144
Το περιεχόmενο αυτών των σηmειώσεων είναι λίγο πολύ το περιεχόmενο mιας σειράς (έξι) οmιλιών που δόθηκαν σε οmάδα mεταπτυχιακών σπουδαστών mε προτροπή, φροντίδα και φιλοξενία του καθηγητή της Σχολής Ναυπηγών του ΕΜΠ, Γ. Α- θανασούλη. Ο οmιλητής, που είναι ο υπογράφων, σε κάθε οmιλία διένειmε χειρόγραφο κείmενο mε λεπτοmερή ανάπτυξη του περιεχοmένου. Είναι mε το mόχθο της mεταπτυχι- ακής σπουδάστριας Ευαγγελίας Dραγάζη που οι περίπου 200 σελίδες χειρογράφων πήραν την έντυπη και φροντισmένη mορφή του παρόντος κειmένου. Ευχαριστώ θερmά από τη θέση αυτή την Ευαγγελία Dραγάζη όπως βέβαια και τον Γ. Αθανασούλη για την έmπρακτη συνεισφορά τους. Σχετικά mε το κείmενο τώρα επισηmαίνονται τα εξής: Η απόδοση όρων στα Ελλ- ηνικά δεν είναι συστηmατική· κάποιοι όροι αναφέρονται mόνο στα Αγγλικά (π.χ. tightnes) ενώ για άλλους έγινε κάποια απόπειρα απόδοσης. Για αυτήν την τελευ- ταία περίπτωση σηmειώνεται ότι mε τον όρο πλήρως κανονικός τοπ. χώρος νοείται αυτός που στην Αγγλική βιβλιογραφία αναφέρεται mε τον όρο completely regular (και δεν πρόκειται για τους τοπ. χώρους που είναι γνωστοί ως completely normal που άλλωστε δεν υπάρχουν στο κείmενο αυτό). Ο γραφών θα χαρεί ειλικρινώς για τυχόν παρατηρήσεις ή διορθώσεις που ενδε- χοmένως προταθούν. Αθήνα 2010 Ι. Σπηλιώτης i

Σπηλιώτης-Θεωρία Μέτρου σε απειροδιάστατους χώρους.pdf

  • Upload
    -

  • View
    225

  • Download
    5

Embed Size (px)

Citation preview

  • ANTI PROLOGOU

    pi pi pi () pi pi pi pipi, pi , . -. , pi pi, pi pi pi. pi- pi pi pipi 200 pi pi pi . pi pi . pi . pi : pi - pi (pi..tightnes) pi pipi pi. - pipi pi pi. pi completelyregular ( pi pi. pi completelynormal pi pi ). pi pi - pi.

    2010

    . pi

    i

  • PINAKAS SUMBOLWN

    (E ) - pi pi pi E

    () - pi pi Y Xpi (Y,H ) .

    FE - F .

    T TX T (X) pi. X.G GX G (X) pi. X.

    K KX K(X) pi pi. X.B BX B(X) - Borel pi. X (B = (T )).B(X, ) - Borel pi pi X.

    Bm - Borel Rm.

    C(X,) RX pi pi .

    C(X,) RX - pi pi - , (C(X,)).

    C(X) C(X,R) pi pi. X.

    Cb(X) pi pi. X.

    K(X) pi pi - pi. X.

    (X,X ) pi pi. pi. . X.

    C (X,X ) pi pi. pi. . X.

    (X,X ) pi Mackey pi. pi. . X.

    S(X,X) pi Sazonov pi. pi. . X.

    ii

  • Perieqmena

    1 - 31.1 . . . . . . . . . . . . . . . . . . . 31.2 Rm. Lebesgue . . . . . . . . . . . . . . . . 111.3 pi . . . . . . . . . . . . . . . . . . . . . . . 141.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    2 pi Hausdorff 192.1 pi . . . . . . . . . . . . . . . . . . . . . . . . . . 192.2 pi . . . . . . . . . . . . . . 222.3 pi pi pi . . . . . . . . . 252.4 . . . . . . . . . . . . . . . . . . . . 272.5 pi . . . . . . . . . . . . . 372.6 . . . . . 402.7 pi . . . . . . . . . . . . . . . . . . . . . . 432.8 . . . . . . . 462.9 . . . . . . . . . . . . . . . . . 472.10 pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    3 pi pi 553.1 pi pi . . . . . . . . . . . . . . 553.2 Prohorov . . . . . . . . . . . . . . . . . . . . . . . . . . 563.3 Kolmogorov . . . . . . . . . . . . . . . . . . . . . . . . 603.4 pi -

    tTB(St) T pi 66

    3.5 Ionescu-Tulcea . . . . . . . . . . . . . . . . . . . . . . . 71

    4 pi pi. . 754.1 pi pi. . . . . . . . . . . 754.2 - - pi. . . . . 78

    4.2.1 . . . . . . . . . . . . . . . 784.2.2 - pi. . . . . . . . . . 79

    4.3 - . . . . . . . . . . . . . . 854.4 pi ... Prohorov 85

    1

  • 5 pi 915.1 . . . . 915.2 . . . . . . . . 95

    6 Minlos Sazonov 996.1 . . . . . . . . . . . . . . . . . . . . . . . . . 996.2 pi Sazonov . . . . . . . . . . . . . . . . . . . . . . . . . 1026.3 Minlos Sazonov . . . . . . . . . . . 1076.4 pi .. . . . . . . . . . . 114

    7 Gauss 1177.1 Gauss Rn . . . . . . . . . . . . . . . . . 1177.2 pi Gauss pi -

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187.3 . . Gauss Hilbert.

    Mourier . . . . . . . . . . . . . . . . . . . . . . . . . . 122

    pi 2.4.2. 125

    pi 2.4.4. 129

    pi Prohorov 135

    2

  • Keflaio 1

    Mtra kai s-lgebrec

    1.1 Mtra se afhrhmnouc qrouc

    6= 1.1.1. F pi - pi pi pi:

    1. F2. A F Ac F

    3. (An, n N) F n=1

    An F

    pi pi :

    F A,B F A B, A B, A \B, A M B F

    (An, n N) F n=1

    An F

    1.1.2. ( -)

    1. F = {,}2. F = {,, A,Ac} pi A A 6= ,

    3. =ki=1

    Ai Ai Aj = i 6= j {1, ...k}

    F =

    {iI

    Ai : I {1, ..., k}}

    - cardF = 2k

    4. F = P() pi .

    3

  • 1.1.3. {Fi, i I} - pi F =

    iIFi -. ( F

    , Fi i I.) 1.1.4.

    iIFi.

    pipi :

    1.1.5. C pi . - pi pi C - pi - pi pi C (pi , P()). - pi pi C (C ) pi- pi pi pi:

    (C ) C - F C F (C )

    (C ) ( ) -pi pi C .

    1.1.6.

    1. C1 C2 (C1) (C2)2. C - (C ) = C

    3. C E (C ) (E ) = (C ) pi - - Borel Rm pi :

    1.1.7. E pi Rm. - - Borel pi Rm - Bm (E ). pi ( [2])

    1.1.8. Pm = {(a1, b1] ... (am, bm] : ai < bi R}{} H pi Rm

    Bm = (H ) = (Pm).

    Bm = (L )pi L = {B(x, r) : x Rm, r > 0} , B(x, r) = {x Rm : |x| < r} 1.1.9. , pi pi Rm Bm. pi pi pi Rm. :

    x Rm {x} Bm ( ) R Q B1 Q

    Q =xQ{x}.

    4

  • : - pi pi C pi . : pi C ; pi , (transfinite in-duction) pi [1] [9] . pi - Borel pipi pi :

    cardBm = cardR c 1.1.10. (,F ) pi 6= F - pi . (,F ) pi

    : F 7 [0,]pi pi pi pi:

    1. () = 02. An F , n N Ai Aj = i 6= j N

    ( n=1

    An

    )=

    n=1

    (An).

    pipi () < + -pipi pi En F , n N =

    n=1

    En

    (En) < +. 1.1.11. () (,F ). :

    1. A B (A) (B)2. A B (A) < + (B \A) = (B) (A)

    3. An F , n N (n=1

    An) n=1

    (An)

    4. An F , n N An An+1n N

    ( n=1

    An

    )= limn(An)

    5. An F , n N An An+1 n N (Ak) < + pik N

    (

    n=1

    An) = limn(An)

    5

  • 1.1.12. 1, 2 (,F )

    1(A) = 2(A) A F . pi pi -. pi pi Dynkin Dynkin . pi [7] . pi pi pi . ( [6])

    1.1.13. 1, 2 (,F ) F = (C ) pi C pi pi pi:

    A,B C A B C

    pi En C , n N En En+1 n N n=1

    En =

    1(A) = 2(A) A C 1(Ek) = 2(Ek)

  • N = { : pi N F (N) = 0 N}F = {A N : A F N N}

    : F 7 [0,] : (A N) = (A). F - pi pi F , (, F ) pi pi (, F , ) pi. pi pi (, F , ) minimal ( (,F1, 1) pi F1 F 1|F = F1 F 1|F = ). 1.1.17. pi F = (F N). F = {A pi B1, B2 F B1 A B2 (B1) = (B2)}

    pi. [6]

    pi -pi (,F ) C F . pi .

    1.1.18. 6= P() pi . : P() 7 [0,] pipi pi:

    1. () = 02. A B (A) (B)

    3. An , n N (n=1

    An) n=1

    (An)

    pi pi:

    1.1.19. pi . pi A -

    (A E) + (Ac E) = (E) E (?)

    - pi M ,

    M = {A : (A E) + (Ac E) = (E) E }

    1.1.20. ?

    (A E) + (Ac E) (E) E

    pi : (B) = 0 B M pi B (B) = 0 M

    7

  • 1.1.21. () piM - pi - M , (,M , ) pi.

    pi. [3] [6] [7] [9] ...

    :

    1.1.22. ( ) C pi C . 0 : C 7 [0,] pi 0() = 0. : P() 7 [0,] :

    (A) = inf

    { n=1

    0(Bn) : Bn C n=1

    B A}

    : inf = + pipi (C , 0)

    pi. [11]

    - pi . pi pipi pi . pi pi ( ).

    1.1.23. C pi - pi pi pipi:

    1. C

    2. A,B C A B C

    3. A,B C A B pi E1, E2, ..., Ek C B \A =

    ki=1

    Ei

    pipi C C

    1.1.24.

    1. = Rm Pm = {(a1, b1] ... (am, bm] : ai < bi R} {} Pm ( m = 1).

    8

  • 2. (1,F1) (2,F2) pi F1,F2 pi 1,2 . :

    C = {AB : A F1B F2}

    . pi F1,F2 .

    pi pi pi pi 0 : C 7 [0,] piC pi pi pi:

    () 0() = 0

    () An C , n N Ai Aj = i 6= j n=1

    An C

    0(n=1

    An) =n=1

    0(An).

    (), ().

    1.1.25. (pi) C pi 0 : C 7 [0,] pi (),() pipi

    () pi En C , n N En En+1 n=1

    En =

    0(En) < + n N. :

    1. pi (, (C )) pi |C = 0 ( pi 0 - (C )). -pipi.

    2. , pi pi (C , 0) M (C ) |(C ) =

    3. (, ((C ), ) pi (, (C ), ) (C ) =M =

    1.1.26. ( pi) pi () pi pi

    ... limn0(En) = 1.

    pi -pipi pi (1) pi pi, () = 1. pipi pi .

    9

  • pi. [8] [9] [11]

    1.1.27.

    1. pi pipi

    M = {A : (A) + ( \A) = 1}

    ( M 7)

    2. C (. C ) 1.1.26 () pi pi : 0() = 1.

    1. A (A) < +. pi B (C ) pi A B (A) = (B). (C ) B \ A () = 0.

    2. F0 pi , pi pi pi pi:

    1. F02. A F0 Ac F03. , F0 A B F0.

    0 : F0 7 [0, 1] pi pi pi:

    i. 0() = 1

    ii. A1, ..., Ak F0 0(A1 ...Ak) = 0(A1) + ...+0(Ak)

    iii. An F0, n N An An+1 n=1

    An = limn0(An) = 0

    (F0, 0) pi pipi 1.1.26pi pipi pi pi 2 pipi.

