47
Курс лекций Курс лекций : : Физико-технические Физико-технические основы токамака-реактора ИТЭР основы токамака-реактора ИТЭР Владимир Юрьевич Сергеев Владимир Юрьевич Сергеев проф., д.ф.м.н., кафедра физики проф., д.ф.м.н., кафедра физики плазмы плазмы физико-технический факультет СПбГПУ физико-технический факультет СПбГПУ

Курс лекций : Физико-технические основы токамака-реактора ИТЭР

Embed Size (px)

DESCRIPTION

Курс лекций : Физико-технические основы токамака-реактора ИТЭР. Владимир Юрьевич Сергеев проф., д.ф.м.н., кафедра физики плазмы физико-технический факультет СПбГПУ. Содержание лекции № 11-12 «Физика Scrape-off Layer ». 3.1. Взаимодействие плазмы с поверхностью 3.2. Scrape-off layer - PowerPoint PPT Presentation

Citation preview

Page 1: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

Курс лекцийКурс лекций: : Физико-технические основы Физико-технические основы токамака-реактора ИТЭРтокамака-реактора ИТЭР

Владимир Юрьевич СергеевВладимир Юрьевич Сергеевпроф., д.ф.м.н., кафедра физики плазмыпроф., д.ф.м.н., кафедра физики плазмы

физико-технический факультет СПбГПУфизико-технический факультет СПбГПУ

Page 2: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

2

Содержание лекции № 11-12 «Физика Scrape-off Layer»

3.1. Взаимодействие плазмы с поверхностью

3.2. Scrape-off layer

3.3. Простая модель учитывающая процессы в SOL

3.4. Рециклинг

Page 3: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

3

Содержание лекции № 3 «Физика Scrape-off Layer»

3.1. Взаимодействие плазмы с поверхностью

3.2. Scrape-off layer

3.3. Рециклинг

3.4. Простая модель учитывающая процессы в SOL

Page 4: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

4

Взаимодействие плазмы с поверхностью (plasma-wall interaction)Примеси представляют собой большую проблему в токамаке.

Во-первых, из-за значительных потерь на излучение, в первую очередь в линейчатом спектре частично ионизованных тяжёлых элементов.

Во-вторых из-за разбавления топлива. За счёт многократной ионизации производится большое количество электронов, которые при том же суммарном давлении плазмы занимают место топливных частиц.

Кроме того примеси могут препятствовать нагреву плазмы, поскольку наиболее интенсивно они переизлучают энергию при низких температурах.

Наибольшую проблему представляют тяжёлые примеси. На графике слева показана доля примеси различных сортов, излучающая до 10% суммарной термоядерной мощности. Видно, что даже очень небольшое количество тяжёлой примеси приводит к огромным потерям энергии.

Page 5: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

5

Так же примеси могут приводить к срывам из-за сильного охлаждения границы плазмы и последующей модификации профиля тока.

Попадание примеси в плазму

В условиях реактора в результате реакции синтеза образуется He.

Так же примеси попадают в плазму со стенок, а также других компонентов ограничивающих объём вакуумной камеры, в которой удерживается плазма. Легче всего поверхность покидают примеси абсорбированные на поверхности, обладающие низкой энергией связи, например, молекулы воды или CO. Так же в составе материала поверхности могут присутствовать такие элементы как углерод, хлор, сера. Эти элементы могут мигрировать на поверхность. Такие примеси могут быть десорбированы с поверхности термически, либо ударом, электрона, атома, иона или фотона. Такие примеси могут быть устранены с помощью прогрева вакуумной камеры, либо в результате чистки тлеющим разрядом. Материал стенки может попадать в плазму за счёт таких процессов, как распыление (sputtering) процесс передачи импульса от летящего из плазмы атома атому стенки, пробой дуги (arcing) – в пристеночном слое происходи большой перепад потенциала в нём может происходить пробой однополярной дуги (вторым электродом выступает плазма) , и испарение – начинается при нагреве стенки до температуры близкой к температуре плавления. Подробнее в лекции 8 контроль частиц и мощности (там обсуждается стойкость материалов)

Page 6: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

6

Поток частиц на поверхность происходит главным за счёт диффузии из центральной области в приграничную область и за счёт ионизации нейтралов в приграничной области. В приграничной области плазма двигается вдоль силовых линий магнитного поля, затем взаимодействуют с поверхностью. Ионы, попадающие на поверхность могут рекомбинировать и затем быть рассеянны назад либо освобождены другим способом с твёрдой поверхности и снова попасть в плазму. Этот процесс называется рециклинг (recycling). Позже он будет рассмотрен чуть более подробно.

При магнитном удержании плазма удерживается в пределах замкнутых магнитных поверхностей, образованных комбинацией магнитных полей внешних проводников и токов, протекающих в самой плазме. Такие поля могут быть созданы только в ограниченном объёме и, следовательно, где-то находится поверхность отделяющая замкнутые поверхности от незамкнутых (Last Closed Flux Surface). Эта поверхность может определяться конфигурацией магнитного поля. Подобная магнитная конфигурация называется конфигурацией с дивертором. Но может быть и так, что замкнутая магнитная поверхность пересекается с твёрдой ограничивающей поверхностью. В этом случае положение LCFS определяется этим пересечением. Такая твёрдая поверхность называется лимитер (limiter).

Page 7: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

7

Эти две ситуации сравниваются на приведённом рисунке. На рисунке а) изображена конфигурация с лимитером, на рисунке b) конфигурация с дивертором. Существенным отличием этих ситуаций является то, что в случае диверторной конфигурации LCFS находится на некотором удалении от твёрдой поверхности, в случае лимитера LCFS касается этой поверхности.

