243
Introduction to Aspen Plus Short Courses on Computer Applications for ChE Students Speaker: Yi-Chang Wu ( 吳吳 吳) [email protected] PSE Laboratory Department of Chemical Engineering Nation Taiwan University

Introduction to Aspen Plus-2012

Embed Size (px)

DESCRIPTION

Introduction to Aspen Plus

Citation preview

Page 1: Introduction to Aspen Plus-2012

Introduction to Aspen PlusShort Courses on Computer Applications for ChE Students

Speaker: Yi-Chang Wu ( 吳義章 )[email protected]

PSE LaboratoryDepartment of Chemical Engineering

Nation Taiwan University

Page 2: Introduction to Aspen Plus-2012

• Extractive Distillation

Extractive distillation column

Entrainer recovery column

F2

XIPA=0.999

IPA-water feed (FF)

Entrainer feed (FE)

Entrainer recycle

Entrainer makeup

D2

B2

NFE

NFF

NF2

NT = 41NFE = 7NFF = 35

NT = 24NF2 = 9

XWater=0.999D2

P = 3 atm T = 25oC F = 100 kmol/hr X IPA =0.5 X WATER =0.5

Page 3: Introduction to Aspen Plus-2012

What is Aspen PlusWhat is Aspen Plus

• Aspen Plus is a market-leading process modeling tool for conceptual design, optimization, and performance monitoring for the chemical, polymer, specialty chemical, metals and minerals, and coal power industries.

3Ref: http://www.aspentech.com/products/aspen-plus.cfm

Page 4: Introduction to Aspen Plus-2012

What Aspen Plus providesWhat Aspen Plus provides

• Physical Property Models– World’s largest database of pure component and phase equilibrium

data for conventional chemicals, electrolytes, solids, and polymers– Regularly updated with data from U. S. National Institute of Standards

and Technology (NIST)

• Comprehensive Library of Unit Operation Models– Addresses a wide range of solid, liquid, and gas processing equipment– Extends steady-state simulation to dynamic simulation for safety and

controllability studies, sizing relief valves, and optimizing transition, startup, and shutdown policies

– Enables you build your own libraries using Aspen Custom Modeler or programming languages (User-defined models)

Ref: Aspen Plus® Product Brochure4

Page 5: Introduction to Aspen Plus-2012

More DetailedMore Detailed

• Properties analysis– Properties of pure component and mixtures (Enthalpy,

density, viscosity, heat capacity,…etc)– Phase equilibrium (VLE, VLLE, azeotrope calculation…etc)– Parameters estimation for properties models (UNIFAC method

for binary parameters, Joback method for boiling points…etc)– Data regression from experimental deta

• Process simulation– pump, compressor, valve, tank, heat exchanger, CSTR, PFR,

distillation column, extraction column, absorber, filter, crystallizer…etc

5

Page 6: Introduction to Aspen Plus-2012

What course Aspen Plus What course Aspen Plus can be employed forcan be employed for

• MASS AND ENERGY BALANCES• PHYSICAL CHEMISTRY• CHEMICAL ENGINEERING THERMODYNAMICS • CHEMICAL REACTION ENGINEERING • UNIT OPERATIONS• PROCESS DESIGN • PROCESS CONTROL

6

Page 7: Introduction to Aspen Plus-2012

Lesson ObjectivesLesson Objectives

• Familiar with the interface of Aspen Plus• Learn how to use properties analysis• Learn how to setup a basic process simulation

7

Page 8: Introduction to Aspen Plus-2012

Problem Formulation 1: Calculation Problem Formulation 1: Calculation the mixing properties of two stream the mixing properties of two stream

1

23

4

Mixer Pump

1 2 3 4Mole Flow kmol/hr

WATER 10 0 ? ? BUOH 0 9 ? ? BUAC 0 6 ? ?

Total Flow kmol/hr 10 15 ? ?Temperature C 50 80 ? ?Pressure bar 1 1 1 10

Enthalpy kcal/mol ? ? ? ?Entropy cal/mol-K ? ? ? ?Density kmol/cum ? ? ? ?

8

Mass Balance

Energy Balance Enthalpy Entropy…

Page 9: Introduction to Aspen Plus-2012

Problem Formulation 2: Problem Formulation 2: Flash SeparationFlash Separation

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

T=105 CP=1atm

What are flowrates and compositions of the two outlets?

0.0 0.2 0.4 0.6 0.8 1.0100

105

110

115

120

T (

o C)

xWater

and yWater

T-x T-y

Page 10: Introduction to Aspen Plus-2012

Problem Formulation 3: Dehydration of Problem Formulation 3: Dehydration of Acetic Acid by Distillation Column Acetic Acid by Distillation Column

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

y Wat

er

xWater

1

2

39

Saturated Feed P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5

xwater=0.99

xHAc=0.9940

20Water

Acetic Acid

Water

Acetic Acid

Reflux ratio ?

Duty ?

(Optional)(Optional)

Page 11: Introduction to Aspen Plus-2012

OutlineOutline

• Startup in Aspen Plus (Basic Input) (45 min)– User Interface– Basic Input: Setup, Components, Properties.

