (at least two) 2. Specify pressure

3. Select property method

5. Select report Unit

6. click Report to generate the results

Error MessageError Message

Close analysis input dialog box (pure or binary analysis)

Azeotrope Analysis ReportAzeotrope Analysis Report

Ternary MapsTernary Maps

Ternary MapsTernary Maps

4. Select phase (VLE, LLE)1. Select three components

2. Specify pressure

3. Select property method

5. Select report Unit

6. Specify temperature of LLE (If liquid-liquid envelope is selected)

6. Click Ternary Plot to generate the results

Ternary MapsTernary Maps

Ternary Plot Toolbar:Add Tie line, Curve, Marker…

Change pressure or temperature

Introduction to Aspen Plus – Part 3 Running Simulation in Aspen Plus

68

Example 1: Calculate the mixing Example 1: Calculate the mixing properties of two stream properties of two stream

1

23

4

Mixer Pump

1 2 3 4Mole Flow kmol/hr

WATER 10 0 ? ? BUOH 0 9 ? ? BUAC 0 6 ? ?

Total Flow kmol/hr 10 15 ? ?Temperature C 50 80 ? ?Pressure bar 1 1 1 10

Enthalpy kcal/mol ? ? ? ?Entropy cal/mol-K ? ? ? ?Density kmol/cum ? ? ? ?

69

Setup – SpecificationSetup – Specification

Select Flowsheet

70

Reveal Model LibraryReveal Model Library

View|| Model Libraryor press F10

71

Adding a MixerAdding a Mixer

Click “one of icons” and then click again on the flowsheet window

Remark: The shape of the icons are meaningless

72

Adding Material StreamsAdding Material Streams

Click “Materials” and then click again on the flowsheet window

73

Adding Material Streams (cont’d)Adding Material Streams (cont’d)

When clicking the mouse on the flowsheet window,arrows (blue and red) appear.

74

Adding Material Streams (cont’d)Adding Material Streams (cont’d)

When moving the mouse on the arrows, some description appears.

Blue arrow: Water decant for Free water of dirty water.

Red arrow(Left) Feed (Required; one ore more if mixing material streams)

Red arrow(Right): Product (Required; if mixing material streams)

75

Adding Material Streams (cont’d)Adding Material Streams (cont’d)

After selecting “Material Streams”, click and pull a stream line.Repeat it three times to generate three stream lines.

76

Reconnecting Material Streams Reconnecting Material Streams (Feed Stream)(Feed Stream)

Right Click on the stream and select Reconnect Destination

77

Reconnecting Material Streams Reconnecting Material Streams (Product Stream)(Product Stream)

Right Click on the stream and select Reconnect Source

B1

1

2

3

78

Specifying Feed ConditionSpecifying Feed Condition

Right Click on the stream and select Input

79

Specifying Feed ConditionSpecifying Feed Condition

You must specify two of the following conditions:TemperaturePressureVapor fraction

You can enter stream composition in terms of component flows, fractions, or concentrations.

If you specify component fractions, you must specify the total mole, mass, or standard liquid volume flow.

80

Specifying Feed Condition (cont’d)Specifying Feed Condition (cont’d)

1 2

81

Specifying Input of MixerSpecifying Input of Mixer

Right Click on the block and select Input

82

Specifying Input of Mixer (cont’d)Specifying Input of Mixer (cont’d)

Specify Pressure and valid phase

The corresponding description about this blank:Outlet pressure if value > 0Pressure drop if value 0≦

83

Run SimulationRun Simulation

Click ► to run the simulation

Check “simulation status”“Required Input Complete” means the input is ready to run simualtion

Run Start or continue calculations

Step Step through the flowsheet one block at a time

Stop Pause simulation calculations

Reinitialize Purge simulation results

84

Status of Simulation Results Status of Simulation Results

Message Means

Results available The run has completed normally, and results are present.

Results with warnings

Results for the run are present. Warning messages were generated during the calculations. View the Control Panel or History for messages.

Results with errors Results for the run are present. Error messages were generated during the calculations. View the Control Panel or History for messages.

Input Changed

Results for the run are present, but you have changed the input since the results were generated. The results may be inconsistent with the current input.