    3. C pi 0 : C 7 [0,]pi pipi:

    () 0() = 0

    () k N A1, A2, ..., Ak C ki=1

    Ai C 0(A1 ...Ak) =0(A1) + ...+ 0(Ak)

    10

  • (B) An C , n N n=1

    An C 0(n=1

    An) n=1

    0(An)

    () () (B) () () ( pi pi pi pi ( pi) (),(),(B) (),().(Updeixh: Prta dexte epagwgik to akloujo Lmma: gia kje k N kaiA1, ..., Ak C xna metax touc kai B C me B

    ki=1

    Ai isqei B \ki=1

    Ai =l

    j=1

    Ej pou Ej Cxna metax touc.)

    4. (,F , ) . F -, : F 7 [0,]. pi pi (F , ).( 8). (A) = inf{(B) : B F B A}, A .

    pi pi pi . pi pi .

    1.1.28. (,F ) ,. F -pi . E . pi pi FE = {A E : A F} - F = (C ) FE = (CE) pi CE = {B E : B C }. - FE F E.

    pi. [9] 132

    pi ( [6] 164 [7])

    1.1.29. (,F , P ) pi P pi pi (F , P ).pi pi E

    P (E) = 1 (4) - FE = {A E : A F} P0 : FE 7 [0, 1] :

    P0(A E) = P (A). (E,FE , P0) pi.( E F ). 1.1.30. pipi (,F , )pi () < +. pi (4) pi (E) = () ( E F (E) = ().

    1.2 Mtra ston Rm. To mtro Lebesgue Rm pi

    Pm = {(a1, b1] ... (am, bm] : ai < bi R} {}

    11

  • Bm = ((Pm)). 0 : Pm 7 [0,) :

    0() = 00((a1, b1] ... (am, bm]) =

    mi=1

    (bi ai)

    pi pipi (),(),() 1.2.25 0 C = Pm. () () pi.( pi En = (n, n] ... (n, n], n N). pi () pi- ( pi. [2] [7] [9]). pipi (Pm, 0) pi:

    1.2.1. pi (Rm,Bm) pi

    ((a1, b1] ... (am, bm]) =mi=1

    (bi ai).piM Bm (A) = (A) A Bm. (Rm, Bm, ) pi (Rm,Bm, ) Bm =M = . = (Rm, Bm) = (Rm,M) Lebesgue Rm.

    pi. [12]

    Lebesgue Rm pi:

    1.2.2.

    1. (K) < + pi K Rm

    2. A M (A) = inf{(U) : U Rm U A} pi > 0 pi pi U Rm pi: U A (U \A) < .

    3. A M (A) = sup{(K) : K pi pi A} (A) < > 0 pi pi K Rmpi K A (A \K) < .

    4. A M pi F- G- pi E A H (E) = (A) = (H). (H \ E) = 0.

    pipi Lebesgue pi Rm. pi .

    1.2.3.

    1. A Rm x Rm :A M(Bm) A+ x M(Bm).

    2. (A+ x) = (A) A M x Rm.

    12

  • 3. (Rm,Bm) (K) < + pi K Rm (I + x) = (I) I Rm x Rm pi a 0 pi (A) = a(A),A Bm.

    Lebesgue (Rm,Bm) (pi pipi ) Haar pi ( )pi pi pi pi (Rm,+).

    pi pi R. - :

    1.2.4. F : R 7 R ,

    limt 7F (t) = 0 , limt 7+F (t) = 1.

    F .. P0 : P1 7 [0, 1] :P0() = 0 P0((a, b]) = F (b) F (a)

    pi (P1, P0) pi pi 1.1.26, (),() pi (). pi:

    1.2.5. .. F , pi pi- P (R,B1) pi P ((a, b]) = F (b)F (a) a < b R.

    1.2.6. pi ,: pi P (R,B1) pi .. pi P ((a, b]) = F (b) F (a). F (t) = P ((, t]), t R.

    P ((a, b]) = F (b)F (a) pi (R,B) R. pi R .

    cardB1 = c. pi cardP(R) = 2c c < 2c pi B1 6= P(R).pi M = P(R) (;) pi . :

    1.2.7. pi pi A (0, 1) pi A /M .pi. [12]

    , BanachKuratowski

    1.2.8. (Banach-Kuratowski) pi pi I = [0, 1] (.(I,P(I))) pi pi pi (I) = 1 ({x}) = 0 x I.

    13

  • pi. [10]

    pi pi pipi pi pi ( ) pi pi - .

    pi pi pi - ; Solovay 1965 pi : pi: pi R ,M = P(R) consistent Zermelo-Frankel pi

    cardM . pi : Cantor B = [0, 1] \ ( 13 , 23 ) \ ( 19 , 29 ) \ ( 79 , 89 ) \ ... B =

    { n=1

    an3n : an = 0 2

    }. pi :

    (B) = 0 cardB = c.

    pi pi Lebesgue M P(B) M . card(B) = c cardP(B) = 2c pi cardM = 2c. cardB1 = c pi pi M /B1. pi pi Suslin sets .

    1.3 Metrsimec Apeikonseic

    1.3.1. (X,F ) (Y,H ). pif : X 7 Y F H f1(B) F B H . 1.3.2. pi pi H = (E ).: f F H f1(B) F B E .pi. A = {B H : f1(B) F} pi - A E A H . 1.3.3. pi pi Y d H = (E ) pi E ( H - Borel ). F H pi fn : X 7 Y , n N pi f : X 7 Y :f(x) =

    d

    limnfn(x) x X.

    f : X 7 Y F H .

    14

  • pi. (): U E Uk = {y Y : d(y, U c) > 1k}, k = 1, 2, ....U =

    k=1

    Uk pi f1(U) =k=1

    f1(Uk).

    f1(Uk) =m=1

    nm

    f1n (Uk) Uk E .

    pi pi .

    1.3.4. X 6= (Y,H ) . Y X - pi X pi Y . - pi pi

    () = ({f1(A) : f , A H }) - ( ) pi . pi H = (E )

    () = ({f1(A) : f , A E })

    1.4 Mtro Ginmeno

    (1,F1, 1) (2,F2, 2) pi 1, 2 -pipi.:

    C = {AB : A F1, B F2} pi C pi 1 2( pi pi 12). - F1,F2 - (C ). - F1F2. :

    F1 F2 (C ) = ({AB : A F1, B F2}) (12,F1F2) (1,F1), (2,F2).

    5. E 1 2 : E F1 F2. x 1 Ex = {y 2 : (x, y) E}. y 2, Ey = {x 1 : (x, y) E}. Ex F2, Ey F1 x, y.(Updeixh:Jewreste thn klsh: A = {A 1 2 : Ax F2 x}.Dexte ti h Aenai s-lgebra kai ti A C .)

    0 : C 7 [0,] :0(AB) = 1(A)2(B)

    pi 0 = 0 = 0, =pi 0 pi pipi 1.1.25

    15

  • pi (),(),() pi pi pi - F1 F2. pi -pipi 1, 2 . :

    1.4.1. (1,F1, 1) (2,F2, 2) pi 1, 2 -pipi. pi (12,F1F2) pi :

    (AB) = 1(A) 2(B) A F1, B F2.

    -pipi 1, 2. = 1 2.

    1.4.2. (1 2,F1 F2, 1 2) pi (i,Fi, i), i = 1, 2 pi. pi pi :

    E 1 E / F1 2 6= , F2 2() = 0. E 1 (12)(1) =1(1) 2() = 0 pi pi pi E F1 F2 ( . 6). y (E )y = E F1 pi.

    6. (1, F1, 1), (2, F2, 2) pi (i,Fi, i) (1 2,F1 F2, 1 2) pi 1 2 :

    i. F1 F2 F1 F2 F1 F2.

    ii. (1 2)(E) = (1 2)(A) A F1 F2

    iii. F1 F2 = F1 F2.

    pipi Lebesgue Rm.pi = (Rm, Bm) = (Rm,M) Lebesgue Rm( . 12). pi m Lebesgue Rm.

    1.4.3. k, ` N k+ ` = m Rm = RkR` :

    1. Bk B` = Bm

    2. Bk B` Bm ( pi k, `, m ).

    3. (Bk B`) = Bm ( pi k `).

    4. m = k `.

    16

  • Gia ta mtra ginmena kai to mtro Lebesgue sumbouleutete to [12]

    pi pi pi pi pi pi. pi - transition probability measurable kernel.

    1.4.4. (X,A ) (Y,B). pi- ( pi) K : X B 7 R pi pi :

    1. x X K(x, ) pi (Y,B).2. B B K(, B) A - pi X R

    1.4.5.

    1. (X,A ) = (Y,B) = (R,B1) > 0

    K(x,A) =

    A

    12pi2

    e(xy)222 dy, x R, A B1.

    2. (X,A ) pipi (Y,B, Q) pi

    K(x,A) = Q(A), x X, A B.

    3. pi pi, Q

    K(x,A) = x(A), x X, A B.

    1.4.6. (X,A , P1) pi (Y,B) . K(x,B), (x,B) X B pi . pi pi P (X Y,A B) pi :

    P (AB) =A

    K(x,B)dP1(x) A A , B B.

    ( pi E A B : P (E) = X

    K(x,Ex)dP1(x)).

    1.4.7. P2 pi (Y,B) piK(x,) =P2() x X, B P

    P (AB) =A

    P2(B)dP1(x) = P1(A) P2(B)

    P = P1 P2 pi ( pi).

    17

  • 18

  • Keflaio 2

    Mtra se Topologikoc

    Qrouc Hausdorff

    2.1 Topologiko qroi

    2.1.1. pi (X, T ) pi X 6= T pi X pi pi pi:

    i. , X T

    ii. Vi T i = 1, 2, ...n ni=1

    Vi T

    iii. Vi T i I iI

    Vi T ( I).

    pi X pi T ( piT ). pi T E T pi pi pi pi:

    U T pi pi pi E ( pi

    i

    Ei = )

    E pi T x X Nx = {U E :x U} Nx pi x pi T . pi x X A X pi pi U T x U A pi x X Nxpi pi x pi A x pi U Nx U A. 2.1.2. A T x A pi U Nx U A. pi pi pi pi pi.

    19

  • 2.1.3. X 6= E pi X pi pi pi pi:

    1.{A : A E } = X

    2. A,B E x A B pi E x A B. pi pi T X pi A T - pi pi E pi pi piT . pi pi x X pi Nx pi E =xXNx pi pipi pipi .

    2.1.4. X pi d, d : X X 7 [0,) :

    1. d(x, y) = d(y, x)

    2. d(x, y) = 0 x = y3. d(x, y) d(x, z) + d(z, y) x, y, z.

    x X, r > 0 B(x, r) = {y X : d(x, y) < r} E = {B(x, r) : x X, r > 0}. E pi pi pipi pi pi pi T pi E . pi A T x Api r > 0 : B(x, r) A.( r pi pi ).

    2.1.5.

    1. pi pi- T pi pi pi .pi E ,E pi X pi pi pi pi pi pi pi.. pipi (X, d) E = {B(x, r) :x X, r > 0} E = {B(x, r) : x X, r Q+}. pi- pi pi T , T pi pipi E ,E T = T .

    2. pi T pipi : {xn} X x X. xn Tx U T x U pi n0 : n n0 xn U .pi pipi pi . T1

    20

  • T2 pi xn T1 x xn T2 x. pi.. (1+ 1n )

    n, n N pi (R, T2 = P(R)). pi (R, T1) T1 pi pi d(x, y) = |xy| e.

    2.1.6. pi (X, T ). A X - Ac ( T ). X G .

    2.1.7. pi (X, T ) :

    1. n N A1, ...An ni=1

    Ai

    2. I Ai, i I iI

    Ai

    .

    2.1.8. pi (X, T ) Hausdorff pipi x, y X x 6= y pi U, V T x U, y V U V = 2.1.9. (X, d) pi pi pi- pi d Hausdorff.

    7. (X, T ) Hausdorff {xn} X x X. xn T x xn

    T y. x = y.

    pi pi Hausdorff. {x} pipi

    .

    2.1.10. (X, T ) pi Hausdorff . K X pi K (. Ui T , i I

    iIUi K) pi pipi pi K (. pi

    Ui1 , ...Uin nk=1

    Uik K). pi pi X K .

    2.1.11.

    1. pi pi K X .2. F K pi F K pi F

    pi.

    3. K1, ...Kn K ni=1

    Ki K .

    21

  • 4. Ki K , i I iI

    Ki K .