• Properties Analysis (1 hour)– Pure Component– Mixtures (phase equilibrium)

• Running Simulation (1 hour)– Blocks (Unit Operations)– Streams (flow streams)– Results

11

Page 12: Introduction to Aspen Plus-2012

Introduction to Aspen Plus – Part 1Startup in Aspen Plus

12

Page 13: Introduction to Aspen Plus-2012

Start with Aspen Plus

Aspen Plus User Interface

Page 14: Introduction to Aspen Plus-2012

Aspen Plus StartupAspen Plus Startup

14

Page 15: Introduction to Aspen Plus-2012

Interface of Aspen PlusInterface of Aspen Plus

Process Flowsheet Windows

Model Library (View| Model Library )

Stream

HelpSetupComponentsPropertiesStreamsBlocksData BrowserNext

Check ResultStopReinitializeStepStartControl Panel

Process Flowsheet Windows

Model Library (View| Model Library )

Status message15

Page 16: Introduction to Aspen Plus-2012

More InformationMore Information

Help for Commands for Controlling Simulations 16

Page 17: Introduction to Aspen Plus-2012

Data BrowserData Browser

• The Data Browser is a sheet and form viewer with a hierarchical tree view of the available simulation input, results, and objects that have been defined

17

Page 18: Introduction to Aspen Plus-2012

Basic InputBasic Input

• The minimum required inputs to run a simulation are:– Setup– Components– Properties– Streams– Blocks

Property Analysis

Process Simulation

18

Page 19: Introduction to Aspen Plus-2012

Setup – SpecificationSetup – SpecificationRun Type

Input mode

19

Page 20: Introduction to Aspen Plus-2012

Components – SpecificationComponents – Specification

Input componentswith Component name or Formula

20

Page 21: Introduction to Aspen Plus-2012

Input componentsInput components

Remark: If available, are

21

Page 22: Introduction to Aspen Plus-2012

SpecificationSpecification

To do this Click this buttonFind components in the databanks FindDefine a custom component that is not in a databank

User Defined

Generate electrolyte components and reactions from components you entered

Elec Wizard

Reorder the components you have specified

Reorder

Review databank data for components you have specified (Retrieved physical property parameters from databanks.)

Review

22

Page 23: Introduction to Aspen Plus-2012

Find ComponentsFind Components

Click “Find”

23

Page 24: Introduction to Aspen Plus-2012

Find Components (cont’d)Find Components (cont’d)

24

Page 25: Introduction to Aspen Plus-2012

PropertiesProperties

Process type(narrow the number ofmethods available)

Base method: IDEAL, NRTL, UNIQAC, UNIFAC…

25

Page 26: Introduction to Aspen Plus-2012

Property Method Selection – AssistantProperty Method Selection – Assistant

Interactive help in choosing a property method

26

Page 27: Introduction to Aspen Plus-2012

Specify Component typeChemical Systems

Is the system at high pressure?(NO)

Two liquid phases

Assistant WizardAssistant Wizard

27

Page 28: Introduction to Aspen Plus-2012

28

Property Method Choice

Polar orT < Tci

No

Yes

Property Methods Decision Diagram

Electrolyte

No Pseudo Components

Pr < 0.1 & T < Tci

No

Yes

ELECNRTL

Yes

PENG-ROBPR-BM

LK-PLOCKRK-SOAVE

RKS-BM

No High Pressure?

CHAO-SEAGRAYSON

BK10

BK10IDEAL

Yes

No

Interaction ParametersAvailable?

Interaction ParametersAvailable?

Yes

No

PSRKRKSMHV2

SR-POLARPRWS

RKSWSPRMHV2

RKSMHV2

Liq-Liq

Liq-Liq

Yes

No

Yes

No

NRTLUNIQAC

etc.

WILSONNRTL

UNIQACetc.

UNIF-LL

UNIFACUNIF-LBYUNIF-DMD

Yes

No

Yes

No

Vapor-phase Association?

WILSON, WILS-RK, WILS-LR, WILS-GLR, NRTL, NRTL-RK, NRTL-2,

UNIQUAC, UNIQ-RK, UNIQ-2, UNIFAC, UNIF-LL, UNIF-LBY, UNIF-DMB

WILS-HF

WILS-NTH, WILS-HOC, NRTL-NTH, NRTL-HOC, UNIQ-NTJ, UNIQ-HOC,

UNIF-HOC

Degree of Polymerization

No

Yes

Hexamers

Dimers

A

A

A

A

A

Reference: http://www.et.byu.edu/groups/uolab/files/aspentech/

Page 29: Introduction to Aspen Plus-2012

Thermodynamic Model – NRTLThermodynamic Model – NRTL

NRTL

29

Page 30: Introduction to Aspen Plus-2012

NRTL – Binary ParametersNRTL – Binary Parameters

Click “NRTL” and then built-in binary parameters appear automatically if available.

30

Page 31: Introduction to Aspen Plus-2012

Access Properties Models and Access Properties Models and ParametersParameters

31

Review Databank Data

Page 32: Introduction to Aspen Plus-2012

Review Databank DataReview Databank Data

Description of each parameter

Including:Ideal gas heat of formation at 298.15 KIdeal gas Gibbs free energy of formation at 298.15 KHeat of vaporization at TBNormal boiling pointStandard liquid volume at 60°F….

32

Page 33: Introduction to Aspen Plus-2012

Pure Component Pure Component Temperature-Dependent PropertiesTemperature-Dependent Properties

CPIGDP-1 ideal gas heat capacity

CPSDIP-1 Solid heat capacity

DNLDIP-1 Liquid density

DHVLDP-1 Heat of vaporization

PLXANT-1 Extended Antoine Equation

MULDIP Liquid viscosity

KLDIP Liquid thermal conductivity

SIGDIP Liquid surface tension

UFGRP UNIFAC functional group

33

Page 34: Introduction to Aspen Plus-2012

Example: PLXANT-1 Example: PLXANT-1 (Extended Antoine Equation)(Extended Antoine Equation)

?

Corresponding Model

Click “ ?” and then click where you don’t know ↖

34

Page 35: Introduction to Aspen Plus-2012

Example: CPIGDP-1 Example: CPIGDP-1 (Ideal Gas Heat Capacity Equation)(Ideal Gas Heat Capacity Equation)

?

Corresponding Model

35

Page 36: Introduction to Aspen Plus-2012

SummarySummary

So far, we have finished the basic settings including setup, components, and properties.This is enough to perform properties analysis.