85

Stream ResultsStream Results

Right Click on the block and select Stream Results

86

1 2 3Substream: MIXED Mole Flow kmol/hr

WATER 10 0 10 BUOH 0 9 9 BUAC 0 6 6

Total Flow kmol/hr 10 15 25Total Flow kg/hr 180.1528 1364.066 1544.218

Total Flow cum/hr 0.18582 1.74021 1.870509Temperature C 50 80 70.08758

Pressure bar 2 1 1Vapor Frac 0 0 0Liquid Frac 1 1 1Solid Frac 0 0 0

Enthalpy kcal/mol -67.81 -94.3726 -83.7476Enthalpy kcal/kg -3764.03 -1037.77 -1355.82Enthalpy Gcal/hr -0.6781 -1.41559 -2.09369

Entropy cal/mol-K -37.5007 -134.947 -95.6176Entropy cal/gm-K -2.0816 -1.48395 -1.54799Density kmol/cum 53.81564 8.619647 13.36534

Density kg/cum 969.5038 783.851 825.5604Average MW 18.01528 90.93771 61.76874

Liq Vol 60F cum/hr 0.1805 1.617386 1.797886

Pull down the list and select “Full” to show more properties results.

87

Enthalpy and Entropy

Change Units of Calculation ResultsChange Units of Calculation Results

88

Setup – Defining Your Own Units Set Setup – Defining Your Own Units Set

89

Setup – Report OptionsSetup – Report Options

90

Stream Results with Format of Stream Results with Format of Mole FractionMole Fraction

91

Add Pump BlockAdd Pump Block

92

Add A Material StreamAdd A Material Stream

93

Connect StreamsConnect Streams

94

Pump – Specification Pump – Specification

2. Specify pump outlet specification(pressure, power)

1. Select “Pump” or “turbine”

3. Efficiencies (Default: 1)

95

Run SimulationRun Simulation

Click ► to generate the results

Check “simulation status”“Required Input Complete”

96

Block Results (Pump)Block Results (Pump)

Right Click on the block and select Results

97

98

Streams ResultsStreams Results

99

Calculation Results Calculation Results (Mass and Energy Balances)(Mass and Energy Balances)

1

23

4

Mixer Pump

1 2 3 4Mole Flow kmol/hr

WATER 10 0 10 10 BUOH 0 9 9 9 BUAC 0 6 6 6

Total Flow kmol/hr 10 15 25 25Temperature C 50 80 70.09 71.20Pressure bar 1 1 1 10

Enthalpy kcal/mol -67.81 -94.37 -83.75 -83.69 Entropy cal/mol-K -37.50 -134.95 -95.62 -95.46 Density kmol/cum 969.50 783.85 825.56 824.29

100

ExerciseExercise12 4

6

Mixer Pump3

5

1 2 3 4 5 6Mole Flow kmol/hr

Water 10 0 0 ? ? ? Ethanol 0 5 0 ? ? ?

Methanol 0 0 15 ? ? ?Total Flow kmol/hr 10 15 15 ? ? ?

Temperature C 50 70 40 ? ? ?Pressure bar 1 1 1 1 4 2

Enthalpy kcal/mol ? ? ? ? ? ?Entropy cal/mol-K ? ? ? ? ? ?Density kmol/cum ? ? ? ? ? ?

101Please use Peng-Robinson EOS to solve this problem.

Example 2: Flash SeparationExample 2: Flash Separation

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

T=105 CP=1atm

What are flowrates and compositions of the two outlets?

0.0 0.2 0.4 0.6 0.8 1.0100

105

110

115

120

T (

o C)

xWater

and yWater

T-x T-y

Input ComponentsInput Components

Thermodynamic Model: NRTL-HOCThermodynamic Model: NRTL-HOC

Check Binary ParametersCheck Binary Parameters

Association parameters of HOCAssociation parameters of HOC

Binary Parameters of NRTLBinary Parameters of NRTL

Binary AnalysisBinary Analysis

T-xy plotT-xy plot

1. Select analysis type (Txy) 2. Select phase (VLE, VLLE)

2. Select two component

4. Specify composition range

5. Specify pressure

6. Select property method3. Select compositions basis

7. click Go to generate the results

Calculation Result of T-xyCalculation Result of T-xy

Data results

Generate xy plotGenerate xy plot

Generate xy plot (cont’d)Generate xy plot (cont’d)

Flash SeparationFlash Separation

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

T=105 CP=1atm

What are flowrates and compositions of the two outlets?