Page 8: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

8

Небольшое напоминание о том как устроен слой (sheath)

В нейтральном газе скорость потока частиц на абсорбирующую стенку определяется тепловой скоростью частиц. Она отличается от скорости звука только численным коэффициентом. Скорость потока плазмы на абсорбирующую стенку так же порядка скорости звука, однако, определяющие эту скорость процессы несколько сложнее. Тепловая скорость движения электронов в корень из отношения масс больше, чем у ионов. В результате они двигаются на стенку быстрее, в результате чего устанавливается электрическое поле тормозящее электроны и ускоряющее ионы. Суммарный поток ускоряется суммарным давлением компонент плазмы и тормозится инерцией ионов. Пол локализовано на расстоянии порядка нескольких Дебаевских радиусов вблизи стенки. Небольшое электрическое поле присутствует и глубже в плазме (т.н. предслой). На рисунке показано распределение потенциала, зависимость скорости ионов, а так же концентрация компонент плазмы.

Page 9: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

9

Видно, что установившийся электрический потенциал порядка нескольких температур. Без учёта влияния вторичной эмиссии электронов потенциал определяется следующим образом:

В дейтериевой плазме при Ti/Te = 1, -eφ0 = 2.8 Te

Скорость ионов пропорциональна скорости звука.

Слой так же влияет на поток энергии переносимой плазмой на стенку.

)/1(2

/ln

2

10

ei

ei

e TT

mm

T

e

)/1(2

/)1(ln

2

1

1

22 2

ei

ei

e

iese TT

mm

T

TTcnP

Где δ коэффициент вторичной эмиссии электронов

Page 10: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

10

Последнее выражение удобно записать в виде:

es TP где γs коэффициент прохождения энергии через слой. Для водородной плазмы он равен примерно 6.5 при равных температурах электронов и ионов и без учёта вторичной эмиссии (δ=0). В действительности δ порядка единицы и коэффициент γs может оказаться существенно больше. Из-за эффекта объёмного заряда предельное значение δ примерно 0.8.

Page 11: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

11

Содержание лекции № 3 «Физика Scrape-off Layer»

3.1. Взаимодействие плазмы с поверхностью

3.2. Scrape-off layer

3.3. Рециклинг

3.4. Простая модель учитывающая процессы в SOL

Page 12: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

12

Радиальное распределение электронной температуры и концентрации в SOL

В SOL перпендикулярный поток поперёк магнитного поля уравновешивается продольным потоком вдоль разомкнутых силовых линий в сторону лимитера либо диверторных пластин. Эти потоки показаны на картинке ниже. Коэффициенты переноса для частиц и тепла поперёк магнитного поля преимущественно аномальны и выше предсказанных по неоклассической теории. В стационарном случае в SOL нету других источников или стоков частиц (таких как ионизация)

Page 13: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

13

Можно написать следующее соотношение

c

s

L

nc

dr

dnD

dr

d

где D┴ - поперечный коэффициент диффузии, Lc – т.н. connection length (характерное расстояние) до точки стагнации потока (где его скорость равна нулю). В случае, когда коэффициент диффузии и скорость звука не зависят от радиуса уравнение легко интегрируется.

}/)(exp{)()( naranrn

где

2/1

s

cn c

LD

a – малый радиус лимитера (либо LCFS), λn - характерная толщина SOL (радиус на котором плотность спадает в e раз)

Аналогичным способом получается соотношение для электронной температуры.

}/)(exp{)()( Teee araTrT

Page 14: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

14

где

TenTe

n

D

/2/51

где λT расстояние, на котором температура спадает в e раз.

λT и λn зависят от коэффициентов переноса в SOL, которые неизвестны. В экспериментах измеряют параметры λT и λn и используют их значения для вычисления коэффициентов переноса. Такие измерения могут быть проведены с помощью зондов (вносимое количество примеси при этом невелико). Характерные значения параметров ~10 мм. Подобные измерения совместно с предположением о равенстве электронной и ионной температур позволяют вычислить скорость звука cs и транспортные коэффициенты. D┴ ~ 1м2/с Эксперименты продемонстрировали, что коэффициент диффузии обратно пропорционален плотности. Поскольку в рассматриваемой области плотность и температура связаны, так же наблюдается температурная зависимость D┴. Наблюдаемое абсолютное значение коэффициента диффузии близко к Бомовскому коэффициенту DB=1/16×T/eB, однако, масштабная зависимость от температуры и магнитного поля не подтверждается. Если присутствует ионизация в SOL вычисление диффузии становится более трудной задачей.

Page 15: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

15

Возможно оценить значения температуры и концентрации на LCFS используя глобальные оценки баланса частиц и тепла. Суммарный поток частиц на лимитер должен быть равен полному диффузионному потоку частиц из удерживаемой плазмы. Время выноса частиц τp может быть определено как

pn

Vn

где Гn – полный поток частиц наружу, V – объём плазмы, - средняя плотность в объёме плазмы.