36

Page 37: Introduction to Aspen Plus-2012

File Formats in Aspen PlusFile Formats in Aspen Plus

37

File Type Extension Format Description

Document *.apw Binary File containing simulation input and results andintermediate convergence information

Backup *.bkp ASCII Archive file containing simulation input andresults

History *.his Text Detailed calculation history and diagnosticmessages

Problem Description

*.appdf Binary File containing arrays and intermediateconvergence information used in the simulationcalculations

Page 38: Introduction to Aspen Plus-2012

Introduction to Aspen Plus – Part 2Properties Analysis in Aspen Plus

38

Page 39: Introduction to Aspen Plus-2012

Overview of Property AnalysisOverview of Property Analysis

Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

39

Page 40: Introduction to Aspen Plus-2012

RemindingReminding

• When you start properties analysis, you MUST specify components , properties model, and corresponding model parameters. (Refer to Part I)

40

Page 41: Introduction to Aspen Plus-2012

Properties Analysis – Pure Component Properties Analysis – Pure Component

Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

41

Page 42: Introduction to Aspen Plus-2012

Properties Analysis – Pure Component Properties Analysis – Pure Component

42

Page 43: Introduction to Aspen Plus-2012

Available PropertiesAvailable PropertiesProperty (thermodynamic) Property (transport)

Availability Free energy Thermal conductivityConstant pressure

heat capacity Enthalpy Surface tension

Heat capacity ratio Fugacity coefficient ViscosityConstant volume heat

capacityFugacity coefficient pressure correction

Free energy departure Vapor pressure Free energy departure

pressure correction Density

Enthalpy departure EntropyEnthalpy departure pressure correction Volume

Enthalpy of vaporization Sonic velocity

Entropy departure 43

Page 44: Introduction to Aspen Plus-2012

Example1: CP (Heat Capacity)Example1: CP (Heat Capacity)

1. Select property (CP)

2. Select phase

3. Select component

4. Specify range of temperature

5. Specify pressure

6. Select property method

7. click Go to generate the results

Add “N-butyl-acetate”

44

Page 45: Introduction to Aspen Plus-2012

Example1: Calculation Results of CPExample1: Calculation Results of CP

Data results 45

Page 46: Introduction to Aspen Plus-2012

Example2: H (Enthalpy)Example2: H (Enthalpy)

1. Select property (H)

2. Select phase

3. Select component

4. Specify range of temperature

5. Specify pressure

6. Select property method

7. click Go to generate the results46

Page 47: Introduction to Aspen Plus-2012

Example: Calculation Results of HExample: Calculation Results of H

Data results

47

Page 48: Introduction to Aspen Plus-2012

Properties Analysis – Binary ComponentsProperties Analysis – Binary Components

Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

48

Page 49: Introduction to Aspen Plus-2012

Properties Analysis – Binary ComponentsProperties Analysis – Binary Components

Page 50: Introduction to Aspen Plus-2012

Binary Component Properties AnalysisBinary Component Properties Analysis

Use this Analysis type To generate

Txy Temperature-compositions diagram at constant pressure

Pxy Pressure-compositions diagram at constant temperature

Gibbs energy of mixing

Gibbs energy of mixing diagram as a function of liquid compositions. The Aspen Physical Property System uses this diagram to determine whether the binary system will form two liquid phases at a given temperature and pressure.

Page 51: Introduction to Aspen Plus-2012

Example: T-XYExample: T-XY1. Select analysis type (Txy)

2. Select phase (VLE, VLLE)

2. Select two component

4. Specify composition range

5. Specify pressure

6. Select property method

3. Select compositions basis

7. click Go to generate the results

Page 52: Introduction to Aspen Plus-2012

Example: calculation result of T-XYExample: calculation result of T-XY

Data results

Page 53: Introduction to Aspen Plus-2012

Example: Generate XY plotExample: Generate XY plot

Click “plot wizard” to generate XY plot

Page 54: Introduction to Aspen Plus-2012

Example: Generate XY plot (cont’d)Example: Generate XY plot (cont’d)

Page 55: Introduction to Aspen Plus-2012

Property Analysis – GenericProperty Analysis – Generic

Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

55

Page 56: Introduction to Aspen Plus-2012

Properties Analysis – TernaryProperties Analysis – Ternary

Page 57: Introduction to Aspen Plus-2012

Ternary MapTernary Map

4. Select phase (VLE, LLE)

1. Select three component

5. Specify pressure

3. Select property method

2. Specify number of tie line

7. click Go to generate the results

6. Specify temperature (if LLE is slected)

Page 58: Introduction to Aspen Plus-2012

Calculation Result of Ternary Map (LLE)Calculation Result of Ternary Map (LLE)

Data results

Page 59: Introduction to Aspen Plus-2012

Property Analysis – Conceptual DesignProperty Analysis – Conceptual Design

Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components.

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

59

(Optional)

Page 60: Introduction to Aspen Plus-2012

Conceptual DesignConceptual Design

Page 61: Introduction to Aspen Plus-2012

Azeotrope AnalysisAzeotrope Analysis

Page 62: Introduction to Aspen Plus-2012

Azeotrope AnalysisAzeotrope Analysis

4. Select phase (VLE, LLE)

1. Select components (at least two) 2. Specify pressure

3. Select property method

5. Select report Unit

6. click Report to generate the results

Page 63: Introduction to Aspen Plus-2012

Error MessageError Message

Close analysis input dialog box (pure or binary analysis)

Page 64: Introduction to Aspen Plus-2012

Azeotrope Analysis ReportAzeotrope Analysis Report

Page 65: Introduction to Aspen Plus-2012

Ternary MapsTernary Maps

Page 66: Introduction to Aspen Plus-2012

Ternary MapsTernary Maps

4. Select phase (VLE, LLE)1. Select three components

2. Specify pressure

3. Select property method

5. Select report Unit

6. Specify temperature of LLE (If liquid-liquid envelope is selected)

6. Click Ternary Plot to generate the results

Page 67: Introduction to Aspen Plus-2012

Ternary MapsTernary Maps

Ternary Plot Toolbar:Add Tie line, Curve, Marker…

Change pressure or temperature

Page 68: Introduction to Aspen Plus-2012

Introduction to Aspen Plus – Part 3 Running Simulation in Aspen Plus

68

Page 69: Introduction to Aspen Plus-2012

Example 1: Calculate the mixing Example 1: Calculate the mixing properties of two stream properties of two stream

1

23

4

Mixer Pump

1 2 3 4Mole Flow kmol/hr

WATER 10 0 ? ? BUOH 0 9 ? ? BUAC 0 6 ? ?