    2.1.12. pi pi Rm pipi pi d(x, y) = |x y| :

    K Rm pi K . 2.1.13. pi (X, T ) A X. Ao =

    {U T : U A} A = {F : F A}. Ao A . A .

    Ao A A A = A \Ao .

    2.2 Kanonik mtra se topologikoc qrouc

    2.2.1. (X, T ) pi . - Borel pi pi X, B = (T ). 8. E pi. (X, T ) B = (E ).

    pi - BorelB pi (X, T ) pi , pi, T ,G ,K B. 2.2.2. (X, T ) pi - A B piB - Borel. Borel X (X,B). (X,A ) pi- pi pi:

    1. (K) < + pi K K2. A A :

    (A) = inf{(U) : U U A}

    3. U T :

    (U) = sup{(K) : K pi K U}

    : (X,A ) pipi K pipi A .

    2.2.3. pi. (X, T ) - A B. (X,A ). pi:

    22

  • 1. A A A =n=1

    An pi An A (An) < + ( A -pipi )

    (A) = sup{(K) : K pi A} ()

    () A A X =n=1

    En En A (En) < + (. -pipi).

    2. A A pi pipi :(A) = sup{(F ) : F A}

    pi.

    1. ( [3] . 208)

    2. K G .

    2.2.4. pi. (X, T ) (X,B) pipi pi:

    1. (A) = sup{(K) : K pi A} A B.

    2. X =n=1

    Un Un (Un) < +.

    . pi 2.pi pi (X) < +.

    pi. pi K K K n=1

    Un pi

    K mk=1

    Unk (K) mk=1

    (Unk) < +. (B) = sup{(F ) : F B} B B K G . A B pi Uk (Uk \ A) = sup{(F ) : F Uk \A} pi > 0 pi pi F Uk \A

    (Uk) (A) < (F ) (Uk) (A) (F ) = (Uk) (Uk \ F ) V = Uk \ F

    (A) (V ) < (A) + pi V A

    pi 2. pi X =n=1

    n n B,

    n Un, n N. ( pi 1 = U1 n = Un \ (n1i=1

    Ui), n >

    23

  • 1).pi B B pi B =n=1

    (B n) =n=1

    Bn

    pi Bn = B n, n N Bn Un n N. pipi Bn > 0 pi Vn Bn pi :

    (Vn) < (Bn) +

    2n, n N

    U =n=1

    Vn U B

    (B) (U) n=1

    (Vn) 0 uprqei sumpagcK f1(B) me (f1(B)\K) 0 pi pi K A (A) < (K) + pi = (A) (A)

    (A) < (K) K A.pi :

    Kc Ac

    pi (Ac) (Kc). pi (X) < (X) - pi.

    2.3 Mtra se topik sumpagec topologikoc

    qrouc

    2.3.1. pi. (X, T ) pi pi x X pi pi x pi x X pi U T x U U pi. 2.3.2. X = Rn T pi pi pi d(x, y) = |xy|. x Rm r > 0 B(x, r) = {y Rm : |yx| 0} pi T . pi pi pi. (X, T ) pi pi.pi pi pipi (X,B) (K) < + pi K Rm (pi pi Lebesgue.)

    Gia apodexeic dec [6] [12]

    pi pi Riesz Representation pi pi pipi. pi [12] pi. (X, T ) pi pi (Y, T ) pi. . f : X 7 Y pi T , T f1(U) T U T . (Y, T ) = (R, T ) T pi R pi pi . f : X 7 R x X : > 0 pi pi U x f(U) (f(x0) , f(x0) + ). f : X 7 R C(X,R) C(X). f C(X,R)

    s(f) = {x X : f(x) 6= 0} f C(X,R) pi s(f) pi pi pi pi Kf K f(x) = 0 x X \Kf .K(X) pi , :

    K(X) = {f C(X,R) : s(f) pi}= {f C(X) : K K f(x) = 0 x X \K}

    K(X) pi ( pi f, g K(X) f(x) + g(x) = 0 x X \Kf Kg Kf Kg pi). I : K(X) 7 R I(f) 0 f K(X) f 0.

    26

  • 2.3.5. (Riesz Representation) (X, T ) pi pi I : K(X) 7 R. pi Borel (X,B) pi I(f) =

    fd f K(X).

    2.3.6. X = R T pi. I : K(R) 7R : I(f) =

    Rf(x)dx pi Riemann

    ( pi pi [a, b] Kf ). pi- ,: pi (R,B1) pi I(f) =

    Rf(x)d(x) f K(R). -

    pi Lebesgue (R,B).

    pi pi pi pi pi pi - norm pi.:

    2.3.7. X pi. . pi pi pipi .

    pi. [21] . 17.

    2.4 Kataskeu kanonikn mtrwn

    pi pi pi pi. Hausdorff. pi pi - .

    2.4.1. pi. (X, T ) (Hausdorff) : B 7 [0,) pi pi pi pi:

    i. A,B B A B = (A B) = (A) + (B)

    ii. A B (A) = sup{(K) : K pi A}

    (X,B).

    pi. {Bn} B Bn Bn+1 n=1

    Bn = limn(Bn) = 0

    (ii.) > 0 n N pi piKn K Kn Bn (Bn Kn) 2n+1 .

    i=1

    Ki =

    27

  • pi ( pi) pi n0 N n0i=1

    Ki = .pi :

    Bn0 = Bn0 \n0i=1

    Ki =

    n0i=1

    Bi \n0i=1

    Ki n0i=1

    (Bi \Ki)

    (Bn0) n0i=1

    (Bi \Ki) n0i=1

    2i+1< .

    {Bn} (Bn) < n n0.pi 2 . 10 pi -pi, {An} B : (

    nAn) =

    n(An). pi

    2.2.4.

    2.4.2. pi. Hausdorff : K 7 [0,) pi pi pi pi:

    i. K1 K2 (K1) (K2)ii. (K1 K2) (K1) + (K2)

    iii. (K1 K2) = (K1) + (K2) K1 K2 = iv. > 0 K K pi U K (C) < (K) +

    C K K C U . pi pi (X,B).pipi sup{(K) : K K } = 1 pi.

    pi. pi !

    2.4.3. (iv.) pi : (iv.) > 0 K K pi U T U K (C) (K) + C K : C U . (iv.) pi () < (K) + K : K U C K C U K C K K K C U pi (K C) < (K) + (C) < (K) + pi - . pi pi pi - [16].

    2.4.4. (X, T ) pi. Hausdorff A pi X A BX . : A 7 [0,) pipi

    i. (X) = 1

    28

  • ii. A,B A AB = (AB) = (A)+ (B) (pi pi)

    iii. B A (B) = sup{(F ) : F , F A , F B}

    iv. > 0 pi pi K X pi (B) > 1 B A B K

    v. F pi pi T .

    pi (pi) (X,BX) pi pi- .

    pi. pi

    pi i pi (X) = a > 0 iv (B) > 1 pi (B) > a . pipi pi. pi Henry pi pi .

    2.4.5. (X, T ) pi. Hausdorff A pi X A B. : A 7 [0,) pipi:

    () A,B A AB = (AB) = (A)+(B) (pi pi).

    () A A (A) = sup{(K) : K pi A K A }.

    pi (X,B). pipi Api pi T (X,B) pi (A) = (A) A A .

    pi Henry pi [15] [20] pi - pi pi pipi pi A pi pi T ( pi ). Zorn pipi . pi pi Henry , , (X) < + , pi () (a) () ii, iii, iv 2.4.4. pi pi. ( (B) > (X) (B) > 1 iv). . pi .

    2.4.6. pi Henry (), () pipi ()

    () (A) = sup{(F ) : F A F A }

    () > 0 pi pi K A pi (K) > (X) .

    29

  • pi. pi (a) pipi pi pipi. pi > 0 A A pi (), ()

    (A \ F) < 2

    F A F A

    (X \K) < 2

    K pi A

    A \ F K = X A \ F K (X \K) (A \ F) pi = F K (A \ ) < . = F K A pi.

    pi pi pi pi- pi. . pi. pi. pi pi pi (com-pletely regular ).

    2.4.7. pi. (X, T ) pi (com-pletely regular) Hausdorff x X F X x / F pi f : X 7 [0, 1] f(x) = 1 f(y) = 0 y F . 2.4.8. (X, d) pi . f(y) = d(y,A)d(x,A) , y X.

    2.4.9. (Prohorov) (X, T ) pi (completely regular ) pi. C(X) pi . C(X) pi . pipi x 6= y X pi f f(x) 6= f(y). A pi X {x X : (f1(x), ..., fn(x)) B} pi {f1, ..., fn} B Bn- - Borel Rn. A pi X () A B.pi : A 7 [0, 1] pi :

    i. (X) = 1

    ii. A,B A A B = (A B) = (A) + (B)iii. A A (A) = sup{(F ) : F A F A }iv. > 0 pi pi K pi : (B) > 1

    B A B K. pi pi (X,B) pi pi .

    pi. pi pi pi pi pi .

    30

  • 2.4.10. pi. Hausdorff X - RX . pi (X,()) A ()

    (A) = sup{(F ) : F X ,F ()}

    2.4.11. pi pi. X - BaireB0(X) = (C(X,R)). B0(X) pi pi TX X.

    2.4.12. Y pi. Hausdorff -pi, pi

    pi Kn, n N Y =n=1

    Kn C(Y,R) pi Y . - Baire B0(Y ) (C(Y,R)) B0(Y ) = ().

    , pi pi A a(X,). A = a(X,). pi

    () = (a(X,)) = (A )

    pi pipi (pi ii, iii) - :

    () = inf{(U) : U , U A } , A . (1)

    pipi pi ( 11 pi) - -pi. o pi pi (,A ). o (pi) (X,(A )) pi

    o|A = pi: K pi X (B) > B A B K o(K) pi (0, 1). , > 0 pi pipi pi n A

    n=1

    n K

    n=1

    (n) < o(K) + (2)

    pi pi (1) pipi Un A Un n (Un) < (n) +

    2n pi

    n=1

    (Un) (4)

    pi

    (V ) = o(V ) n=1

    (Un) (5)

    pi (2),(4),(5) pipi

    (V ) < o(K) + +

    pi pi (4)

    o(K) + + > , > 0

    pi pi . pi pi iv pipi n N pi piKn X (B) > 1 1n B A B Kn. pi o(Kn) > 1 1n , n N pi Y =

    n=1

    Kn

    o(Y ) = 1

    pi pi pi 1.1.29. pi o

    pi (Y, (A )Y ) pi (A )Y = { Y : (A )} ( Y ) = o(). pi 1.1.28.

    (A )Y = (AY ) pi AY = {A Y : A A }

    Y pi pi TY = {U Y :U TX} Y = {f |Y : f } C(Y,R). AY = a(Y,Y ) pi

    (A )Y = (Y )

    pi Y -compact Y Y , 2.4.12.

    (Y ) = B0(Y ) - Baire Y

    pi pi (Y,B0(Y ), ) pi pi:

    . (A) = sup{(F ) : F X, F B0(Y )} pipi pi B0(Y ) 2.4.10. = C(Y,R).

    32

  • . > 0 pi pi K Y (A) > 1 A B0(Y ) A K. pi pipi m N 1m < o(Km) > 1.pi A B0(Y ) A K Km (A) = (A Y ) =o(A) o(K) > 1

    . B0(Y ) pi pi TY . X pi pi 2.2.11. - B0(X)pi E pi TX . E B0(X) piEY = {U Y : U E } B0(X)Y . EY piTY pi B0(X)Y B0(Y )

    pi (),(),() pipi pi pi 2.4.4. (Y.B0(Y ), ) pi pi pi pi (Y,B(Y )). pi B(Y ) = B(X)Y : B(X) 7 [0, 1] (B) = (B Y ). pi pi (X,B(X)) pi A A AY B0(Y )

    (A) = (A Y ) = (A Y ) = o(A) = (A)pi pi. pi 1,2 (X,B(X)) 1 = 2 A . n N pi pi Kn X 1(Kn) >1 1n 2(Kn) > 1 1n . Y =

    n=1

    Kn. 1(Y ) = 2(Y ) = 1.