Используя получаем суммарный поток на лимитер

n

}/)(exp{)()( naranrn

a

snL drcarana }/)(exp{)(4

В простейшем случае если скорость звука полагать независящей от координаты, интеграл легко вычисляется и ,приравнивая n = L, получаем

snp ca

Vnan

4

1)(

Page 16: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

16

Используя простую модель переноса в пристеночной областиполучаем оценку для τp с учётом длины ионизации атомов влетающих в плазму

2212 1056

)( nnv

van

n

i

м-3

где коэффициент скорости ионизации, vn начальная скорость нейтралей, λГ характерное расстояние спада потока в e раз. Это выражение хорошо описывает большое количество экспериментов с лимитером, как это можно видеть на графике. Однако, при постоянном токе на любой установке наклон кривой несколько меньше чем

Возможно, это связано с уменьшением температуры на границе при увеличении плотности.

iv

2)( nan

Page 17: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

17

Для верхней оценки Te(a) можно воспользоваться предположением, что вся мощность теряется за счёт потока частиц через слой, без учёта излучения (что на самом деле довольно грубое предположение, позже будет показано, что в отсутствии излучения потоки энергии на лимитер или диверторные пластины будет превышать допустимые пределы). Необходимо отметить, что приведённые оценки справедливы для лимитерной конфигурации, в случае с дивертором оценки сложнее.

Параллельный перенос вне LCFS

Простейшая модель для описания переноса вдоль магнитного поля в SOL это изотермическая жидкостная модель. Стационарный изотермический невязкий одномерный поток определяется законом сохранения частиц и момента

Snvdz

d)(

где S источник частиц за счёт поперечного потока и ионизации p=n(Te+Ti) и m – масса иона.

mvSdz

dp

dz

dvnmv

Page 18: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

18

Из этих двух уравнений получается

2

2

1

1

M

M

nc

S

dz

dM

s

где M = v/cs число Маха. Видно, что при M → 1 dM/dz → ∞. Число Маха = 1 свидетельствует о начале слоя.

Из первых двух уравнений следует сохранение момента

0)( 2 nmvpdz

d

21

1

)0(

)(

Mn

Mn

где n(0) – плотность в точке стагнации v = 0. Видно, что n(M)/n(0) → 0.5 при M→ 1.

Распределение электронов определяется законом Больцмана

)1ln()( 2Me

TM e

Page 19: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

19

φ → -0.69 Te/e при M → 1. Для параллельного потока существует множество моделей как жидкостных так и кинетических. Предсказания для существенных параметров у разных моделей близки.Большой сложностью является учёт примесей. Они взаимодействуют с электрическим полем предслоя и собственным градиентом давления. Кроме того существует сила трения между ними и ионами основной компоненты плазмы.

Page 20: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

20

Содержание лекции № 3 «Физика Scrape-off Layer»

3.1. Взаимодействие плазмы с поверхностью

3.2. Scrape-off layer

3.3. Рециклинг

3.4. Простая модель учитывающая процессы в SOL

Page 21: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

21

Рециклинг

В современных установках время разряда значительно дольше времени смещения иона за пределы LCFS. Это означает, что за время разряда частица успеет многократно выйти из зоны удержания и вернуться в неё. Этот процесс называется рециклингом. Глобальное время смещения частиц, определяется как отношение полного содержания частиц внутри LCFS к потоку частиц внутрь LCFS (а следовательно и наружу). Это время не следует путать с характерным временем выхода частицы из центра наружу a2/ D┴. В токамаках с лимитером основная часть частиц попадает в объём удержания снаружи в нейтральном состоянии, преодолев часть малого радиуса они ионизуются и захватываются магнитным полем.

В случае диверторной конфигурации основная часть частиц может ионизоваться до попадания внутрь LCFS. В некоторых случаях внутри объёма удержания может отсутствовать источник частиц и распределение плотности в объёме удержания будет определяться распределением плотности вдоль сепаратрисы. В этом случае время смещения частиц слабо характеризует процесс.

Явление рециклинга включает процессы как в плазме так и на материальной стенке. Сейчас будут описаны процессы происходящие на материальной стенке.

Page 22: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

22

При попадании на материальную стенку ион испытывает серию упругих и неупругих столкновений с атомами поверхности. Он может быть рассеян назад после одного или нескольких таких столкновения, а может быть замедлен и захвачен стенкой. Захваченные атомы за счёт диффузии могут за счёт диффузии оказаться на поверхности, а затем попасть обратно в плазму. Отношение потока возвращающихся в плазму частиц к падающему потоку называется эффективным коэффициентом рециклинга. Поскольку поток частиц и излучения из плазмы может приводить к освобождению частиц ранее захваченных стенкой, то эффективный коэффициент рециклинга может превышать единичное значение, причём значительно. Равновесная концентрация частиц плазмы, захваченных на стенке зависит от потока частиц из плазмы, материала и температуры стенки. Это очень важный для реактора процесс, поскольку неопределённость в процессе рециклинга приводит к большим сложностям в контроле режима работы реактора.

Обратное рассеяние ионов, падающих на стенку зависит в первую очередь от энергии падающего иона и от отношения его массы к массе атома поверхности. Законы подобия, зависящие от энергии иона, позволяют вычислять коэффициент обратного рассеяния Rp для иона, падающего на любой материал. Подобный общий закон может быть получен для коэффициента отражения энергии RE

Page 23: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

23

Вычисленные значения Rp и RE приведены на графике

Вычисления проводились методом Монте-Карло для большого спектра комбинаций ионов и материальной стенки. Разброс в экспериментальных данных порядка 25% и результаты вычислений в общем согласуются с ними в этих пределах.

Зависимости построены для приведённой энергии (reduced energy). Которая равна:

2/13/22

3/212121

2

)()(

5.32

ZZZZmm

Em

Как и ожидалось исходя из закона сохранения момента сечение рассеяния растёт вместе с отношением масс.

Page 24: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

24

Данные, приведённые на графике ненадёжны при энергиях менее 10 эВ, поскольку приближение последовательных парных столкновений, использовавшееся в вычислениях, неверно.