Total Flow kmol/hr 10 15 ? ?Temperature C 50 80 ? ?Pressure bar 1 1 1 10

Enthalpy kcal/mol ? ? ? ?Entropy cal/mol-K ? ? ? ?Density kmol/cum ? ? ? ?

69

Page 70: Introduction to Aspen Plus-2012

Setup – SpecificationSetup – Specification

Select Flowsheet

70

Page 71: Introduction to Aspen Plus-2012

Reveal Model LibraryReveal Model Library

View|| Model Libraryor press F10

71

Page 72: Introduction to Aspen Plus-2012

Adding a MixerAdding a Mixer

Click “one of icons” and then click again on the flowsheet window

Remark: The shape of the icons are meaningless

72

Page 73: Introduction to Aspen Plus-2012

Adding Material StreamsAdding Material Streams

Click “Materials” and then click again on the flowsheet window

73

Page 74: Introduction to Aspen Plus-2012

Adding Material Streams (cont’d)Adding Material Streams (cont’d)

When clicking the mouse on the flowsheet window,arrows (blue and red) appear.

74

Page 75: Introduction to Aspen Plus-2012

Adding Material Streams (cont’d)Adding Material Streams (cont’d)

When moving the mouse on the arrows, some description appears.

Blue arrow: Water decant for Free water of dirty water.

Red arrow(Left) Feed (Required; one ore more if mixing material streams)

Red arrow(Right): Product (Required; if mixing material streams)

75

Page 76: Introduction to Aspen Plus-2012

Adding Material Streams (cont’d)Adding Material Streams (cont’d)

After selecting “Material Streams”, click and pull a stream line.Repeat it three times to generate three stream lines.

76

Page 77: Introduction to Aspen Plus-2012

Reconnecting Material Streams Reconnecting Material Streams (Feed Stream)(Feed Stream)

Right Click on the stream and select Reconnect Destination

77

Page 78: Introduction to Aspen Plus-2012

Reconnecting Material Streams Reconnecting Material Streams (Product Stream)(Product Stream)

Right Click on the stream and select Reconnect Source

B1

1

2

3

78

Page 79: Introduction to Aspen Plus-2012

Specifying Feed ConditionSpecifying Feed Condition

Right Click on the stream and select Input

79

Page 80: Introduction to Aspen Plus-2012

Specifying Feed ConditionSpecifying Feed Condition

You must specify two of the following conditions:TemperaturePressureVapor fraction

You can enter stream composition in terms of component flows, fractions, or concentrations.

If you specify component fractions, you must specify the total mole, mass, or standard liquid volume flow.

80

Page 81: Introduction to Aspen Plus-2012

Specifying Feed Condition (cont’d)Specifying Feed Condition (cont’d)

1 2

81

Page 82: Introduction to Aspen Plus-2012

Specifying Input of MixerSpecifying Input of Mixer

Right Click on the block and select Input

82

Page 83: Introduction to Aspen Plus-2012

Specifying Input of Mixer (cont’d)Specifying Input of Mixer (cont’d)

Specify Pressure and valid phase

The corresponding description about this blank:Outlet pressure if value > 0Pressure drop if value 0≦

83

Page 84: Introduction to Aspen Plus-2012

Run SimulationRun Simulation

Click ► to run the simulation

Check “simulation status”“Required Input Complete” means the input is ready to run simualtion

Run Start or continue calculations

Step Step through the flowsheet one block at a time

Stop Pause simulation calculations

Reinitialize Purge simulation results

84

Page 85: Introduction to Aspen Plus-2012

Status of Simulation Results Status of Simulation Results

Message Means

Results available The run has completed normally, and results are present.

Results with warnings

Results for the run are present. Warning messages were generated during the calculations. View the Control Panel or History for messages.

Results with errors Results for the run are present. Error messages were generated during the calculations. View the Control Panel or History for messages.

Input Changed

Results for the run are present, but you have changed the input since the results were generated. The results may be inconsistent with the current input.

85

Page 86: Introduction to Aspen Plus-2012

Stream ResultsStream Results

Right Click on the block and select Stream Results

86

Page 87: Introduction to Aspen Plus-2012

1 2 3Substream: MIXED Mole Flow kmol/hr

WATER 10 0 10 BUOH 0 9 9 BUAC 0 6 6

Total Flow kmol/hr 10 15 25Total Flow kg/hr 180.1528 1364.066 1544.218

Total Flow cum/hr 0.18582 1.74021 1.870509Temperature C 50 80 70.08758

Pressure bar 2 1 1Vapor Frac 0 0 0Liquid Frac 1 1 1Solid Frac 0 0 0

Enthalpy kcal/mol -67.81 -94.3726 -83.7476Enthalpy kcal/kg -3764.03 -1037.77 -1355.82Enthalpy Gcal/hr -0.6781 -1.41559 -2.09369

Entropy cal/mol-K -37.5007 -134.947 -95.6176Entropy cal/gm-K -2.0816 -1.48395 -1.54799Density kmol/cum 53.81564 8.619647 13.36534

Density kg/cum 969.5038 783.851 825.5604Average MW 18.01528 90.93771 61.76874

Liq Vol 60F cum/hr 0.1805 1.617386 1.797886

Pull down the list and select “Full” to show more properties results.