0.0 0.2 0.4 0.6 0.8 1.0100

105

110

115

120

T (

o C)

xWater

and yWater

T-x T-y

Add Block: Flash2Add Block: Flash2

Add Material StreamAdd Material Stream

Specify Feed ConditionSpecify Feed Condition

Saturated Feed (Vapor fraction=0) P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

Block Input: Flash2Block Input: Flash2

Flash2: SpecificationFlash2: Specification

T=105 CP=1atm

Required Input IncompleteRequired Input Incomplete

Close binary analysis window

Connot click ► to run simulation

Required Input CompleteRequired Input Complete

Click ► to run simulation

Stream ResultsStream Results

Stream Results (cont’d)Stream Results (cont’d)

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

T=105 CP=1atm

42.658 kmol/hr zwater=0.501 zHAc=0.409

57.342 kmol/hr zwater=0.432 zHAc=0.568

1

2

39

Saturated Feed P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5

xwater=0.99

xHAc=0.99

40

20

Distillation SeparationDistillation Separation

• There are two degrees of freedom to manipulate distillate composition and bottoms composition to manipulate the distillate and bottoms compositions.

• If the feed condition and the number of stages are given, how much of RR and QR are required to achieve the specification.

RR ?

QR ?

Add Block: RadfracAdd Block: Radfrac

Add Material StreamAdd Material Stream

Connect Material StreamConnect Material Stream

Specify Feed ConditionSpecify Feed Condition

Saturated Feed (Vapor fraction=0) P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5

Block Input: RadfracBlock Input: Radfrac

Radfrac: ConfigurationRadfrac: Configuration

1

2

39

Saturated Feed P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5

xwater=0.99

xHAc=0.99

40

20

Radfrac: Streams (Feed Location)Radfrac: Streams (Feed Location)

1

2

39

Saturated Feed P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5

xwater=0.99

xHAc=0.99

40

20

Radfrac: Column PressureRadfrac: Column Pressure

Run SimulationRun Simulation

Click ► to run simulation

Check Convergence StatusCheck Convergence Status

Stream ResultsStream Results

D B

Change Reflux RatioChange Reflux Ratio

Click ► to run simulation

Increase RR from 2 to 2.5

D B

Again…Again…

You can iterate RR until the specification is achieved.

Smarter WaySmarter Way

Aspen Plus provides a convenient function (Design Specs/Vary) which can iterate operating variables to meet the specification.

Add New Design SpecsAdd New Design Specs

Design Specs: SpecificationDesign Specs: Specification

Input current mole purity first

Design Specs: ComponentsDesign Specs: Components

Design Specs: Feed/Product StreamsDesign Specs: Feed/Product Streams

Add New VeryAdd New Very

Very: SpecificationsVery: Specifications

Not all variables cane be selected.In this case, only reflux ratio and reboiler duty can be used.

Specify the range of the adjusted variable

Selection of Adjusted VariablesSelection of Adjusted Variables

The options of adjusted variables must correspond to the operating specification.

Run SimulationRun Simulation

Click ► to run simulation

Check Convergence StatusCheck Convergence Status

Change Target of Mole PurityChange Target of Mole Purity

Click ► to run simulation

Increase Target from 0.95229424 to 0.99

Check Convergence StatusCheck Convergence Status

D B

Column Performance SummaryColumn Performance Summary

Summary of CondenserSummary of Condenser

Include condenser duty, distillate rate, reflux rate, reflux ratio

Summary of ReboilerSummary of Reboiler

Include reboiler duty, bottoms rate, boilup rate, boilup ratio

Column Profile: TPFQColumn Profile: TPFQ

Column Profile: Vapor CompositionColumn Profile: Vapor Composition

Column Profile: Liquid CompositionColumn Profile: Liquid Composition

Plot Wizard for Column ProfilePlot Wizard for Column Profile

Plot Wizard for Column Profile (cont’d)Plot Wizard for Column Profile (cont’d)

After entering the block, “Plot” appears.