Рассеянные назад частицы преимущественно нейтральны, поскольку падающий ион обычно захватывает электрон с поверхности.

Энергия рассеянных частиц определяется отношением RE/Rp, в среднем она составляет 30-40% энергии падающей частицы. Распределения по энергии рассеяния экспериментально измерены для энергий падающих частиц до 0.05 кэВ, и вычислены до ещё меньших значений этой энергии. Эти распределения непрерывны, обычно обладают выраженным максимумом, положение которого зависит от энергии падающей частицы и угла её траектории к поверхности.

Данные экспериментальных измерений, распределения по энергиям атомов водорода, отражённых от углеродной поверхности. Распределения нормированы на максимальную интенсивность. Различные графики соответствуют различной начальной энергии иона E0.

Page 25: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

25

Атомы , которые были замедлены и захвачены поверхностью, остаются в междоузлиях или дефектах кристаллической решётки. В экзотермическом случае на поверхности присутствует потенциальный барьер для выхода атомов. В этом случае они за счёт диффузии распределяются по всему объёму материала. В эндотермическом случае атомы могут покидать поверхность материала. Преимущественно в форме молекул с тепловыми скоростями (температура стенки). Скорость рекомбинации на поверхности при этом сильно зависит от параметров этой поверхности и может меняться на порядок в зависимости от наличия субмонослоя примеси.

Хотя, плотность потока атомов рециклинга максимальна на диверторных пластинах, рециклинг происходит и на стенках камеры. Суммарно он может достигать значений сравнимых с потоком частиц на диверторные пластины или лимитер (поскольку коэффициенты перезарядки и ионизации в интересующих нас условиях близки) Локальные измерения потока нейтралей на стенку показали значения энергии частиц 100-500 эВ.

Page 26: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

26

Содержание лекции № 3 «Физика Scrape-off Layer»

3.1. Взаимодействие плазмы с поверхностью

3.2. Scrape-off layer

3.3. Рециклинг

3.4. Простая модель учитывающая процессы в SOL

Page 27: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

Semi-Analytical Model for Coupling Core Semi-Analytical Model for Coupling Core and Edge Plasmaand Edge Plasma

Vladimir Sergeev1) and Boris Kuteev2)

e-mail: [email protected]

PET-12, Rostov Veliky , Russia, 02-04 September 2009

1) State Polytechnical University, St. Petersburg, Russia2) Russian Research Centre “Kurchatov Institute”, Moscow, Russia

Page 28: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

28

• Integrated modelling of tokamak plasmas, which takes into Integrated modelling of tokamak plasmas, which takes into account the effects of plasma control by heating, current drive, account the effects of plasma control by heating, current drive, particle sources and plasma wall interaction, is of great particle sources and plasma wall interaction, is of great importance for the contemporary tokamak program and for future importance for the contemporary tokamak program and for future reactor simulations. The integrated modeling is being developed reactor simulations. The integrated modeling is being developed in the framework of ITER/ITPA [1] and EFDA [2,3] activities in the framework of ITER/ITPA [1] and EFDA [2,3] activities joined by the attempts [4-6] to describe physical processes in joined by the attempts [4-6] to describe physical processes in specific fusion machines. specific fusion machines.

• This work aims at a joint operation of most sophisticated codes, This work aims at a joint operation of most sophisticated codes, which separately describe MHD equilibrium and stability, which separately describe MHD equilibrium and stability, transport, heating and current drives, fueling, SOL and divertor transport, heating and current drives, fueling, SOL and divertor plasmas in tokamaks. This is a long-term strategic task for fusion plasmas in tokamaks. This is a long-term strategic task for fusion plasma simulators. However, development of many tokamak plasma simulators. However, development of many tokamak subsystems, e.g. fueling and pumping, wall conditioning, heating subsystems, e.g. fueling and pumping, wall conditioning, heating and current drive, divertor etc., requires simpler approaches for and current drive, divertor etc., requires simpler approaches for simulations of coupled core and edge plasmas. The most simulations of coupled core and edge plasmas. The most important physical processes have to be taken into account in important physical processes have to be taken into account in such a model. Simulations of this type were applied for analysis such a model. Simulations of this type were applied for analysis of fuelling in 0D [7] and for impurity injection in 1D of fuelling in 0D [7] and for impurity injection in 1D approximations [8].approximations [8].

Introduction

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 29: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

29

• In this article we consider a simple semi-analytical model which In this article we consider a simple semi-analytical model which couples core and SOL regions of multi-species plasma that allows couples core and SOL regions of multi-species plasma that allows exploring steady state tokamak regimes with a broad range of exploring steady state tokamak regimes with a broad range of plasma actuators. plasma actuators.

• Basic tokamak physics in a form acceptable for understanding the Basic tokamak physics in a form acceptable for understanding the technology and operation basics should be established in such a technology and operation basics should be established in such a model. Therefore, the most important control actuators, i.e. gas model. Therefore, the most important control actuators, i.e. gas puffing and pumping, pellet and dust injection, auxiliary and puffing and pumping, pellet and dust injection, auxiliary and fusion heating and recycling are incorporated in the model. This fusion heating and recycling are incorporated in the model. This approach is helpful for analysis of tendencies of plasma behavior approach is helpful for analysis of tendencies of plasma behavior when impact of different actuators on a tokamak plasma is varied.when impact of different actuators on a tokamak plasma is varied.

Introduction (cont.)