87

Enthalpy and Entropy

Page 88: Introduction to Aspen Plus-2012

Change Units of Calculation ResultsChange Units of Calculation Results

88

Page 89: Introduction to Aspen Plus-2012

Setup – Defining Your Own Units Set Setup – Defining Your Own Units Set

89

Page 90: Introduction to Aspen Plus-2012

Setup – Report OptionsSetup – Report Options

90

Page 91: Introduction to Aspen Plus-2012

Stream Results with Format of Stream Results with Format of Mole FractionMole Fraction

91

Page 92: Introduction to Aspen Plus-2012

Add Pump BlockAdd Pump Block

92

Page 93: Introduction to Aspen Plus-2012

Add A Material StreamAdd A Material Stream

93

Page 94: Introduction to Aspen Plus-2012

Connect StreamsConnect Streams

94

Page 95: Introduction to Aspen Plus-2012

Pump – Specification Pump – Specification

2. Specify pump outlet specification(pressure, power)

1. Select “Pump” or “turbine”

3. Efficiencies (Default: 1)

95

Page 96: Introduction to Aspen Plus-2012

Run SimulationRun Simulation

Click ► to generate the results

Check “simulation status”“Required Input Complete”

96

Page 97: Introduction to Aspen Plus-2012

Block Results (Pump)Block Results (Pump)

Right Click on the block and select Results

97

Page 98: Introduction to Aspen Plus-2012

98

Page 99: Introduction to Aspen Plus-2012

Streams ResultsStreams Results

99

Page 100: Introduction to Aspen Plus-2012

Calculation Results Calculation Results (Mass and Energy Balances)(Mass and Energy Balances)

1

23

4

Mixer Pump

1 2 3 4Mole Flow kmol/hr

WATER 10 0 10 10 BUOH 0 9 9 9 BUAC 0 6 6 6

Total Flow kmol/hr 10 15 25 25Temperature C 50 80 70.09 71.20Pressure bar 1 1 1 10

Enthalpy kcal/mol -67.81 -94.37 -83.75 -83.69 Entropy cal/mol-K -37.50 -134.95 -95.62 -95.46 Density kmol/cum 969.50 783.85 825.56 824.29

100

Page 101: Introduction to Aspen Plus-2012

ExerciseExercise12 4

6

Mixer Pump3

5

1 2 3 4 5 6Mole Flow kmol/hr

Water 10 0 0 ? ? ? Ethanol 0 5 0 ? ? ?

Methanol 0 0 15 ? ? ?Total Flow kmol/hr 10 15 15 ? ? ?

Temperature C 50 70 40 ? ? ?Pressure bar 1 1 1 1 4 2

Enthalpy kcal/mol ? ? ? ? ? ?Entropy cal/mol-K ? ? ? ? ? ?Density kmol/cum ? ? ? ? ? ?

101Please use Peng-Robinson EOS to solve this problem.

Page 102: Introduction to Aspen Plus-2012

Example 2: Flash SeparationExample 2: Flash Separation

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

T=105 CP=1atm

What are flowrates and compositions of the two outlets?

0.0 0.2 0.4 0.6 0.8 1.0100

105

110

115

120

T (

o C)

xWater

and yWater

T-x T-y

Page 103: Introduction to Aspen Plus-2012

Input ComponentsInput Components

Page 104: Introduction to Aspen Plus-2012

Thermodynamic Model: NRTL-HOCThermodynamic Model: NRTL-HOC

Page 105: Introduction to Aspen Plus-2012

Check Binary ParametersCheck Binary Parameters

Page 106: Introduction to Aspen Plus-2012

Association parameters of HOCAssociation parameters of HOC

Page 107: Introduction to Aspen Plus-2012

Binary Parameters of NRTLBinary Parameters of NRTL

Page 108: Introduction to Aspen Plus-2012

Binary AnalysisBinary Analysis

Page 109: Introduction to Aspen Plus-2012

T-xy plotT-xy plot

1. Select analysis type (Txy) 2. Select phase (VLE, VLLE)

2. Select two component

4. Specify composition range

5. Specify pressure

6. Select property method3. Select compositions basis

7. click Go to generate the results

Page 110: Introduction to Aspen Plus-2012

Calculation Result of T-xyCalculation Result of T-xy

Data results

Page 111: Introduction to Aspen Plus-2012

Generate xy plotGenerate xy plot

Page 112: Introduction to Aspen Plus-2012

Generate xy plot (cont’d)Generate xy plot (cont’d)

Page 113: Introduction to Aspen Plus-2012

Flash SeparationFlash Separation

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

T=105 CP=1atm

What are flowrates and compositions of the two outlets?

0.0 0.2 0.4 0.6 0.8 1.0100

105

110

115

120

T (

o C)

xWater

and yWater

T-x T-y

Page 114: Introduction to Aspen Plus-2012

Add Block: Flash2Add Block: Flash2

Page 115: Introduction to Aspen Plus-2012

Add Material StreamAdd Material Stream

Page 116: Introduction to Aspen Plus-2012

Specify Feed ConditionSpecify Feed Condition

Saturated Feed (Vapor fraction=0) P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

Page 117: Introduction to Aspen Plus-2012

Block Input: Flash2Block Input: Flash2

Page 118: Introduction to Aspen Plus-2012

Flash2: SpecificationFlash2: Specification

T=105 CP=1atm

Page 119: Introduction to Aspen Plus-2012

Required Input IncompleteRequired Input Incomplete

Close binary analysis window

Connot click ► to run simulation

Page 120: Introduction to Aspen Plus-2012

Required Input CompleteRequired Input Complete

Click ► to run simulation

Page 121: Introduction to Aspen Plus-2012

Stream ResultsStream Results

Page 122: Introduction to Aspen Plus-2012

Stream Results (cont’d)Stream Results (cont’d)

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

T=105 CP=1atm

42.658 kmol/hr zwater=0.501 zHAc=0.409

57.342 kmol/hr zwater=0.432 zHAc=0.568

Page 123: Introduction to Aspen Plus-2012

1

2

39

Saturated Feed P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5

xwater=0.99

xHAc=0.99

40

20

Distillation SeparationDistillation Separation

• There are two degrees of freedom to manipulate distillate composition and bottoms composition to manipulate the distillate and bottoms compositions.