Plot WizardPlot Wizard

Plot TypesPlot Types

Steps for Composition PlotSteps for Composition Plot

Composition ProfilesComposition Profiles

Temperature ProfilesTemperature Profiles

Examples:

1.IPA-Water-DMSOIsopropyl Alcohol

WaterDimethyl Sulfoxide

INTRODUCTION TO ASPEN PLUSINTRODUCTION TO ASPEN PLUSMore Complex SystemMore Complex System

INTERFACE OF ASPEN PLUS

COMPONENTS – SPECIFICATION

Input componentswith Component name or Formula

167

Click “Find”

RENAME COMPONENTS IDRENAME COMPONENTS ID

168

Isopropyl AlcoholWater

Dimethyl Sulfoxide

Thermodynamic Model – NRTLThermodynamic Model – NRTL

NRTL

169

NRTL – Binary ParametersNRTL – Binary Parameters

Click “NRTL” and then built-in binary parameters appear automatically if available.

170

NRTL – Binary ParametersNRTL – Binary Parameters

171

NRTL – Binary Parameters-USERNRTL – Binary Parameters-USER

172

Comp,

iIPA IPA H2O

Comp,

jH2O DMSO DMSO

aij 0 0 -1.2449

aji 0 0 1.7524

bij 185.4 115.2787 586.801

bji 777.3 -25.0123 -1130.215

cij 0.50 0.3 0.30

Ternary Maps

Ternary MapsTernary Maps

4. Select phase (VLE, LLE)

1. Select three components

2. Specify pressure

3. Select property method

5. Select report Unit

6. Click Ternary Plot to generate the results

Ternary MapsTernary Maps

Ternary Plot Toolbar:Add Tie line, Curve,

Marker…

Change pressure

Entrainer / Azeotrope Feed Ratio

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Rel

ativ

e V

ola

tility

(IP

A/H

2O)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

DMSO

How to finish the relative volatility curve IPA – Water -DMSO System

ADD BLOCK: FLASH2

ADD MATERIAL STREAM

ADD MATERIAL STREAM

ADD MATERIAL STREAM

SPECIFY FEED CONDITION

Saturated Liquid Feed (Vapor fraction=0)

P=1 atm

F=10 kmol/hr zIPA=0.6932

zWATER=0.3068

Saturated Liquid Feed (Vapor fraction=0)

P=1 atm

F=10 kmol/hr zDMSO=1

BLOCK INPUT : FLASH2

Click ► to run simulation

LV

CHECK STREAMS RESULTCHECK STREAMS RESULT

2 2

1

/ 0.861/ 0.3463.23

/ 0.118 / 0.153IPA IPA

H O H O

Entrainer feedwhen

Azeotrope feed

y x

y x

A-F(kmol/h)

E-F(kmol/h)

(A-F)/(E-F) α

10 2.5 0.25 1.8

10 5 0.5 2.43

10 7.5 0.75 2.9

10 10 1 3.23

10 12.5 1.25 3.5

10 15 1.5 3.7

10 17.5 1.75 3.86

10 20 2 3.98

10 22.5 2.25 4.08

10 25 2.5 4.16

10 27.5 2.75 4.22

10 30 3 4.28

Entrainer / Azeotrope Feed Ratio

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Rel

ativ

e V

olat

ility

(IP

A/H

2O)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

DMSO

Finish the relative volatility curve IPA – Water -DMSO System

Introduction to Aspen PlusIntroduction to Aspen Plus

• Extractive Distillation

Extractive distillation column

Entrainer recovery column

F2

XIPA=0.999

IPA-water feed (FF)

Entrainer feed (FE)

Entrainer recycle

Entrainer makeup

D2

B2

NFE

NFF

NF2

NT = 41NFE = 7NFF = 35

NT = 24NF2 = 9

XWater=0.999D2

P = 3 atm T = 25oC F = 100 kmol/hr X IPA =0.5 X WATER =0.5

Aspen Plus Startup

INTERFACE OF ASPEN PLUS

SETUP – SPECIFICATION

Run Type

Input mode

188

Add Units-Sets

Add Units-Sets

REPORT OPTIONS

COMPONENTS – SPECIFICATION

Input componentswith Component name or Formula

192

Click “Find”

RENAME COMPONENTS IDRENAME COMPONENTS ID

193

Thermodynamic Model – NRTLThermodynamic Model – NRTL

NRTL

194

NRTL – Binary ParametersNRTL – Binary Parameters

Click “NRTL” and then built-in binary parameters appear automatically if available.