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 30: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

30

• Two coupled core and SOL regions are responsible for heat, fuel Two coupled core and SOL regions are responsible for heat, fuel and impurity flows in a tokamak. The interface of these regions is and impurity flows in a tokamak. The interface of these regions is the plasma separatrix where solutions for different regions are the plasma separatrix where solutions for different regions are matched. Consideration of the 2D tokamak core plasma region matched. Consideration of the 2D tokamak core plasma region could be simplified to 1D approach. The SOL plasma is could be simplified to 1D approach. The SOL plasma is principally three-dimensional. Nevertheless, one should take into principally three-dimensional. Nevertheless, one should take into account at least 2D effects in this region. Processes of heat and account at least 2D effects in this region. Processes of heat and particle transport should be also considered as coupled ones. particle transport should be also considered as coupled ones.

• Basic physical processes (the radial diffusion/heat diffusivity, Basic physical processes (the radial diffusion/heat diffusivity, convection, sources and losses.) and the model assumptions in the convection, sources and losses.) and the model assumptions in the core region are given in Table 1. core region are given in Table 1.

Model basis

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 31: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

31

Model basis (cont.)

PET-12, Rostov Veliky , Russia, 02-04 September 2009

T a b le 1 . B a s ic p h y s ic a l p ro c e sse s a n d th e m o d e l a ssu m p tio n s fo r e n e rg y an d p a r tic le f lo w s in th e c o re p la sm a .

C o re p la sm a – 1 D p ro cess a ssu m p tio n s co n tro l e ffec ts

p a rtic le tra n sp o rt (m u lt i-sp ec ies D , T , H e , L i… )

d iffu s io n u n iv e rsa l D = c o n s t(r )

p ro file sh a p e

p in c h

u n iv e rsa l V (r )-D r /a

p ro file sh a p e

so u rc e /lo ss

delta-shape fu e llin g e ffic ie n c y

(g a s , p e lle ts b e a m s , m ulti-species approach L ocal plasm a com position

d u s t, fu s io n )

en erg y tra n sp o rt (co u p led e -i, T e= T i= T )

h e a t d if fu s iv ity

u n iv e rsa l = c o n s t(r )D

fusion rate

h e a t p in c h

particle flowT p ro file sh a p e

so u rc e /lo ss

delta-shape im p u rity le v e l

(N B I,E C R H , fu s io n c o ro n a l a p p ro x im a tio n

p ro file s sh a p e

p e lle ts , b re m ss tra h lu n g , c o re ra d ia tio n

m a n tle ra d ia tio n )

Page 32: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

32

Model basis (cont.)

PET-12, Rostov Veliky , Russia, 02-04 September 2009

T a b le 2 . B a s ic p h y s ic a l p ro c e sse s a n d th e m o d e l a ssu m p tio n s fo r e n e rg y a n d p a rtic le f lo w s in S O L p la sm a .

S O L – 2 D p ro ce ss a ssu m p tio n s co n tro l e ffec ts

p a rtic le tra n sp o rt (m u lt i -sp ec ies D ,T ,H e,L i… ) \

p a ra lle l tra n sp o rt so n ic sp e e d se p a ra tr ix d e n s i ty

p a ra lle l rec y c lin g sp e c ie se n s it iv e R

g a s -so lid d if fe re n c e

tra n sv e rse tra n sp o r t d if fu s io n /S im o n e ffe c t re c y c lin g m e c h a n is m

tra n sv e rse re cy c lin g sp e c ie se n s it iv e R

w a ll re te n tio n o f sp e c ie s

so u rc e /lo ss p u ffin g , p u m p in g se p a ra tr ix d e n s ity

en erg y tra n sp o rt (co u p led e -i, T e= T i= T )

h e a t d if fu s io n e le c tro n s p a ra lle l se p a ra tr ix te m p e ra tu re

so u rc e /lo ss c o ro n a l ra d ia tio n d iv e r to r h e a t lo a d s

Page 33: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

33

Layout of heat, particle and radiation flows in a tokamak

A schematic diagram of lithium flows in a divertor tokamak with dust lithium jet injection in vicinity of the stagnation point is shown in Fig.1. Lithium is injected in small droplet form with the characteristic size of 20-30 microns and the velocity lower than 30 m/s [9-11]. The droplets are ablated in SOL [10] and the lithium ionized migrates to divertor plates that determines its density level in SOL. Interaction of lithium with peripheral plasma and with the wall during its transport along magnetic field lines from the injection point to the diverter determines the lithium density level in the SOL.

Fig.1

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 34: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

34

Essence of the analysis

• Four species were considered in the steady-state transport analysis: D, T, He and Li. The lithium film protection of the wall has allowed us to exclude heavy impurities from consideration. The density and temperature in the SOL were simulated by using the simple model of [12] taking into account different recycling coefficients Ri  Ri for longitudinal

(parallel) flows at the diverter plates for the species denoted by subscript i. The core density and temperature were calculated by using a set of transport equations assuming the anomalous diffusion D = 0.3-0.6 m2/s, thermal diffusivity  = (3-5)×D and pinch velocity V  =  V(a)(r/a) to be equal for all species. Here, V(a) =0.075-0.6 m/s is the velocity magnitude at the separatrix, a is the separatrix radius and r is the minor radius. These assumptions correspond to the experiments and are close to those used in contemporary simulations (see [13]).

• The source/loss location of species i is defined by radius r = bij, where j distinguishes the

source/loss types when particles of species i appear in the plasma volume in different forms. For example, deuterium may be injected as a neutral gas or pellets and may be lost from the plasma in the form of ions due to fusion. The pumping rate for species i is equal to (1-Ri)

part of the total corresponding flows into the SOL. The plasma heating sources produced by alpha particles, additional heating by the neutral beam injection and the electron cyclotron radiation were taken into account. Bremsstrahlung, as well as He and Li radiations in coronal approximation were considered similarly to [14], both in the core and SOL plasmas.