• If the feed condition and the number of stages are given, how much of RR and QR are required to achieve the specification.

RR ?

QR ?

Page 124: Introduction to Aspen Plus-2012

Add Block: RadfracAdd Block: Radfrac

Page 125: Introduction to Aspen Plus-2012

Add Material StreamAdd Material Stream

Page 126: Introduction to Aspen Plus-2012

Connect Material StreamConnect Material Stream

Page 127: Introduction to Aspen Plus-2012

Specify Feed ConditionSpecify Feed Condition

Saturated Feed (Vapor fraction=0) P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5

Page 128: Introduction to Aspen Plus-2012

Block Input: RadfracBlock Input: Radfrac

Page 129: Introduction to Aspen Plus-2012

Radfrac: ConfigurationRadfrac: Configuration

1

2

39

Saturated Feed P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5

xwater=0.99

xHAc=0.99

40

20

Page 130: Introduction to Aspen Plus-2012

Radfrac: Streams (Feed Location)Radfrac: Streams (Feed Location)

1

2

39

Saturated Feed P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5

xwater=0.99

xHAc=0.99

40

20

Page 131: Introduction to Aspen Plus-2012

Radfrac: Column PressureRadfrac: Column Pressure

Page 132: Introduction to Aspen Plus-2012

Run SimulationRun Simulation

Click ► to run simulation

Page 133: Introduction to Aspen Plus-2012

Check Convergence StatusCheck Convergence Status

Page 134: Introduction to Aspen Plus-2012

Stream ResultsStream Results

Page 135: Introduction to Aspen Plus-2012

D B

Page 136: Introduction to Aspen Plus-2012

Change Reflux RatioChange Reflux Ratio

Click ► to run simulation

Increase RR from 2 to 2.5

Page 137: Introduction to Aspen Plus-2012

D B

Page 138: Introduction to Aspen Plus-2012

Again…Again…

You can iterate RR until the specification is achieved.

Page 139: Introduction to Aspen Plus-2012

Smarter WaySmarter Way

Aspen Plus provides a convenient function (Design Specs/Vary) which can iterate operating variables to meet the specification.

Page 140: Introduction to Aspen Plus-2012

Add New Design SpecsAdd New Design Specs

Page 141: Introduction to Aspen Plus-2012

Design Specs: SpecificationDesign Specs: Specification

Input current mole purity first

Page 142: Introduction to Aspen Plus-2012

Design Specs: ComponentsDesign Specs: Components

Page 143: Introduction to Aspen Plus-2012

Design Specs: Feed/Product StreamsDesign Specs: Feed/Product Streams

Page 144: Introduction to Aspen Plus-2012

Add New VeryAdd New Very

Page 145: Introduction to Aspen Plus-2012

Very: SpecificationsVery: Specifications

Not all variables cane be selected.In this case, only reflux ratio and reboiler duty can be used.

Specify the range of the adjusted variable

Page 146: Introduction to Aspen Plus-2012

Selection of Adjusted VariablesSelection of Adjusted Variables

The options of adjusted variables must correspond to the operating specification.

Page 147: Introduction to Aspen Plus-2012

Run SimulationRun Simulation

Click ► to run simulation

Page 148: Introduction to Aspen Plus-2012

Check Convergence StatusCheck Convergence Status

Page 149: Introduction to Aspen Plus-2012

Change Target of Mole PurityChange Target of Mole Purity

Click ► to run simulation

Increase Target from 0.95229424 to 0.99

Page 150: Introduction to Aspen Plus-2012

Check Convergence StatusCheck Convergence Status

Page 151: Introduction to Aspen Plus-2012

D B

Page 152: Introduction to Aspen Plus-2012

Column Performance SummaryColumn Performance Summary

Page 153: Introduction to Aspen Plus-2012

Summary of CondenserSummary of Condenser

Include condenser duty, distillate rate, reflux rate, reflux ratio

Page 154: Introduction to Aspen Plus-2012

Summary of ReboilerSummary of Reboiler

Include reboiler duty, bottoms rate, boilup rate, boilup ratio

Page 155: Introduction to Aspen Plus-2012

Column Profile: TPFQColumn Profile: TPFQ

Page 156: Introduction to Aspen Plus-2012

Column Profile: Vapor CompositionColumn Profile: Vapor Composition

Page 157: Introduction to Aspen Plus-2012

Column Profile: Liquid CompositionColumn Profile: Liquid Composition

Page 158: Introduction to Aspen Plus-2012

Plot Wizard for Column ProfilePlot Wizard for Column Profile

Page 159: Introduction to Aspen Plus-2012

Plot Wizard for Column Profile (cont’d)Plot Wizard for Column Profile (cont’d)

After entering the block, “Plot” appears.