195

NRTL – Binary ParametersNRTL – Binary Parameters

196

NRTL – Binary Parameters-USERNRTL – Binary Parameters-USER

197

Comp,

iIPA IPA H2O

Comp,

jH2O DMSO DMSO

aij 0 0 -1.2449

aji 0 0 1.7524

bij 185.4 115.2787 586.801

bji 777.3 -25.0123 -1130.215

cij 0.50 0.3 0.30

ADD BLOCK: RADFRAC

ADD BLOCK: MIXERS

ADD MATERIAL STREAM

ADD MATERIAL STREAM

RENAME STREAM

SPECIFY FEED CONDITION Feed

(Saturated Liquid Feed) Vapor fraction = 0

P = 2 atm F = 100 kmol/hr

z IPA =0.5 z WATER =0.5

SPECIFY FEED CONDITION EF

P = 2 atm T = 184.5 oC

F = 100 kmol/hr z DMSO =1

SPECIFY FEED CONDITION MAKEUP

P = 2 atm T = 25 oC

F = 0 kmol/hr z DMSO =1

BLOCK INPUT

BLOCK INPUT

BLOCK INPUT

Click ► to run simulation

RUN SIMULATION

CHECK CONVERGENCE STATUS

Check result

CHECK STREAMS RESULT

DESIGN SPECS/VARYDESIGN SPECS/VARY

ADD NEW DESIGN SPECSADD NEW DESIGN SPECS

DESIGN SPECS: SPECIFICATIONDESIGN SPECS: SPECIFICATION

DESIGN SPECS: COMPONENTSDESIGN SPECS: COMPONENTS

DESIGN SPECS: FEED/PRODUCT STREAMSDESIGN SPECS: FEED/PRODUCT STREAMS

ADD NEW VERYADD NEW VERY

VERY: SPECIFICATIONSVERY: SPECIFICATIONS

RUN SIMULATIONRUN SIMULATION

Click ► to run simulation

CHECK CONVERGENCE STATUSCHECK CONVERGENCE STATUS

DESIGN SPECS/VARYDESIGN SPECS/VARY

ADD NEW DESIGN SPECSADD NEW DESIGN SPECS

DESIGN SPECS: SPECIFICATIONDESIGN SPECS: SPECIFICATION

DESIGN SPECS: COMPONENTSDESIGN SPECS: COMPONENTS

DESIGN SPECS: FEED/PRODUCT STREAMSDESIGN SPECS: FEED/PRODUCT STREAMS

ADD NEW VERYADD NEW VERY

VERY: SPECIFICATIONSVERY: SPECIFICATIONS

RUN SIMULATIONRUN SIMULATION

Click ► to run simulation

CHECK CONVERGENCE STATUSCHECK CONVERGENCE STATUS

D2D1

CHECK STREAMS RESULTCHECK STREAMS RESULT

RECYCLE STREAM

RECYCLE STREAM

RECYCLE STREAM

TEAR

CHECK STREAMS RESULT

SUMMARY OF REBOILERSUMMARY OF REBOILER

Include reboiler duty, bottoms rate, boilup rate, boilup ratio

B1 B2

TRAY SIZINGTRAY SIZING

237

TRAY SIZINGTRAY SIZING

238

Click ► to run simulation

TRAY SIZINGTRAY SIZING

239

240

TRAY RATINGTRAY RATING

241

TRAY RATINGTRAY RATING

UPDATE PRESSURE DROP OF STAGESUPDATE PRESSURE DROP OF STAGES

242

Click ► to run simulation

CHECKS PRESSURE DROP RESULTCHECKS PRESSURE DROP RESULT

Recommended