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 35: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

35

For the core plasma region the following equation can be applied forFor the core plasma region the following equation can be applied for

each ion specie “each ion specie “ii””

Particle balance equations

Sij are delta-function particle sources for specie “i” located at radius bj,

ij (particles/sec) is the integral flow of i specie into the toroidal volume Vbj with radius bj.

Here, H is the Heaviside step function. The density profile can be calculated on the basis of the separatrix density ni(a).

j

ijij

ijij

jiji

ii br

V

brSn

a

raV

r

nDr

rrdiv

2

)(1

j

ijijSOLj

ijii

i brHrS

adrr

rSr

rn

a

raV

r

nD

0

1)(

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 36: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

36

Particle balance equations (cont.)

To evaluate the separatrix density ni(a) the plasma flow onto the divertor plate with sonic speed Vs

of D-T mixture at average temperature Tav = 3 eV were assumed:

1 2

/,,

2

ar

ij

xA

ij dxabxHx

ebrF

D

aaVA

TD

avs

j is

ij

SOLSOLi

M

TV

RVS

Rqan

2

3

5

)1(95

jijij

SOLiii brF

SaDn

aA

a

rAanrn ,

2exp

112

exp2

2

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 37: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

37

• MMD+TD+T is the average mass of the gas flow in the SOL, is the average mass of the gas flow in the SOL, RRii is the recycling coefficient is the recycling coefficient equal to 0.95 for gases (D, T, He) and equal to 0.1 for lithium, equal to 0.95 for gases (D, T, He) and equal to 0.1 for lithium, qq9595 is the safety factor is the safety factor at 95% flux surface. The SOL width at 95% flux surface. The SOL width SOLSOL, or e-folding length, was assumed to be 2 , or e-folding length, was assumed to be 2 cm in conformity with the range of values considered for ITER [15]. The separatrix cm in conformity with the range of values considered for ITER [15]. The separatrix density evaluated within these assumptions reasonably correlates with the empirical density evaluated within these assumptions reasonably correlates with the empirical scaling presented in [12]. The set of particle and energy sources/losses included in the scaling presented in [12]. The set of particle and energy sources/losses included in the simulations with their normalized locations simulations with their normalized locations bbijij/a/a for all species are given in table 3. for all species are given in table 3.

Source position (Table 3)

Table 3. Locations bij/a of energy and particle sources/losses used in the model.

Source/Specie deuterium tritium helium lithium electrons

g a s 0 .9 9 - - - 0 .9 9

p e lle t - 0 .8 0 - - 0 .8 0

lith iu m d u s t - - - 0 .9 9 * 0 .9 9

fu s io n 0 .2 0 0 .2 0 0 .2 0 - 0 .2 0

N B I 0 .3 0 - - - 0 .3 0

PET-12, Rostov Veliky , Russia, 02-04 September 2009

*) The penetration depth of lithium dust at ITER conditions were evaluated on the basis of the Neutral Gas Shielding Model [16].

Page 38: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

38

Heat balance equations The heat transport was approximated by anomalous heat conductivity and particle heat transport in the core plasma. The electron and ion temperatures have been

assumed equal each other Te=Ti =T.

pellmtlbrECRHNBIee QQQQQQT

r

Tnr

rr

51

This equation takes into account the particle transport described above and a homogeneous thermal diffusivity coefficient proportional to the diffusion coefficient D. The fusion heating source Q = 0.2Qfus, the neutral beam heating

source QNBI and the ECRH source QECRH were approximated by -functions at the

normalized minor radii bij/a = 0.2, 0.3 and 0.6 respectively. The Ohmic heating

term was neglected. Bremsstrahlung Qbr and mantle Qmtl radiation losses were placed at radii bij/a = 0.2 and 0.9 correspondingly. Plasma dilution by cold pellet

electrons was taken into account at bpell/a=0.8 as well. These radiation and pellet

loss terms were taken into account iteratively (one-step approach).

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 39: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

39

The temperature profile in the core plasma T(r)

)/()/()/()/(

)/()/()/(

)(

1)(

,)(

)(5)(,/exp

1

1

/

1

11

abzHabTabzHIabzHI

abzHPabzHPabzHP

znSzzg

dxxn

xazFdzezgaTarFrT

pellpellmtlmtl

brbr

ECRHECRHNBINBI

eSOL

z

e

ear

zFs

pell

For boundary conditions, we assumed the separatrix temperature Ts to be determined by the longitudinal electron heat transport [12]. The effect of the plasma radiation onto Ts was taken into account and the following equation

7

2

||

95

2

7

SOL

mtlbrECRHNBIc

s S

IIPPPRqT

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Here is the longitudinal heat conductivity coefficient [14], SSOL is the SOL cross-

section area at the separatrix, Rc is the plasma major radius, Ibr and Imtl are the

radiation power terms and P is the power of the corresponding heat source (fusion, NBI, ECRH). The temperature profile shape in the core plasma T(r) was calculated by using the following equation:

Page 40: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

40

Radiation model

Bremsstrahlung radiation in the core plasma was evaluated by using the density Bremsstrahlung radiation in the core plasma was evaluated by using the density and temperature profiles, as well as the effective plasma charge profile and temperature profiles, as well as the effective plasma charge profile ZZeffeff [12]. [12]. This was calculated by the formulaThis was calculated by the formula

For the mantle Imtl and scrape-off layer ISOL radiations we used the model of [14]:

Here Li(T) is the emission rate coefficient of lithium or helium in coronal

approximation [14]. T0 is the central plasma temperature. Both impurities are

taken into account in the calculations of plasma radiation.