    1.1.29. pi i (i = 1, 2) B(X)Y

    i(B Y ) = i(B)

    1 = 2 AY pi

    1 = 2 (AY ) (6)

    Y pi pi TY pi B(X)Y = B(Y ) 1, 2 pi (Y,B(Y )). pipi, pi pi pipi (AY ) = B0(Y ) : - Baire B0(Y ) pi pi TY . pi- 14 (6) pi

    1 = 2 B(Y )

    pi 1 = 2 B(X).

    pi .

    33

  • pi. 2.4.10. A (). pi 37,27 26 pipi 3 4 - pi pi pi - (1, 2, ...) pi pi

    A = 1(B) pi = (1, 2, ...) : X 7 RN B B(RN).

    () B(RN) TX pi RN. (RN,B(RN)) pi

    (B) = (1(B))

    ( ;) pi > 0 pi E RN pi

    (B \ E) <

    (1(B) \ 1(E)) < 1(B) = A 1(E) X.pi. 2.4.11. z X U pi z. z / U c pipi f C(X,R) f(z) = 1 f(x) = 0 x U c. V = {x X : f(x) > 0} :

    V z V U

    pi {x X : f(x) >0} f C(X,R). -Baire B0(X) = (C(X,R)).

    pi. 2.4.12.pi C(Y,R) () B0(Y ). pi Y () B1 . Y . pi - pi pi C(Y,R) pi . C(Y,R) pi pi Stone-Weirstrass pi C(Y,R) f C(Y,R) -pi {fn, n N} pi K Y

    supxK|fn(x) f(x)| 0

    pi Y =n=1

    Kn Kn Y pi y Y y K` pi ` N fn(y) f(y). f C(Y,R)

    34

  • f = limnfn fn pi f C(Y,R) ()B1 .

    pi

    B0(Y ) ().

    pi pi pi pi . X pi. pi. . = X . ( 2.4.1. pi ) pi :

    2.4.13. pi. (X, T ) Hausdorff (pipi) pipi (X,B). pi :

    i. (A) = sup{(F ) : F A} A Bii. > 0 pi K pi (K) > (X) (tightness)

    ( 2.2.2.) A B:

    (A) = sup{(K) : K pi A}pi. pi pi 2.4.6. pi pi 2.2.4.

    pipi pi pi pi pi pi.X pi. A B.

    1. (A) = inf{(U) : U A}2. (A) = sup{(F ) : F A}3. (A) = sup{(K) : K pi A}4. > 0 pi K (K) > (X) pipi X Hausdorff

    (3)(2) + (4)m(1)

    pipi 2.2.4.

    10. pi. (X, T ) (X,B). (X,B) .(Updeixh: Prpei na deiqte mno ti (B) = inf{(U) : U anoikt B} gia tuqnB = A N me A B kai N N.

    35

  • An (A) = + -ekolo. An (A) < + tte gia tuqn > 0 uprqei anoikt U A me (A) (U) 0.Afo

    n

    Fn = ja uprqei(ap 2) na peperasmno J N me (

    iJFi) 0 f Lb(X) - - pi . W pi pi

    aW liminf fda fd

    f Lb(X).

    pi pi [15]

    53

  • 54

  • Keflaio 3

    Probolik sustmata

    mtrwn

    Mtra se kartesian

    ginmena aperwn

    paragntwn

    3.1 Topologik probolik sustmata mtr-

    wn

    pi pi pi pi pi:

    . I pipi: pipi i, j I pi ` I i, j `.

    . pi Hausdorff (Xi, Ti), i I pipi i (Xi,Bi) pi Bi = (Ti) - Borel Xi, i I.

    . pipi i j pi Pij : Xj 7 Xi pipi pi :

    i. Pii : Xi 7 Xi i I.ii. Pi` = Pij Pj,` i j ` Iiii. j(P

    1ij (B)) = i(B) i j B Bi

    (Xi, i, Pij), i I.

    55

  • 3.1.1.

    pi (R,B1). I = {i N : i pipi} . Xi = R|i|, i I pi

    i =|i|1, i I (R|i|,B|i|)

    Pij = piij : R|j| 7 R|i| pi.

    3.2 Jerhma Prohorov

    pi R pi pi ( pi) i, i I. pi - I -pipi. pi pi pi:

    3.2.1. (Prohorov) pi pi (Xi, i, Pij), i I i(Xi) 0 pi pi K X

    i(Xi \ Pi(K)) < i I (P1i (B)) = i(B) i I B Bi. pi pi ( pi (X) = i(Xi) i I).

    pi. pi !

    Efarmogc

    56

  • I. T pipi {St, t T} pi. Hausdorff. I = {i T : i pipi} pi. X =

    tTSt =

    {x : T 7 tT

    Xt x(t) St t T} i I,Xi =tiSt.

    i I, pii : X 7 Xi i-pi, pii(x) = x|i. pi pii pi. i = {t} pit = pi{t}, t T . Tt pi St, t T pi X :

    {tipi1t (Ut) : i I, Ut Tt t i}

    pi i I pi Xi =tiSt {

    tiUt :

    Ut Tt t i}. pi pi ( pi) pi Tt, t T . i j I piij : Xj 7 Xi pi piij(y) = y|i pipi pi X Xi pi pii, i I piij , i j , . {pii, i I} X. pi. Xi, X - Borel Bi B, i I. pi :

    tiB(St) Bi, i I

    tTB(St) B

    pi tB(St) (pit, t ) = ({pi1t (B) : t , B B(St)})

    3.2.2. (Kakutani)pi pi. {St, t T} pi pipi-, i (Xi,Bi), i I pi :

    i(B) = j(pi1ij (B)) i j I B Bi.

    pi (X,B) : (pi1i (B)) =i(B) i I B Bi. (X) = i(Xi) i I.

    pi. (Xi, i, piij), i I pi pi pi . pipi pi. X pi pi Prohorov . > 0 pi pi K = X i(Xi \pii(K)) = i(Xi \Xi) = 0 < i I. ( pii pi).

    57

  • II. {Sk, k N} pi. Hausdorff pi. (pi Hausdorff)

    Xi =

    ik=1

    Sk, i = 1, 2, ...

    X =

    k=1

    Sk

    pi:

    pii,i+1 : Xi+1 7 Xi

    pii : X 7 Xi, i N

    pi pi , ( pi) pi .pi pipi i (Xi,Bi), i I pi pi :

    i(B) = i+1(pi1i,i+1(B)) i N, B Bi.

    pi :

    i(B) = j(pi1i,j (B)) i j, B Bi

    pi pii,j : Xj 7 Xi pi. pi pi pi (Xi, i, pii,j), i N pi {pii, i N} - X.

    3.2.3. {Sk, k N} pi. Hausdorff pipi- i (Xi,Bi), i N pi Xi =i

    k=1

    Sk. pi i, i I pi :

    i(B) = i+1(pi1i,i+1(B)) i N, B Bi ()

    pi (X,BX)

    pi X =k=1

    Sk pi pi :

    (pi1i (B)) = i(B) i N, B Bi

    : (X) = i(Xi) i N.

    58

  • pi. Prohorov., > 0 pi pi Li Xi, i N . 1 piL1 X1 :

    (X1 \ L1) < 22

    (1)

    2 pi L2 pi11,2(L1) pipi :

    2(pi11,2(L1) \ L2) = 0 x E} 6= kai ra uprqei x0 X \ {0} me< x, x0 >= 0 gia kje x

    E. An tra : X 7 X enai h kanonik apeiknish(x)(x) =< x, x > lgw anaklastikthtac tou X ja enai (X) = X kai ra up-rqei x0 X \ {0} me (x0) = x0 kai ra < x0, x >= 0 gia kje x E - topoafo x0 6= 0 kai h G diaqwrzousa.

    40. X,Y pi pi. . T : X 7 Y . C(X,X ) C(Y, Y ) .Updeixh: y T X gia kje y Y ra C(X,X )B1 metrsimh. Epikalestetetra thn 'Askhsh 36.

    pipi pi pi -C(X,) X, . pi.. X pi pi. . = X . pi pi f = (f1, ..., fk) {(f1, ..., fk) : k N, fi } :

    Af = {f1(B) : B Bk}

    pi - C(X,) pi pi f = (f1, ..., fk) f1, ..., fk .

    4.2.9. X RX . . L = {(f1, ..., fk) : k N, fi }. pi:

    1. C(X,) = (fL

    Af )

    2. f = (f1, ..., fn) L g = (g1, ..., gr) L pi h =(h1, ..., hm) L Af Ag Ah. pi 1 :Rm 7 Rn 2 : Rm 7 Rr pi :

    f = 1 h g = 2 h

    83

  • 3.fL

    Af =f

    Af = C(X,).

    pi.

    1. pi {1(B) : \ {0}, B B1} fL

    Af f

    Af

    pi 35 C1(X,\{0}) (

    fLAf ) (

    f

    Af ). (f

    Af ) = C(X,)

    pi C1(X, \ {0}) = C1(X,) = C(X,).2. pi pi pi {f1, ..., fn, g1, ..., gr}

    {h1, ..., hm} E.

    fk =

    m`=1

    ak`h` , k = 1, ...n

    h = (h1, ..., hm) : Rm 7 Rn pi (u1, ..., um) =[ak` ](u1, ..., um)

    > h L f = hpi B Bn f1(B) = h1(1(B)) 1(B) Bm Af Ah. g.

    3. F . f = (f1, ..., fn)

    fk =

    mk`=1

    bk` gk` , k = 1, ..., n

    pi {gk1 , ..., gkmk} F (k = 1, ..., n). pi pi pi {gk` : ` = 1, ...,mk, k = 1, ..., n} fk E, k = 1, ..., n pi {h1, ..., hm} E

    fk =

    m`=1

    ak`h` , k = 1, ..., n

    h = (h1, ..., hm) : Rm 7 Rn pi (u1, ..., um) =[ak` ](u1, ..., um)

    > f = h Af Ah h L.

    4.2.10. pipi = X pi X pi pi. . X pi , X =(X, ). pi :

    C(X,X ) B(X,(X,X )) B(X)

    pi B(X) = B(X, ).

    84

  • 4.3 Kulindrikc s-lgebrec ston duk qro

    - X = (X, ) pi pi. . pi . :I = {i X : i pipi} i = {x1, ..., xn} IAi = {g1i (B) : B Bn} pi gi : X 7 Rn pi gi(x) = (, ..., < xn, x >). C(X , X) =iIAi C(X , X) = (

    iIAi).

    C(X , X) - X pi - () C(X , X). pi X pi (X) X : X 7 X pi pi

    (x)(`) = `(x) , ` X

    pipi

    C(X , X) C(X , X ) B(X ,C (X , X))

    pi C (X , X) pi X . C(X , X ) pi pi pi - X = X . E. Mourier X pi

    4.3.1. X norm X C(X , X) = B(X ). ( pi X pi x =sup{| < x, x > | : x 1}).

    4.4 Mtra kai kulindrik mtra pijanthtac

    se t.d.q. Jerhma Prohorov

    pi pi pi . pi pi pi pi pi pi . pi pi ( pi) - - Borel pi pi pi . pi.. X pi ... pi C (X,X )- pi - Borel B(X,C (X,X )) . pi - Borel B(X, ) B(X). pipi pi :

    4.4.1. pi 1, 2 X T1, T2. pi T1 T2 ( 2 pi 1). 2- pipi 1-.

    85

  • pi. B1 (T1) (T2) B2 pi B1. K1,K2 pi pi 1, 2 pi K2 K1 pi A B1

    (A) = sup{(K) : K K2,K A} sup{(K) : K K1,K A} (A)

    pi 2.2.4.

    4.4.2. pipi pi pi

    pi -pipi . X =n=1

    Un Un 1-

    (Un)

  • 4.4.5. X RX pi ( X- X). {f1, ..., fn} f = (f1, ..., fn). pi f : X 7 Rn pi.pi. y = (y1, ..., yn) Rn \ {0}. (Robertson& Robertson: Top. Vector Spaces, . 33) pi a1, ..., an X pi fi(ai) = 1 fi(aj) = 0 j 6= i (i = 1, ..., n). x = y1a1 + ...+ ynan. fi(x) =

    nj=1

    yjfj(aj) = yi f(x) = y.

    4.4.6. . X . - X (X X). pi f = (f1, ..., fn) L pi f (Rn,Bn) pi pi pi :

    f = (f1, ..., fn) L h = (h1, ..., hm) L f = hpi : Rm 7 Rn :

    h(1(B)) = f (B) , B Bn ()

    pi :fL

    Af 7 [0, 1] (X) = 1 -pi pi - Af , f L pi :

    (f1(B)) = f (B) f = (f1, ..., fn) L , B Bn ()

    pipi -pi - Af , f pi C(X,).

    pi.