Page 160: Introduction to Aspen Plus-2012

Plot WizardPlot Wizard

Page 161: Introduction to Aspen Plus-2012

Plot TypesPlot Types

Page 162: Introduction to Aspen Plus-2012

Steps for Composition PlotSteps for Composition Plot

Page 163: Introduction to Aspen Plus-2012

Composition ProfilesComposition Profiles

Page 164: Introduction to Aspen Plus-2012

Temperature ProfilesTemperature Profiles

Page 165: Introduction to Aspen Plus-2012

Examples:

1.IPA-Water-DMSOIsopropyl Alcohol

WaterDimethyl Sulfoxide

INTRODUCTION TO ASPEN PLUSINTRODUCTION TO ASPEN PLUSMore Complex SystemMore Complex System

Page 166: Introduction to Aspen Plus-2012

INTERFACE OF ASPEN PLUS

Page 167: Introduction to Aspen Plus-2012

COMPONENTS – SPECIFICATION

Input componentswith Component name or Formula

167

Click “Find”

Page 168: Introduction to Aspen Plus-2012

RENAME COMPONENTS IDRENAME COMPONENTS ID

168

Isopropyl AlcoholWater

Dimethyl Sulfoxide

Page 169: Introduction to Aspen Plus-2012

Thermodynamic Model – NRTLThermodynamic Model – NRTL

NRTL

169

Page 170: Introduction to Aspen Plus-2012

NRTL – Binary ParametersNRTL – Binary Parameters

Click “NRTL” and then built-in binary parameters appear automatically if available.

170

Page 171: Introduction to Aspen Plus-2012

NRTL – Binary ParametersNRTL – Binary Parameters

171

Page 172: Introduction to Aspen Plus-2012

NRTL – Binary Parameters-USERNRTL – Binary Parameters-USER

172

Comp,

iIPA IPA H2O

Comp,

jH2O DMSO DMSO

aij 0 0 -1.2449

aji 0 0 1.7524

bij 185.4 115.2787 586.801

bji 777.3 -25.0123 -1130.215

cij 0.50 0.3 0.30

Page 173: Introduction to Aspen Plus-2012

Ternary Maps

Page 174: Introduction to Aspen Plus-2012

Ternary MapsTernary Maps

4. Select phase (VLE, LLE)

1. Select three components

2. Specify pressure

3. Select property method

5. Select report Unit

6. Click Ternary Plot to generate the results

Page 175: Introduction to Aspen Plus-2012

Ternary MapsTernary Maps

Ternary Plot Toolbar:Add Tie line, Curve,

Marker…

Change pressure

Page 176: Introduction to Aspen Plus-2012

Entrainer / Azeotrope Feed Ratio

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Rel

ativ

e V

ola

tility

(IP

A/H

2O)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

DMSO

How to finish the relative volatility curve IPA – Water -DMSO System

Page 177: Introduction to Aspen Plus-2012

ADD BLOCK: FLASH2

Page 178: Introduction to Aspen Plus-2012

ADD MATERIAL STREAM

Page 179: Introduction to Aspen Plus-2012

ADD MATERIAL STREAM

Page 180: Introduction to Aspen Plus-2012

ADD MATERIAL STREAM

Page 181: Introduction to Aspen Plus-2012

SPECIFY FEED CONDITION

Saturated Liquid Feed (Vapor fraction=0)

P=1 atm

F=10 kmol/hr zIPA=0.6932

zWATER=0.3068

Saturated Liquid Feed (Vapor fraction=0)

P=1 atm

F=10 kmol/hr zDMSO=1

Page 182: Introduction to Aspen Plus-2012

BLOCK INPUT : FLASH2

Click ► to run simulation

Page 183: Introduction to Aspen Plus-2012

LV

CHECK STREAMS RESULTCHECK STREAMS RESULT

2 2

1

/ 0.861/ 0.3463.23

/ 0.118 / 0.153IPA IPA

H O H O

Entrainer feedwhen

Azeotrope feed

y x

y x

Page 184: Introduction to Aspen Plus-2012

A-F(kmol/h)

E-F(kmol/h)

(A-F)/(E-F) α

10 2.5 0.25 1.8

10 5 0.5 2.43

10 7.5 0.75 2.9

10 10 1 3.23

10 12.5 1.25 3.5

10 15 1.5 3.7

10 17.5 1.75 3.86

10 20 2 3.98

10 22.5 2.25 4.08

10 25 2.5 4.16

10 27.5 2.75 4.22

10 30 3 4.28

Entrainer / Azeotrope Feed Ratio

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Rel

ativ

e V

olat

ility

(IP

A/H

2O)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

DMSO

Finish the relative volatility curve IPA – Water -DMSO System

Page 185: Introduction to Aspen Plus-2012

Introduction to Aspen PlusIntroduction to Aspen Plus

• Extractive Distillation

Extractive distillation column

Entrainer recovery column

F2

XIPA=0.999

IPA-water feed (FF)

Entrainer feed (FE)

Entrainer recycle

Entrainer makeup

D2

B2

NFE

NFF

NF2

NT = 41NFE = 7NFF = 35

NT = 24NF2 = 9

XWater=0.999D2

P = 3 atm T = 25oC F = 100 kmol/hr X IPA =0.5 X WATER =0.5

Page 186: Introduction to Aspen Plus-2012

Aspen Plus Startup

Page 187: Introduction to Aspen Plus-2012

INTERFACE OF ASPEN PLUS

Page 188: Introduction to Aspen Plus-2012

SETUP – SPECIFICATION

Run Type

Input mode

188

Page 189: Introduction to Aspen Plus-2012

Add Units-Sets

Page 190: Introduction to Aspen Plus-2012

Add Units-Sets

Page 191: Introduction to Aspen Plus-2012

REPORT OPTIONS

Page 192: Introduction to Aspen Plus-2012

COMPONENTS – SPECIFICATION

Input componentswith Component name or Formula

192

Click “Find”

Page 193: Introduction to Aspen Plus-2012

RENAME COMPONENTS IDRENAME COMPONENTS ID

193

Page 194: Introduction to Aspen Plus-2012

Thermodynamic Model – NRTLThermodynamic Model – NRTL

NRTL

194

Page 195: Introduction to Aspen Plus-2012

NRTL – Binary ParametersNRTL – Binary Parameters

Click “NRTL” and then built-in binary parameters appear automatically if available.