212371035.5 TnZ

dV

dIeeff

br  (W/m3,m3,keV).

2

1

20

)()(2

dTTLananSI

T

T

iieSOLmtli

s

2

1

5.0

0

2|| )()(22

dTTTLTananSI

sT

isieSOLSOLi

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 41: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

41

Basic goal of simulations with injected lithium

• The basic goal of this study is searching for conditions when the major part of the fusion power is radiated by boundary plasma with injected lithium while the reactor core plasma remains low radiating and being clean enough with the effective charge below 1.7

• The interest to the dust lithium jet technique is stimulated by necessity to provide wall conditioning in steady state operation and to reduce the total amount of lithium inside the vacuum vessel to a few kilogram level, which better corresponds to reactor safety requirements than the thick lithium wall with capillary porous system containing tons of lithium [17]

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 42: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

42

The results of simulations

The results of calculating the plasma parameters in ITER&DEMO-like conditions for aV(a)/D = 0.5 and 2 are given in Table 4 and Fig.2-4. Values of flows and power sources for different regimes are presented in Table 4. The lithium density profile is formed by the border source and looks most flat. The internal source at 0.5r/a for D and T produces a clear nipping effect on these profiles. The internal fusion source for He makes the corresponding profile mostly sharp. A strong effect of fusion reactions is seen in Fig.3 where the central densities of deuterium and tritium are obviously hollow in the case of aV(a)/D = 0.5. Although that Zeff grows towards plasma periphery due to lithium injection, the volume averaged value does not exceed the 1.6-1.7 acceptable level. The temperature profiles (Fig.4a,b) give reasonable central values and demonstrate source location effects. Higher temperatures correspond to higher values of aV(a)/D.

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 43: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

43

The results of simulations

Fig.3Fig.2

Fig.4bFig.4a

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 44: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

44PET-12, Rostov Veliky , Russia, 02-04 September 2009

The results of simulations (Table 4) Parameter, Parameter, ITERITER

aV/DaV/D=2 =2 ITERITER

aV/DaV/D=0.5 =0.5 DEMODEMOaV/DaV/D=2 =2

DEMODEMOaV/DaV/D=0.5 =0.5

Flux D puffing (10Flux D puffing (102121 [1/sec]) [1/sec]) 1.191.19 1.651.65 1.081.08 1.611.61

Flux D pellet (Flux D pellet (10102121 [1/sec]) [1/sec]) 3.063.06 4.254.25 2.782.78 4.154.15

Flux T pellet (Flux T pellet (10102121 [1/sec]) [1/sec]) 3.283.28 4.464.46 3.163.16 4.564.56

Flux Li dust jet (10Flux Li dust jet (102121 [1/sec]) [1/sec]) 8.758.75 13.0213.02 5.005.00 7.657.65

Volume-averaged Volume-averaged ZeffZeff 1.691.69 1.691.69 1.691.69 1.691.69

Volume-averaged Volume-averaged ne ne ((10102020 [m-3]) [m-3]) 1.021.02 1.021.02 1.081.08 1.081.08

PPNBINBI (MW)(MW) 3232 3232 3232 3232

PPECRHECRH (MW) (MW) 2020 2020 2020 2020

PPfusfus (MW) (MW) 100.0100.0 86.486.4 372372 423423

TT00 (keV)(keV) 11.611.6 13.413.4 23.223.2 31.631.6

TTss (keV) (keV) 0.140.14 0.130.13 0.230.23 0.230.23

Bremstrahlung radiation (MW)Bremstrahlung radiation (MW) 22.822.8 19.519.5 37.737.7 33.933.9

Mantle radiation (MW)Mantle radiation (MW) 25.525.5 41.541.5 88.588.5 211.9211.9

SOL radiation (MW)SOL radiation (MW) 16.216.2 21.321.3 43.743.7 63.563.5

Power to divertor plates (MW)Power to divertor plates (MW) 87.587.5 56.156.1 254.1254.1 165.7165.7

Enhancement factor of Li recycling toEnhancement factor of Li recycling to re-radiate 80% of total power, 20%re-radiate 80% of total power, 20% power goes to divertor platespower goes to divertor plates

4.54.5 2.32.3 4.94.9 2.12.1

Page 45: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

45

Discussion

• The calculations show that lithium injection provides substantial increase of the radiation in the core and SOL plasma. Both for ITER&DEMO-like plasmas the Li and He radiations onto the divertor plates evaluated in coronal approximation reduce the heat flow onto divertor plates by a factor of 2. • However, the divertor heat loads are still high. From the thermal stability conditions of tokamak discharge it is possible to reduce the divertor heat loads upon to 0.2 of the total heat flow through separatrix [12]. • To realize this condition it is necessary to enhance the impurity radiation by a factor of 2-5 as follows from the Table 4.

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 46: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

46

Summary

• A simple semi-analytical model with coupled core and SOL regions with A simple semi-analytical model with coupled core and SOL regions with multi-species plasma that allows exploring steady state tokamak regimes multi-species plasma that allows exploring steady state tokamak regimes has been developed. The most important control actuators, i.e. gas puffing has been developed. The most important control actuators, i.e. gas puffing and pumping, pellet and dust injection, auxiliary and fusion heating and and pumping, pellet and dust injection, auxiliary and fusion heating and recycling are incorporated into the model. Further improvement of the recycling are incorporated into the model. Further improvement of the model presumes verification of its capability to describe experimental model presumes verification of its capability to describe experimental database of contemporary tokamak experiments with impurity injection.database of contemporary tokamak experiments with impurity injection.