    : C(X,) fL

    Af 7 [0, 1] (A) = f (B) A = f1(B) Af . A = f1(B1) = g1(B2) pi f = (f1, ..., fn) L g = (g1, ..., gr) L,B1 Bn B2 Br. 4.2.9. pi h =(h1, ..., hm) L f = 1h g = 2h pi 1 : Rm 7 Rn 2 : Rm 7 Rr pi:

    A = h1(11 (B1)) = h1(12 (B2))

    h1(11 (B1) \ 12 (B2)) = pi pi h pi

    11 (B1) 12 (B2)

    87

  • pi pi

    11 (B1) = 12 (B2) (1)

    pi () :

    f (B1) = h(11 (B1)) g(B2) = h(

    12 (B2))

    pi (1) pi f (B1) = g(B2). -pi - Af f L. {An, n N} Af An = f1(Bn), Bn Bk f1(Bi Bj) = f pi Bi Bj = i 6= j. pi:

    (n

    An) = (f1(n

    Bn)) = f (n

    Bn)

    =n

    f (Bn) =n

    (An)

    pi (X) = 1 pipi .pi . f = (f1, ..., fn) . fi 6= 0 pi pi pi {f1, ..., fn} {h1, ..., hm} . h = (h1, ..., hm) L f = h pi :Rm 7 Rn pi B Bn f1(B) = h1(1(B)). pi pi Af Ah -pi Af f . fi = 0 i = 1, ..., n Af = {, X} . pi C(X,) =

    fL

    Af =f

    Af ( 4.2.9.)

    pi .

    4.4.7. pipi pi pipi 4.4.3.

    4.4.8. . X X (pi X X). pi f = (f1, ..., fn) pi f (Rn,Bn) pi pi :

    f = (f1, ..., fn) h = (h1, ..., hm) f = hpi : Rm 7 Rn :

    h(1(B)) = f (B) , B Bn ()

    pi pi : C(X,) =f

    Af 7[0, 1] pi :

    (f1(B)) = f (B) f = (f1, ..., fn) B Bn ()

    88

  • pi. L pi f , f L pi C(X,) pi pi ().pi pi (A). f = (f1, ..., fn) fi 6= 0 B Bn pi f = h pi h L pi (f1(B)) = (h1(1(B))) = h(1(B)). pi () (f1(B)) = f (B). pi f = (0, ..., 0) pi () f = 0. pi (f1(B)) = 0.

    4.4.9. pi pi pi pipi:

    f , f L pi . -, pi . pi Pro-horov pi . pi:

    4.4.10. X pi pi. . . pi C(X,R). pi X. A C(X,)

    (A) = sup{(F ) : F C(X,), F A}( pi X C(X,R)).

    pi. A C(X,). pi f L A Af A =f1(B) f = (f1, ..., fn) L B Bn. pi(C) = (f1(C)), C Bn (Rn,Bn). pi > 0 pi E Rn E B (B \ E) < . f F = f1(E) pi C(X,) ( ) pi f1(B) = A. (A \ F ) = (f1(B \ E)) = (B \ E) < .

    4.4.11. (Prohorov ) X pi pi. . . C(X,R) pi X. pi X pi pi :

    > 0 pi pi K X pi (*)

    (A) > 1 A C(X,) A K pi pi (X,B(X)).

    pi. pi pi:

    X pi (completely regular )

    89

  • C(X,) = f

    Af pi = {(f1, ..., fk) : k N, fi }

    pi pi (A) = sup{(F ) : F A,F C(X,)} Prohorov (*)

    pi 2.4.8.

    41. Prohorov (*) pipi: > 0 pi pi K X pi

    vf (f(K)) > 1 f = (f1, ..., fn) L

    pi vf pi (Rn,Bn) pi pi

    vf (B) = (f1(B)) , B Bn.

    Updeixh: 'Estw ti isqei h (*). 'Estw f = (f1, ..., fn) L. Lgw sunqeiacf(K) Bn kai ra f1(f(K)) C(X,). 'Omwc f1(f(K)) K kai ravf (f(K)) = (f

    1(f(K))) > 1 .Antstrofa: 'Estw A C(X,) me A K. 'Omwc A = f1(B) gia kpoio f =(f1, ..., fn) L kai ra f(f1(B)) f(K). 'Omwc B f(f1(B)) kai ra vf (B) vf (f(K)) > 1 .'Omwc vf (B) = (f1(B)) = (A).

    pi pi pi- pi Haar ( ) pi.

    4.4.12. (A. Weil) X pi. . Hausdorff. pi (X,B) pi pi (. (a + B) = (B) a X B B) pi. X pi pi.pi. [16] .73

    4.4.13. X pi. Hausdorff pi. pi (X,B) pi -.

    pi. pi X pi pi pipi - pi.

    90

  • Keflaio 5

    Qarakthristik

    sunarthsoeid mtrwn

    pijanthtac

    5.1 Orismo kai idithtec twn qarakthris-

    tikn sunarthsoeidn

    pi Rn pi

    (t) =

    Rnei(x,t)d(x) , t Rn (1)

    : Rn 7 C Rn:

    pipi t1, ..., tm Rn pipi c1, ..., cm C:

    mk,`=1

    ck c`(tk t`) 0

    pipi (0) = 1 : Rn 7 C Rn. pi .

    5.1.1. (Bochner) pi pi :

    i : Rn 7 C , (0) = 1ii pi pi (Rn,Bn)

    .

    91

  • pi. [9]

    pi pi.. pipi .

    5.1.2. Y pi (pi.. . ). X : Y 7 C pi-pi m N, t1, ..., tm Y c1, ..., cm C :

    mk,`=1

    ck c`X (tk t`) 0

    X : Y 7 C pi pipi pi :

    1. X (t) = X (t) t Y2. |X (t)| X (0) t Y3. |X (t1)X (t2)|2 2X (0)[X (0)ReX (t1t2)] pipi t1, t2 Y4. Xn, n N eX 5. X1,X2 pi Y1, Y2

    X (t1, t2) = X1(t1) X2(t2), (t1, t2) Y1Y2 Y1 Y2.

    42. X : Y 7 C pi - Y ReX y = 0 X Y .

    Updeixh: Epikalestete thn 3.

    pi (1) t X pi X Hilbert (, ), pi - pi x 7 (x, t) . pi Hilbert ` pi `(x) = (x, t(`))pi (1) t X

    X (`) (t(`)) =X

    ei(x,t(`))d(x) =

    X

    ei`(x)d(x)

    pi pi - pi pi pi. . .

    5.1.3. pi . pi. X . RX . pi (X, C(X,)).

    92

  • (..) X : 7 Cpi pi

    X (f) =X

    eif(x)d(x) , f

    .. X .pi pi pi pi (C). (R,B1) vf , f vf (B) =(f1(B)), B B1 X (f) =

    Reizdvf (z), f pi

    (f) = vf (1), f (2)pi vf .. vf R.

    5.1.4. ..

    1. .. (0) = 1

    2. {f, fn, n N} limnfn(x) = f(x) x X lim

    n(fn) =

    (f).

    pi.

    1. g = (f1, ..., fn) n (Rn,Bn) vg(B) =(g1(B)) , B Bn. y Rn y g =y1f1 + ...+ ynfn

    (y g) =X

    ei(yg)(x)d(x) =Rneiyzdvg(z)

    (y g) = vg(y) , y Rn (3)

    pi vg .. vg Rn.pi k, ` {1, ..., n}

    (fk f`) = vg(zk z`)pi zk Rn 0 k pi 1. pi Bochner .. vg.

    2. pi Lebesgue .

    5.1.5. pi ... X pi X .

    93

  • 1. .. pi (X , X) pipi .

    2. X norm .. pi C (X , X) pi pi ( pi pi norm x = sup{| < x, x > | : x 1}).

    pi.

    1. pi (2) pi pi

    2. (X , X) C (X , X) . C (X , X) pi pi norm x - pi C (X , X) Re . .. pi (3) pi- (pi pi C (X , X) ).

    pi pi - pi pi pi :

    5.1.6. pi 1, 2 (X, C(X,))pi pi RX 1 = 2 . 1 = 2 C(X,).

    pi. 1 = 2 C(X,) pi pi C(X,). C(X,) =

    f

    Af pi = {(f1, ..., fk) : k N, fi } Af = {f1(B) : B Bk} f = (f1, ..., fk). pi f 1 = 2 Af . , f = (f1, ..., fn) vi(i = 1, 2) (Rn,Bn) vi(B) = i(f1(B)). y Rn y f = y1f1 + ... + ynfn (pi pi (1) 5.1.4.)

    i(y f) = vi(y) , y Rn (i = 1, 2) pi pi v1 = v2 ( Bochner) v1 = v2 Bn 1(f

    1(B)) = 2(f1(B)) B Bn. 1 = 2 Af .

    5.1.7. pi ... X pi C(X,R) pi X. pi- (X,B(X)). 1 = 2 1 = 2 B(X).

    94

  • pi. pi pi 1 = 2 C(X,) 1 = 2 A = C(X,). pi X pi. pi. ., pi (completely regular ) pi 1, 2 pi pi pi 2.4.9.

    5.1.8. 1, 2 pi (X, C(X,)) pi- f pi v1f , v2f (R,B1) pi pi : v1f (B) = 1(f

    1(B)) v2f (B) = 2(f1(B)) , B B1 .

    1 = 2.

    pi. (2) 5.1.3. :

    1(f) = v1f (1) 2(f) = v

    2f (1) f

    v1f , v2f .. v

    1f , v

    2f pi 1 = 2.

    43. X = RN pi .

    1.

    RNo {(a1, a2, ...) : pi k N ai = 0i k}

    2. C(X,X ) = B(X).

    3. 1, 2 pi (X,B(X)) 1(y) = 2(y) y RNo . 1 = 2.

    5.2 Qarakthristik sunarthsoeid kulindrikn

    mtrwn

    pi (X,C(X,)) pi pi pi pi -Af , f pi C(X,). .

    5.2.1. pi (X,C(X,))pi pi RX . - X : 7 C pi pi X (f) =

    X

    eif(x)d(x) , f pi f (X, {f1(B) :B B1}, ). .. . .. pi pi .. pi pi pi pi:

    95

  • 5.2.2. pi RX . :

    1. 1, 2 pi (X,C(X,)) 1 = 2 1 = 2.

    2. pi (X,C(X,)) .. : 7 C (0) = 1 pipi pi .

    pi. pi 5.1.6. (1) 5.1.4. {f1, ..., fk} pi norm pi pipi : g = y21 + ...+ y2k g = y1f1+...+ykfk =y f f = (f1, ..., fk).pi (Robertson & Robertson . 37) pi pi pi pi X pipi pi pipi pi norm pi pi gn = yn f y f = g pi |yny| 0pi | | norm Rk. pi (3) 5.1.4. pi .

    pi pi pi- pi pi pi pi :

    5.2.3. pi (Rm,Bm) :Rm 7 Rn > : Rn 7 Rm. pi (Rn,Bn) (B) = (1(B)) , B Bn. :

    (z) = (>(z)) , z Rn (4)

    pi , (Rn,Bn) (Rm,Bm) (4) (B) = (1(B)) B Bn.pi. [aij ] nm pi . z = (z1, ..., zn) Rn t = (t1, ..., tm) Rm z (t) =

    ni=1

    mj=1

    ziaijtj =mj=1

    tjni=1

    aijzi =

    t [aij ]>z z (t) = t >(z) (5)

    ,, Rm

    eiz(t)d(t) =Rneizyd(y) = (z)

    (5) pi Rm

    eit>(z)d(t) = (>(z))

    96

  • (4). pipi (B) = (1(B)), B Bn ..(z) = (>(z)), z Rn (4) = .

    pi pi pi 4.4.6.