195

Page 196: Introduction to Aspen Plus-2012

NRTL – Binary ParametersNRTL – Binary Parameters

196

Page 197: Introduction to Aspen Plus-2012

NRTL – Binary Parameters-USERNRTL – Binary Parameters-USER

197

Comp,

iIPA IPA H2O

Comp,

jH2O DMSO DMSO

aij 0 0 -1.2449

aji 0 0 1.7524

bij 185.4 115.2787 586.801

bji 777.3 -25.0123 -1130.215

cij 0.50 0.3 0.30

Page 198: Introduction to Aspen Plus-2012

ADD BLOCK: RADFRAC

Page 199: Introduction to Aspen Plus-2012

ADD BLOCK: MIXERS

Page 200: Introduction to Aspen Plus-2012

ADD MATERIAL STREAM

Page 201: Introduction to Aspen Plus-2012

ADD MATERIAL STREAM

Page 202: Introduction to Aspen Plus-2012

RENAME STREAM

Page 203: Introduction to Aspen Plus-2012

SPECIFY FEED CONDITION Feed

(Saturated Liquid Feed) Vapor fraction = 0

P = 2 atm F = 100 kmol/hr

z IPA =0.5 z WATER =0.5

Page 204: Introduction to Aspen Plus-2012

SPECIFY FEED CONDITION EF

P = 2 atm T = 184.5 oC

F = 100 kmol/hr z DMSO =1

Page 205: Introduction to Aspen Plus-2012

SPECIFY FEED CONDITION MAKEUP

P = 2 atm T = 25 oC

F = 0 kmol/hr z DMSO =1

Page 206: Introduction to Aspen Plus-2012

BLOCK INPUT

Page 207: Introduction to Aspen Plus-2012

BLOCK INPUT

Page 208: Introduction to Aspen Plus-2012

BLOCK INPUT

Page 209: Introduction to Aspen Plus-2012

Click ► to run simulation

RUN SIMULATION

Page 210: Introduction to Aspen Plus-2012

CHECK CONVERGENCE STATUS

Check result

Page 211: Introduction to Aspen Plus-2012

CHECK STREAMS RESULT

Page 212: Introduction to Aspen Plus-2012

DESIGN SPECS/VARYDESIGN SPECS/VARY

Page 213: Introduction to Aspen Plus-2012

ADD NEW DESIGN SPECSADD NEW DESIGN SPECS

Page 214: Introduction to Aspen Plus-2012

DESIGN SPECS: SPECIFICATIONDESIGN SPECS: SPECIFICATION

Page 215: Introduction to Aspen Plus-2012

DESIGN SPECS: COMPONENTSDESIGN SPECS: COMPONENTS

Page 216: Introduction to Aspen Plus-2012

DESIGN SPECS: FEED/PRODUCT STREAMSDESIGN SPECS: FEED/PRODUCT STREAMS

Page 217: Introduction to Aspen Plus-2012

ADD NEW VERYADD NEW VERY

Page 218: Introduction to Aspen Plus-2012

VERY: SPECIFICATIONSVERY: SPECIFICATIONS

Page 219: Introduction to Aspen Plus-2012

RUN SIMULATIONRUN SIMULATION

Click ► to run simulation

Page 220: Introduction to Aspen Plus-2012

CHECK CONVERGENCE STATUSCHECK CONVERGENCE STATUS

Page 221: Introduction to Aspen Plus-2012

DESIGN SPECS/VARYDESIGN SPECS/VARY

Page 222: Introduction to Aspen Plus-2012

ADD NEW DESIGN SPECSADD NEW DESIGN SPECS

Page 223: Introduction to Aspen Plus-2012

DESIGN SPECS: SPECIFICATIONDESIGN SPECS: SPECIFICATION

Page 224: Introduction to Aspen Plus-2012

DESIGN SPECS: COMPONENTSDESIGN SPECS: COMPONENTS

Page 225: Introduction to Aspen Plus-2012

DESIGN SPECS: FEED/PRODUCT STREAMSDESIGN SPECS: FEED/PRODUCT STREAMS

Page 226: Introduction to Aspen Plus-2012

ADD NEW VERYADD NEW VERY

Page 227: Introduction to Aspen Plus-2012

VERY: SPECIFICATIONSVERY: SPECIFICATIONS

Page 228: Introduction to Aspen Plus-2012

RUN SIMULATIONRUN SIMULATION

Click ► to run simulation

Page 229: Introduction to Aspen Plus-2012

CHECK CONVERGENCE STATUSCHECK CONVERGENCE STATUS

Page 230: Introduction to Aspen Plus-2012

D2D1

CHECK STREAMS RESULTCHECK STREAMS RESULT

Page 231: Introduction to Aspen Plus-2012

RECYCLE STREAM

Page 232: Introduction to Aspen Plus-2012

RECYCLE STREAM

Page 233: Introduction to Aspen Plus-2012

RECYCLE STREAM

Page 234: Introduction to Aspen Plus-2012

TEAR

Page 235: Introduction to Aspen Plus-2012

CHECK STREAMS RESULT

Page 236: Introduction to Aspen Plus-2012

SUMMARY OF REBOILERSUMMARY OF REBOILER

Include reboiler duty, bottoms rate, boilup rate, boilup ratio

B1 B2

Page 237: Introduction to Aspen Plus-2012

TRAY SIZINGTRAY SIZING

237

Page 238: Introduction to Aspen Plus-2012

TRAY SIZINGTRAY SIZING

238

Click ► to run simulation

Page 239: Introduction to Aspen Plus-2012

TRAY SIZINGTRAY SIZING

239

Page 240: Introduction to Aspen Plus-2012

240

TRAY RATINGTRAY RATING

Page 241: Introduction to Aspen Plus-2012

241

TRAY RATINGTRAY RATING

Page 242: Introduction to Aspen Plus-2012

UPDATE PRESSURE DROP OF STAGESUPDATE PRESSURE DROP OF STAGES

242

Click ► to run simulation

Page 243: Introduction to Aspen Plus-2012

CHECKS PRESSURE DROP RESULTCHECKS PRESSURE DROP RESULT