• In accordance with the analysis presented the lithium jet injection In accordance with the analysis presented the lithium jet injection technique might have good perspectives for tokamak-reactor performance. technique might have good perspectives for tokamak-reactor performance. For ITER and DEMO conditions the mantle and SOL might re-radiate For ITER and DEMO conditions the mantle and SOL might re-radiate more than a half of the total power with ~ 0.1 g/s lithium injection even in more than a half of the total power with ~ 0.1 g/s lithium injection even in coronal approximation.coronal approximation.

• Stimulating the lithium recycling in the SOL volume by charge exchange Stimulating the lithium recycling in the SOL volume by charge exchange and recombination processes may improve the situation significantly. and recombination processes may improve the situation significantly.

• Although that Although that ZZeffeff grows towards plasma periphery due to lithium injection, grows towards plasma periphery due to lithium injection, the volume averaged value does not exceed the 1.7 acceptable level under the volume averaged value does not exceed the 1.7 acceptable level under assumption of the 0.1 Li recycling coefficient. This assumption should be assumption of the 0.1 Li recycling coefficient. This assumption should be checked experimentally, which is planned in T-10 tokamak experimentschecked experimentally, which is planned in T-10 tokamak experiments . .

PET-12, Rostov Veliky , Russia, 02-04 September 2009

Page 47: Курс лекций :  Физико-технические основы токамака-реактора ИТЭР

47

References

[1] W.A. Houlberg, US Transport Task Force Meeting, 25-28 March 2008, Boulder, Colorado.[1] W.A. Houlberg, US Transport Task Force Meeting, 25-28 March 2008, Boulder, Colorado.[2] A. Bécoulet et al., 21st IAEA Fusion Energy Conference, 16 - 21 October 2006, Chengdu, China, Topic [2] A. Bécoulet et al., 21st IAEA Fusion Energy Conference, 16 - 21 October 2006, Chengdu, China, Topic

TH/P2-22.TH/P2-22.[3] V. Parail et al., 22nd IAEA Fusion Energy Conference, Geneva, Switzerland, October 13-18 2008, [3] V. Parail et al., 22nd IAEA Fusion Energy Conference, Geneva, Switzerland, October 13-18 2008,

IT/P6-7.IT/P6-7.[4] V. Parail et al., Plasma Physics Reports [4] V. Parail et al., Plasma Physics Reports 2929, 539–544 (2003)., 539–544 (2003).[5] H.R.Wilson et al., [5] H.R.Wilson et al., Nucl. Fusion Nucl. Fusion 44,44, 917-929 (2004) 917-929 (2004)[6] D.P. Coster et al., Journal of Nuclear Materials [6] D.P. Coster et al., Journal of Nuclear Materials 363–365,363–365, 136–139 (2007). 136–139 (2007).[7] H. Takenaga and the JT-60 Team. Development of fuelling system and its application to plasma control [7] H. Takenaga and the JT-60 Team. Development of fuelling system and its application to plasma control

in JT-60U, ITER Fuelling Workshop, December 1 – 3 2008, Cadarache.in JT-60U, ITER Fuelling Workshop, December 1 – 3 2008, Cadarache.[8] B.V. Kuteev et al., 22nd IAEA Fusion Energy Conference, Geneva, Switzerland, October 13-18 2008, [8] B.V. Kuteev et al., 22nd IAEA Fusion Energy Conference, Geneva, Switzerland, October 13-18 2008,

FT/P3-22.FT/P3-22.[9] [9] B.V. Kuteev et al., 21st IAEA Fusion Energy Conference, 16 - 21 October Chengdu, ChinaB.V. Kuteev et al., 21st IAEA Fusion Energy Conference, 16 - 21 October Chengdu, China, EX/P4-13 , EX/P4-13

(2006)(2006)[10] V.M. Timokhin e[10] V.M. Timokhin et al.,t al.,33nd EPS Conference on Plasma Phys., Roma, 19 - 23 June 2006, Paper P-4.092 33nd EPS Conference on Plasma Phys., Roma, 19 - 23 June 2006, Paper P-4.092 [11] [11] V.M. Timokhin V.M. Timokhin et al., 34th EPS Conference on Plasma Phys., Warsaw, July 2-6 2007, Paper P-1.205et al., 34th EPS Conference on Plasma Phys., Warsaw, July 2-6 2007, Paper P-1.205[12] J.Wesson. Tokamaks, Clarendon Press, Oxford (2004)[12] J.Wesson. Tokamaks, Clarendon Press, Oxford (2004)[13] E.J. Doyle et al[13] E.J. Doyle et al,, Nucl. Fusion Nucl. Fusion 47,47, S18 (2007) S18 (2007)[14] D. Post et al., Journal of Nuclear Materials [14] D. Post et al., Journal of Nuclear Materials 220-222,220-222, 1014 (1995) 1014 (1995)[15] A. Loarte et al., Nucl. Fusion [15] A. Loarte et al., Nucl. Fusion 47,47, S203 (2007) S203 (2007)[16] O.A. Bakhareva et al., Plasma Physics Reports [16] O.A. Bakhareva et al., Plasma Physics Reports 32, 32, 363 ( 2006)363 ( 2006)[17] [17] EVTIKHIN, V.A., et al., PPCF 44 (2002) 955-977.EVTIKHIN, V.A., et al., PPCF 44 (2002) 955-977.

PET-12, Rostov Veliky , Russia, 02-04 September 2009