    5.2.4. .. X pi X (pi X X). X : 7 C X (0) = 1 ( pipi pi ). pi pi X .. = X .

    pi. L = {(f1, ...fn) : n N {f1, ..., fn} }. f = (f1, ..., fn) L f (y) = X (y f), y Rn. f (0) = 1 pi (1) 5.1.4. pi f Rn. Rn. V pi pi pi {f1, ..., fn} normg =

    y21 + ...+ y

    2n g = y1f1 + ...+ ynfn. yk y Rn

    yk fyf = (yky)f = |yky| pi ykfyf 0. pi pi X pi V X (ykf) X (yf)pi f (yk) f (y). f pi pipi Bochner pipi pi f (Rn,Bn) pi f = f . h = (h1, ..., hm) L : Rm 7 Rn f = h pi y h = >(y) h pi pipi pi (5) :

    X (y f) = X (y h) = X (>(y) h) pi

    f (y) = h(>(y)) , y Rn

    pi pi f h (Rn,Bn) (Rm,Bm)

    f (B) = h(1(B)) , B Bn

    pi 4.4.6. pi pi pi f = (f1, ..., fn) L B Bn

    (f1(B)) = f (B) (6)

    g (g) = eig(x)d(x) (6) (g) =eizdg(z) = g(1) = g(1) = X (g).

    97

  • pi pi- .. . pi Hausdorff X C(X,R). pi B(X) C(X,) pi pi (X,B(X))

    (f) =

    X

    eif(x)d(x) , f

    P (X) pi (X,B(X)). P (X) pi W .

    5.2.5. X pi ... pi C(X,R). {a, a I} P (X). :

    1. aW P (X) a(f) (f) f .

    2. pi X {a, a I} pi (P (X),W ) lim

    aa(f) = X (f) f pi X : 7 C.

    pi P (X) = X a W .pi.

    1. eif(x) = cos f(x)+i sin f(x) .

    2. {a, a I} (P (X),W ). 1, 2 P (X) {a, a I}. pi- pi {k}, {} k W 1 W 2. pilim k(f) = lim (f) = lim a(f) = X (f) f . pi (1) lim

    ak(f) = 1(f), lim

    a(f) = 2(f) f

    pi 1 = 2 = X . 5.1.7. 1 = 2. pi {a, a I}. pi pi a

    W . pi (1) pi = X .

    5.2.6. pipi pi pi- .. pi pi pi. pi pi pi pi ( [16]).

    98

  • Keflaio 6

    Jewrmata Minlos kaiSazonov

    pi 5.2.4. pi pi. pi (pi) . pi pi (pi) Minlos Sazonov pi pi -. pi [16]. - pi pi .

    6.1 Summetriko telestc

    6.1.1. X pi ... X . R : X 7 X x, y X :

    < Rx, y >=< Ry, x > (1)

    x X

    < Rx, x > 0

    Hilbert X ' X (-pi Riesz) (1) pi

    (Rx, y) = (Ry, x) x, y, X

    pi

    (Rx, x) 0 x X

    99

  • pi pi . ... X pi . pipi .

    6.1.2. R : X 7 X ,. :1. (x, y) =< Rx, y > ,

    2. Cauchy-Schwartz

    | < Rx, y > |2 < Rx, x >< Ry, y > x, y X

    pi.

    1.

    2. pi < R(x + y), x + y > 0 R.

    6.1.3. R : X 7 X . :1.

    2. (X , X) (X,X ) 3. (X , X) (X,X ) 4. C (X , X) C (X,X )

    pi.

    1. x, y X ` X `(R(x + y)) =< R(`), x + y >=< R(`), x > + < R(`), y >=< Rx, ` > + < Ry, ` >= `(Rx +Ry)

    2. {xa} X xa x y X :< Rxa, y

    >=< Ry, xa >< Ry, x >=< Rx, y > Rxa Rx pi (X,X ).

    3. p, E q, E seminorm pi pi(X,X ) (X , X) . E ,pi (X , X) - pi = R() ,pi (1)(X,X )-pi, E .pipi y X p(Ry) = sup

    x| < Ry, x > | =

    supx| < Rx, y > | sup

    x| < x, y > | pi

    p(Ry) q(y) y X

    100

  • 4. norm pB , B D qA, A D pi C (X,X ) C (X , X) .

    6.1.4. R : X 7 X , . : X 7 R pi (x) =< Rx, x > C (X , X)-.

    pi. {xa} X xa C x X . pi C (X , X) (X,X )- A X

    supuA|xa(u) x(u)| < a > a0(, A)

    B = {xa} C (X , X)-pi pi (X , X)-pi = R(B) (X,X )- pi pi

    | < Rxa, xa > < Rxa, x > | < a > a0

    | < Rxa, xa > < Rx, x > | | < Rxa, xa > < Rxa, x > |+ | < Rxa, x > < Rx, x > |< + | < Rxa, x > < Rx, x > | a > a0

    pi R pi pipi pi pi- .

    6.1.5. pi pi X Banach pi C (X , X) pipi pi pipi pi norm X pi x = sup{| < x, x > | : x 1}.

    6.1.6. R : X 7 X , . qR(x

    ) =< Rx, x >, x X seminorm X .

    pi. Cauchy-Schwartz pi

    q2R(x + y) =< Rx, x > + < Ry, y > +2 < Rx, y >

    < Rx, x > + < Ry, y > +2< Rx, x >

    < Ry, y >

    = (qR(x) + qR(y))2

    pi seminorm pi.

    101

  • 6.2 H topologa Sazonov

    6.2.1. H Hilbert. T :H 7 H pi (nuclear) pi {xn, n N}, {yn, n N} H

    nxn yn x X , y H). u : H 7 X pi norm H pi pi . X piX = (X, ).

    6.2.2. pi ... X X .

    1. R R(X , X) ,.2. qR(x) =

    < Rx, x > seminorm.

    3. seminorm qR, R R(X , X) X .pi.

    1. < Rx, y >=< u(S(u(x))), y >=< S(u(x)), u(y) > pi u. S pi < S(u(y)), u(x) > pi < u(S(u(y))), x >=. pi pi pipi x = y S pi R.

    2. pi 6.1.5.

    3. x0 6= 0. pi x0 X \{0} x0(x0) 6= 0. pipi pi H X x0 H. pi pi H . (Robertson & Robertson. 37).

    102

  • u : H 7 X u(x) = x. pi u x0(x0) 6= 0 pipi u(x0) a 6= 0. S0 : H 7 H S0y = (y, a)a. S0 S(H) pi R0 = u S0 u R(X , X).pipi R0x0 = u(S0(a)) = |a|2u(a) pi | | norm Hpi < R0x0, x

    0 >= |a|2 < u(a), x0 >= |a|2(a, u(x0)) = |a|2 (a, a) =

    |a|4 > 0.

    6.2.3. X pi ... X . pi Sazonov X S(X , X) pi pi pipi seminorm {qR, R R} pi qr(x) =

    < Rx, x >, x X .

    ... (X , S(X , X)) Hausdorff pi .

    6.2.4. pi pipi pi 6.1.4.

    S(X, X) C (X , X)

    pi Sazonov - pi pi pi pi. pi pi pi R.A Minlos.

    6.2.5.

    1. = (1, ..., n) Rn |ni=1

    aii| 1 a =

    (a1, ..., an) Rn mi=1

    ia2i 1 pi m n i > 0 i = 0

    i = m+ 1, ..., n.

    2. = (1, ..., m) Rm |mi=1

    ii| 1 = (1, ..., m)

    mi=1

    2i mi=1

    2i 1 ( > 0) .

    pi.

    1. m < n. k 6= 0 k > m. a Rn ai = 0 i 6= k ak = 2|k|

    mi=1

    ia2i = 0 1

    |ni=1

    aii| = |akk| = 2 > 1 - pi.

    2. , mi=1

    2i >1 i =

    i

    || mi=1

    2i =

    mi=1

    ii =|| > 1

    = 1

    103

  • mi=1

    2i 1 Rm mi=1

    2i

    pi Cauchy-Schwartz |mi=1

    ii| 1.

    6.2.6. , pi (Rn,Bn) pi Gauss . (0, 1) :

    ({x Rn : (x) }) 11

    Rn

    (1 (t))d(t)

    pi. pi pi 1 0pi

    Rn

    (1 (x))d(x) A

    (1 (x))d(x) pi A = {x : 1 (x) 1 }.pi

    Rn

    (1 (x))d(x) (1 )(A).

    Rn

    (1 (x))d(x) = 1Rn(x)d(x)

    = 1Rn

    (

    Rnei(x,y)d(y))d(x)

    = 1Rn

    (

    Rnei(x,y)d(x))d(y)

    = 1Rn(y)d(y)

    =

    Rn

    (1 (y))d(y)

    pi A = {x Rn : (x) } pi .

    6.2.7. pi pi pipi pi pi

    Rn

    (1 (y))d(y) pi

    Rn

    (1 (x))d(x).

    6.2.8. (Minlos) pi Rn pi pi > 0 pi

    |1 (x)| + (Bx, x) x Rn (1)

    pi B : Rn 7 Rn , .pi A : Rn 7 Rn , {x Rn : Ax =

    104

  • 0} {x Rn : Bx = 0}, - 1, ..., m e1, ..., em. r > 0 :

    (Rn \ E) 3(+ rmk=1

    (Byk, yk))

    pi yk = 1k ek (k = 1, ...,m), E = {x Rn : (Ax, x) r} E = {y Rn :

    |(y, x)| 1 x E} -pi .pi. r = 1.pi {e1, ..., em} em+1, ..., en {e1, ..., en} pi Rn. Aek = 0 pi Bek = 0 k =m+ 1, ..., n. pi pi {e1, ..., en} :

    (Ax, x) =

    mj=1

    j(x, ej)2 =

    mj=1

    2j (x, yj)2

    (y, x) =

    ni=1

    (y, ei)(x, ei)

    pi pi E E E = {y Rn : |ni=1

    (y, ei)(x, ei)|

    1 x Rn mi=1

    j(x, ej)2 1}. pi 6.2.5. (1)

    pi y Rn pi E (y, ei) = 0 i = m + 1, ..., n. pi ei =

    iyi, i = 1, ...,m pi-

    E = {y Rn : |mi=1

    i(y, yi)(x, yi)| 1 x Rn mi=1

    2i (x, yi)2 1

    ni=m+1

    (y, ei)2 = 0}

    pi 6.2.5. (2) pi

    E = {y Rn :mi=1

    (y, yi)2 1

    ni=m+1

    (y, ei)2 = 0} (1)

    k N Ak : Rn 7 Rn

    Akx =

    mi=1

    (x, yi)yi + k2

    ni=m+1

    (x, ei)ei

    (Aky, y) =

    mi=1

    (y, yi)2 + k2

    ni=m+1

    (y, ei)2 (2)

    105

  • pi (1),(2) pi

    E =k=1

    {y Rn : (Aky, y) 1} (3)

    k pi Gauss 0 - Ak k(x) = exp{ 12 (Akx, x)}, x Rn.pi x Rn x =

    ni=1

    (x, ei)ei

    (Bx, x) (Bx, x) =n

    i,j=1

    (x, ei)(x, ej)(Bei, ej)

    Rn

    (Bx, x)dk(x) =

    ni,j=1

    (Bei, ej)

    Rn

    (x, ei)(x, ej)dk(x)

    =

    ni,j=1

    (Bei, ej)(Akei, ej)

    pi (2)

    (Akei, ej) = 0 i 6= j (Akei, ei) ={

    (ei, yi)2 , i m

    k2 , i > m

    pipi Bei = 0 i = m+ 1, ..., n Rn

    (Bx, x)dk(x) =

    mi=1

    (Bei, ei)(ei, yi)2

    ei =iyi i = 1, ...,m

    Rn(Bx, x)dk(x) =

    mi=1

    (Byi, yi) (4)

    pi k pi

    ({x : k(x) < e 12 ) = ({x : (Akx, x) > 1}) pi 6.2.6. ( = e

    12 )

    ({x : (Akx, x) > 1}) 1

    Rn

    (1 (t))dk(t)

    pi pi pi

    1Rn

    [+ (Bt, t)]dk(t) pi = e12 pi 1 3

    (4)

    ({x Rn : (Akx, x) > 1}) 3(+mi=1

    (Byi, yi)) (5)

    106

  • pi (3),(5)

    (Rn \ E) = (k=1

    {x Rn : (Akx, x) > 1})

    = limk

    ({x Rn : (Akx, x) > 1)

    3(+mi=1

    (Byi, yi))

    6.3 To jerhmaMinlos kai to jerhma Sazonov

    pi pi - pi , pi .

    6.3.1. Hilbert H S ,, pi H. S pi pi S = u S1 u pi S1 : H 7 H pi , pi u : H 7 H (, ) pi.pi. pi pi pipi pi , A : H 7 H pi S = A A (pi S). pi (pi) S pi

    nn }}}}}}}

    v// H

    w

    OO

    S1 = v v pi S1 : H 7 H , pi. ([15] .224). pi w : H 7 H pi S = w S1 w. w = u .

    6.3.2. pi ... X pi X = (X, )

    . R R(X , X).

    107

  • R = w S w S S(H) w : H 7 X , pi pi ( ) C (X,X ) pi ( ) pi pi pi norm Hilbert H.

    pi. pi R(X , X) pi Hilbert H , S1 S(H) , ( ( ) )v : H 7 X R = v S1 v. v pi (H,H ) (X,X ) H pi B = {h H : h 1} H (H,H )-pi v(B) (X,X )-pi. pi v(B) ,pi ( ) pi C (X,X )-(Robertson Robertson . 71). pi pi v : H 7X ( )C (X,X ) . 6.3.1. S1 S1 = u S u pi S S(H) u : H 7 H , pi. pi w = v u w , pi R = w S w.

    6.3.3. X pi ... pi X = (X, ). :

    1. pi C(X,X ) pi .. : X 7 C pi Sazonov S(X , X). pi pi C (X,X )- X.

    2. X : X 7 C X (0) = 1 pi pi Sazonov S(X , X). pi C (X,X )- X pi = X . .

    pi.

    1. > 0. pi X piS(X

    , X) pi pi V = {x X :< Rx, x >< 1} R R(X , X) :

    |1 (x)| < 6

    x V

    pi |1 (x)| 2 x X |1 (x)| 2 < Rx, x > 1

    |1 (x)| < 6

    + 2 < Rx, x > x X (1)

    6.3.2. R R(X , X) pi -pi R = uSu pi S S(H), H Hilbert u : H 7X , pi pi ( ) C (X,X ).

    M = {u(x) : x r}

    108

  • pipi M X C (X,X )-pi. n N {x1, ..., xn} X f : X 7 Rn f(x) = (x1(x), ..., x

    n(x)) a = f u b = a

    S

    A = aa B = bb

    A,B : Rn 7 Rn , pi{y Rn : Ay = 0} {y Rn : By = 0}pi 1, ..., m - e1, ..., em A yi = 1i ei, i = 1, ...,m {ay1, ..., aym} H (pi )

    (ayi, ayj) = (aayi, yj) = (Ayi, yj) =1

    (Aei, ej) = (ei, ej) i = 1, ...,m.

    pi ( 44 pi)

    E f(M) (2)pi E = {y Rn : (Ay, y) 1r2 } E pi . vf (Rn,Bn)

    vf (B) = (f1(B)) , B Bn

    y f = y1x1 + ...+ ynxn y Rn pi

    (y f) = vf (y) , y Rn

    pi (1)

    |1 vf (y)| 6

    + 2 < Ry f, y f > , y Rn

    pi ( 45)

    < Ry f, y f >=< By, y > y Rn (3)

    |1 vf (y)| 6

    + 2 < By, y > , y Rn

    pi pi pipi Minlos pi vf A,B pi

    vf (Rn \ E) 3( 6

    +2

    r2

    mk=1

    (Byk, yk)) (4)

    mk=1

    (Byk, yk) =mk=1

    (aSayk, yk) =mk=1

    (S(ayk), ayk) trS pi pipi {ayk, k = 1, ...m} H . pi pi (4)

    vf (Rn \ E) 2

    +6

    r2trS

    109

  • pi r > 0 pi r2 > 12 trS pi (2) ,

    vf (Rn \ f(M)) < n N f = (x1, ..., xn), xi X .pi 41 pi Prohorov 4.4.11. K = M pi C (X,X )-pi = X C(X,R). pi pi ... (X,C (X,X )).

    2. pi (X , S(X , X)) pi - X : X 7 C , , : pipi pi X . pi 5.2.4. ( = X ) pi- pi X .. = X (pi) pi Sazonov. pi (1).

    6.3.4. 4.4.1. C (X,X )- -.

    44. pi (2) pi.

    Updeixh: Ap to Lmma 6.2.5. kai pwc akribc gia to Lmma Minlos E = {x Rn :

    mi=1

    (x, yi)2 r2 kai

    ni=m+1

    (x, ei)2 = 0} 'Etsi tuqn x E grfetai x =

    mi=1

    (x, ei)ei. Qrhsimopointac tic Aei = iei kai A = aaqoume diadoqik: x =

    mi=1

    12i

    (x, aa(ei))aa(ei) =mi=1

    12i

    (a(x), a(ei))aa(ei) = a(h) pou h =mi=1

    12i

    (a(x), a(ei))a(ei)

    kai afo ei =iyi to h =

    m1

    1i

    (a(x), a(yi))a(yi). 'Omwc ta a(yi), i = 1, ...,m enai

    orjokanonik kai ra h2 =m1

    1i

    2(a(x), a(yi))2 =

    m1

    12i

    (x, aa(yi))2 =m1

    12i

    (x,A(yi))2 =

    m1

    12i

    (x, iyi)2 =

    m1

    (x, yi)2 r2 afo x E. 'Wste x = a(h) me h2 r2. 'Omwc

    a = f u.

    45. pi (3) pi. pi a = f u aSa = B pi B.

    Updeixh: Gia y = (y1, ..., yn) Rn kai f = (x1, ..., xn) enai < Ry f, y f >=i,j

    yiyj < Rxi, xj >. Exllou < By, y >=

    i,j

    yiyj < Bvi, vj > pou {vi} h sunjhcbsh tou Rn.Ja dexoume tra ti u(xi) = a(vi) gia i = 1, ..., n. Prgmati hsqsh aut isoduname me (x, u(xi)) = (x, (f u)(vi))x H < u(x), xi >=

    110

  • ((f u)(x), vi)x H xi(u(x)) = xi(u(x))x H pou alhjeei. Sunepc -qoume < Rxi, x

    j >=< uS(u

    (xi)), xj >=< uSa

    (vi), xj >=< uSa(vi), pij f >=

    pij f(u Sa(vi)) = pij(aSa(vi)) = pij(Bvi) =< Bvi, vj > pou pii : Rn 7 R hsunjhc i-probol.

    (2) pipi ; pi . pipi pi X Hilbert . .

    pi X Hilbert. pipi R(X , X) pipi , pi R : X 7 X pi pipi S(X). pi Sazonov pipi Hilbert X pi S(X) pi pipi pi pi x 7 (Rx, x), R S(X). Sazonov pi pi- pi pi pi.

    6.3.5. pi Hilbert X pipi pi

    X

    x2d(x) < +. S : X 7 X pi pi

    r(x, y) =

    X

    (u, x)(u, y)d(u)

    pi (Sx, y) = r(x, y) x, y X. 6.3.6. pi Hilbert X pipi

    X

    x2d(x) < +. S , pi.

    pi. pi pi pi ( 6.1.3.). {ei, i I} X. pi pi-pi pi ein , n N

    n

    (Sein , ein) =n

    X

    ((u, en)2d(u)

    X

    u2d(u) < pi {i : (Sei, ei) > 1n}, n N pipi (Sei, ei) > 0 pi i I.pipi

    iI

    (Sei, ei) =i

    (u, ei)

    2d(u) = u2d(u) < . pi

    S pi.( [16] . 161 )

    6.3.7. (Sazonov ) X Hilbert. X : H 7 C

    111

  • pi (X,BX) X X (0) = 1 piSazonov S(X).

    pi. pi pi. . .. (x) =

    X

    ei(x,t)d(t), x X x = 0 pi S(X). > 0 pi K = K X (K) > 1 4 . (X,B(X)) (B) =

    (BK)(K) . (K) = 1 pi

    X

    u2d(u) < +.

    |1 (x)| |(K)K

    ei(x,t)d(t)|+Kc|1 ei(x,t)|d(t)

    pi (L) = (K)(L) L K |1 ei(x,t)| 2 t X pi

    |1 (x)| |(K) (K)K

    ei(x,t)d(t)|+ 2(Kc)= (K)|1 (x)|+ 2(Kc)

    (Kc) < 4 , (K) 1

    |1 (x)| < |1 (x)|+ 2x X (1)

    pi |1 eiy| < 2|y|, y R pi x X

    |1 (x)| X

    2|(x, t)|d(t)

    4(x, t)2d(t) (2)

    S pipi S(X) (Sx, x) =

    X

    (x, t)2d(t) pi pi

    (1),(2) pi

    |1 (x)| < 4(Sx, x) + 2x X

    pi pi Sazonov V = {x X : (Sx, x) 0 pi A A (x)(x(A)) > 1 x X .

    A (X,X )- pi X pi pi pi:

    . A A > 0 A A

    113

  • . A,B A pi E A A B E. A A pi pi B A A B. A A A(x) = sup{|x(x)| : x A}, x X. A seminorm X seminorm (A, A A ) pi pi X . pi pi- A -pi A (X , X). A (X , X) C (X , X).

    6.3.11. X pi ... X . pi (X,C(X,X )) A (X,X )- pi X pi pi (),(),() pi pipi. pi pi :

    1. pi A

    2. A (X , X).

    pi. [15] . 193 [16] . 412

    6.4 Mtra pijanthtac kai q.. se dukoc

    qrouc

    X pi ... X . X pi

    C(X , X) =iIA i

    pi I = {(x1, ..., xn) : n N, xi X} i = (x1, ..., xn) I - A i = {g1(B) : B Bn} g(x) = (< x1, x >, ..., < xn, x >), x X . - C(X , X) = (

    iIA i ).

    pi C(X , X) - X

    (x) =

    Xeid(x) , x X

    (X,A x, ) x X. pi .. pipi pi - pi C(X , X). R(X,X ) R : X 7 X pi pi Hilbert H v : X 7 H R = vSv pi S S(H).

    114

  • pi Sazonov S(X,X ) X pi pi- pi pipi pi seminorm {R, R R(X,X )} pi R(x) =< x,Rx >, x X. 6.3.3. :

    6.4.1. X pi .. X .

    1. (X , C(X , X)) pi .. (x)x X pi Sazonov S(X,X ). pi pi C (X , X)- X .

    2. X : X 7 C X (0) = 1 pi Sazonov S(X,X ). pi C (X , X)- X pi = X . .

    pi.

    1. Y = (X , (X , X)) pi (X , X) pi Mackey X . Mackey-Arens Y Y X pi .. Y . pi pi SazonovS(Y

    , Y ) pi 6.3.3. (Y, Y ). X X pi Mackey (X,X ) pi Y Y X pi R(Y , Y ) = R(X , X ) pi S(Y , Y ) = S(X , X ). pi S(X , X ). R(X,X ) R(X , X ) R R(X,X ) R = vSv piv : X 7 H pi X ( ) Hilbert H pi (X,X ) ( ) pi X Mackey. pi pipi - pi S(X,X ) S(X , X ) pi pi S(X,X ) S(X , X ),pi pi pi .

    2. pi (2) 6.3.3. pi pi- 5.2.4. (pi ).

    Minlos ( X ) pi X pi pi (nuclear).

    6.4.2. E,F Banach u : E 7 F , . u pi pi {xk, k N} E {yk, k N} F

    k

    xkyk yk , x E.

    115

  • pi pipi pi E = F = H pi H Hilbert pi pipi 6.2.1.

    6.4.3. pi .. X pi T pi X Banach E pi Banach F, , u1 : X 7 F pi u2 : F 7 E pi T = u2 u1.

    pi ( Schaeffer, H. Topological Vector Spaces ) pi pi pipi pi Sazonov S(X,X ) pi pi pi pipi pi:

    6.4.4. (Minlos ) pi X X . :

    1. pi (X , C(X , X)) pi .. pi pi C (X , X)- X .

    2. X : X 7 C , X (0) = 1 piC (X , X)- pi pi = X . .

    6.4.5. X pi X . X : X 7 C .. C (X , X)- pi- X X , X (0) = 1.pi. pi X (2) pi pi pi X pipi pi- Sazonov . pipi pi xn x < xn, x

    >< x, x > x X . pipi |ei| = 1 (xn) (x). pi X pi X = .

    6.4.6.

    1. pi.. D(V ),D (V ),E (V ),E (V ),(V ),(V ), V Rn . Hilbert H pi S(H) pi.( [16] . 411)

    2. pipi pipi pi X barelled (tonelle). [18].

    116

  • Keflaio 7

    Mtra Pijanthtac Gauss

    7.1 Mtra Pijanthtac Gauss ston Rn

    (Rn,Bn) pi

    (B) =

    B

    (2pi)n2 e

    12 |x|2dx ,B Bn

    pi ..

    (t) = e12 |t|2 t Rn

    7.1.1. a Rn - nn-pi . Gauss Rn pi a, (Rn,Bn) pi

    (B) = (T1(B)) , B Bn

    pi T (x) = a + 12x , x Rn. Gauss

    pi a = 0 = I.

    pi pi 1 1 pi T1(B) =

    12 (B a).

    pipi x = 12 (y

    a)

    (B) =

    T1(B)

    (2pi)n2 e

    12 |x|2dx

    =

    B

    (2pi)n2 (det )

    12 e

    12 (1(ya),ya)dy

    Gauss pi a, pi

    d(y) =1

    (2pi)n2 (det )

    12

    e12 (1(ya),ya) , y Rn

    117

  • ( (x, x) = 0 pi x 6= 0) Gauss pi pi Lebesgue (- pi A T (Rn) = Lebesgue pi (A) = (T1(A)) = () = 0). pi pi

    12 -

    Rneit((z)+a)d(z) =

    eityd(y) = (t) , t Rn

    pi (5) pi 5.2.3. t(z) = zT (t) pi pi

    eitaRneit(z)d(z) = eita

    Rneiz

    T (t)d(z)

    pi (t) = eita(T (t)) , t Rn. (T (t)) = e

    12 |T (t)| = e

    12 (t,t)

    (t) = eita12 (t,t) , t Rn (1)

    pi .. Gauss pi, . n = 1 = () 0 a R Gauss pi a,

    (B) =

    {a(B) = 0B

    12pi

    e12 (xa)2dx > 0

    pipi (n = 1) pi Ryd(y) = a ,

    Ry2d(y) a2 = .

    7.1.2. pi - pi .. pi pi- Gauss pi a, pi pi .. pi (1) pipi.

    7.2 Mtra pijanthtac Gauss se dianusmatikocqrouc aperwn diastsewn

    X pi .. X . pi - pi pi C(X,X ) pi C(X,X ) X pi (R,B1) pi

    (A) = (1(A)) , A B1 (1)

    118

  • 7.2.1. pi (. pi) Gauss (. Gauss) pi ... X - A C(X,X ) (. - C(X,X )) pi pi pi: X pi (1) Gauss R.

    7.2.2.

    1. Gauss y2dx(y) < +

    x X X

    | < x, x > |2d(x) < + x X . pi .

    2. Gauss pi C(X,X ) Gauss . pi pi pi. pi - Gauss .. pi pi:

    (x) =X

    eid(x) , x X (2)

    pi pipi - (2) (X,(x), ).

    7.2.3. pi .. X X . pi - A C(X,X ). : Gauss X pi a(x), x X Q(x), x X pi

    (x) = eia(x) 12Q(x) , x X (3)

    pipi a(x) =X

    < x, x > d(x)

    Q(x) =X

    | < x, x > |2d(x) a2(x) x X .

    pi. pi

    (yx) = x(y) y R, x X (4) Gauss x Gauss R1 pim =

    Rydx(y) =

    Ry2dx(y)m2 ..

    x(y) = eimy 12y2 , y R

    pi (pi ) m =X

    xd, =X

    (x)2dm2 pi (4) y = 1 pi (3)

    119

  • a(x) =X

    xd Q(x) =X

    (x)2d a2(x), x X . pi (3) x (pi (4) )

    x(y) = (yx) = eia(x

    )y 12Q(x)y2 , y R pi x Gauss R1 pi a(x) Q(x). a(x) =

    Rydx(y) Q(x) =

    Ry2dx(y) a2(x) pi (

    ) a(x) =X

    xd Q(x) =X

    (x)2d a2(x).

    7.2.4. pi pi Gauss - pi pi .. pi (3). pi pi a,Q. - Gauss pipi pi ..

    X Hilbert X = X :

    7.2.5. X Hilbert pi - A C(X,X ). Gauss (x) = eia(x)

    12Q(x), pi a Q X.

    pipi a(x) =X

    (y, x)d(y) Q(x) =X

    (y, x)2d(y) a2(x), x X.

    pi pi pipi pi pi:

    7.2.6. pipi pi pi , - A pi C(X,X ) Gauss pi - Gauss .

    Gauss pi pi pi:

    7.2.7. pi ... X X . a : X 7 R Q : X 7 R. pi Gauss pi a,Q.

    pi.

    X (x) = eia(x) 12Q(x) , x X

    X (0) = 1. X (x), x X . pi ( [16] . 187)

    120

  • eia(x), e

    12Q(x

    ), x X . {c1, ..., cn} C {x1, ..., xn} X

    nk,`=1

    ck c`eia(xkx`) =

    nk,`=1

    ckeia(xk) c`eia(x`) =

    nk=1

    ckeia(xk)

    2

    0

    b , Q(x) = b(x, x), x X . ( b(x, y) = 14 [Q(x

    + y)Q(x y)]). b (b(x, x) 0 x X ) {1, ..., n} R {x1, ..., xn} X

    ni,j=1

    ijb(xi, xj) = b(

    ni=1

    ixi,

    ni=1

    ixi) 0 (

    i R). pi pi Q(x) = b(x, x) Q(xk x`) = Q(xk) + Q(x`) 2b(xk, x`) pi pi A =n

    k,`=1

    k`e 12Q(xkx`) =

    nk,`=1

    ke 12Q(xk)`e 12Q(x`)eb(xk,x`) me 12Q(xm) =

    m A =n

    k,`=1

    k`eb(xk,x

    `). -

    e ([16] . 187) pi A 0. X ( pipi pi X ). pipi piE X {e1, ..., ek} . pi pi E pi norm |x| = (y21 + ... + y2k)

    12 x = y1e1 + ... + ykek pi

    xn = yn1 e1 + ... + y

    nk ek , n N x = y1e1 + ... + ykek

    xn x E ynm ym m = 1, ..., k.pi a(xn) =

    km=1

    ynma(em) k

    m=1yma(em) = a(x

    ) xn x E. b X pi

    Q(x) = b(x, x) Q(xn) = Q(k

    m=1ynmem) =

    ki,j=1

    yni ynj b(ei, ej) pi

    Q(xn) k

    i,j=1

    yiyjb(ei, ej) = Q(k

    m=1ymem) Q(xn) Q(x).

    X (xn) X (x) xn x E. X pi pipi 5.2.4. pi X pi = X . pi 7.2.6. pi Gauss pi a,Q.

    7.2.8. X Hilbert pi

    121

  • X (x) = e 12x2 , x X. pipi pi Gauss X pi = X . pi pi pi - A C(X,X ). pi 5.1.5. .. = X pi X X (xn) X (x) xn, x X (xn, y) (x, y) y X pi xn x (xn, y) (x, y) y X. xn X pi x X xn x.

    7.3 To q. . mtrwn Gauss se qrouc Hilbert.Jerhma Mourier

    pi pipi pi Gauss pi , :

    X

    | < x, x > |2d(x) < + x X

    pipi pi X Hilbert -

    X

    (u, y)2d(u) < + y X

    pi pi X

    |(u, y)|d(u) < +

    X

    |(u, x)(u, y)|d(u) < + x, y X pi

    r(x, y) =

    X

    (u, x)(u, y)d(u)X

    (u, x)d(u) X

    (u, y)d(u)

    r , ( pi Riesz ) R : X 7 X pi

    (Rx, y) = r(x, y) x, y X (1)

    R , ((Rx, x) 0 x X) X. pi (1)

    (Rx, x) =

    X

    (u, x)2d(u)(

    X

    (u, x)d(u)

    )2, x X

    pi .. Gauss ( 7.2.5.)

    (x) = eia(x)12 (Rx,x) , x X (2)

    122

  • pi a(x) =X

    (u, x)d(u), x X.pi ( Hilbert) pi m X pi

    a(x) = (m,x) x X(pi Pettis m =

    X

    xd(x))

    .. Gauss

    (x) = expi(m,x)12 (Rx,x) , x X

    m X .

    pi pi pi pi pi .. Gauss Hilbert.

    7.3.1. (E. Mourier ) X Hilbert pi (X,B(X)). Gauss ..

    X (x) = ei(m,x) 12 (Rx,x) , x X (3)pi m X R , pi (nuclear ) X.pi. Gauss. pi- .. (3) pi m X R . R pi. Sazonov .. x = 0 pi Sazonov S(X). pi > 0 pi S S(X) :|1 (x)| < 1 e 12 x X (Sx, x) < 1. 1 Re(x) |1 (x)| Re(x) e 12 (Rx,x) pi 1 e 12 (Rx,x)

    (Sx0, x0) (S

    x0d ,

    x0d ) =

    1d2 (Sx0, x0) < 1 pi (4) pi (R

    x0d ,

    x0d ) < pi

    (Rx0, x0) < d2 d >

    (Sx0, x0)

    x0 X(Rx0, x0) (Sx0, x0) (5)

    pipi {ej , j I} pipi pi- {ejn , n N}

    n

    (Rejn , ejn) n

    (Sejn , ejn) < +

    123

  • S pi.pi 6.3.6. pi (Rej , ej) > 0 pi j I. pi pi pi (5)

    j

    (Rej , ej) 0 pi V = {x : (Rx, x) < 2 ln(1 )} pi |1 h(x)| < x V . h pi pi Sazonov pi v pi v = h. (X,B(X)) (B) = v(1(B)) pi(x) = x+m (B) = v(B m). :

    (x) =

    X

    ei(x,y)d(y)

    =

    X

    ei(x,y+m)dv(y)

    = ei(x,m)v(x)

    = X (x) x X

    124

  • Parrthma A

    Apdeixh tou Jewrmatoc

    2.4.2.

    .0.2. pi Hausdorff (X, T ) U1, U2 T . piK K K U1U2. pi piK1,K2 K K = K1 K2 K1 U1 , K2 U2.

    pi. K U c1 , K U c2 pi (X Haus-dorff) pi V1, V2 V1 K U c1 ,V2 K U c2 V1 V2 = . K1 = K V c1 K2 = K V c2 . K1,K2 pi .

    .0.3. H pi S H. : H 7 [0,] () = 0 pi pi (H, ). M = {X S : (A X) + (A Xc) = (A) A S} - pi S. X M (A) (A X) + (A XC) A H (A) 0 pi pi {An, n N} H

    nAn T

    n=1

    (An) < (T ) + (1)

    pi T X n=1

    AnX T Xc

    nAn Xc : (T X)

    125

  • n=1

    (An X) (T Xc) n=1

    (An Xc)

    (T X) + (T Xc) n=1

    [(An X) + (An Xc)] (2)

    pi (1) (An) 0

    (T X) + (T Xc) n=1

    (An) < (T ) +

    (T ) (T X) + (T Xc) T S.

    Apdeixh tou Jewrmatoc 2.4.2: : T 7 [0,]

    (U) = sup{(K) : K K K U} , U T pi pi (T , ).

    (U) (U) U T1. M T

    0.3. (A) (AB)+(ABc) A,B T (A) < +. : D K D A B pi: E K E A DC

    D E K , D E A D E = (A) (D E) = (D) + (E)( pi pi K).pi pi

    sup{(E) : E K E A Dc} (A) (D) pi A DC T pi

    (A) (A Dc) + (D) D K D A B (?) D K D A B : A Dc A Bc A Dc T pi (A Bc) (A Dc) pi (?)pi

    (A) (A Bc) + (D) D K : D A Bpi sup{(D) : D K D A B} = (A B) (A) (A Bc) + (A B). (A B) (A B) pi .

    126

  • 2. -pipi T . pipi . pi pi-pi -pipi T . : U1, U2 T . K U1 U2 0.2.pi pi K1,K2 K1 U1,K2 U2 K = K1 K2. :

    (K) = (K1 K2) (K1) + (K2) (U1) + (U2)

    pi sup{(K) : K K K U1U2} (U1)+(u2). pi (U1 U2). {Un, n N} T . K K K

    n=1

    Un

    pi pipi pi, K mk=1

    Unk pi (K)

    (mk=1

    Unk). (pi) pipi (mk=1

    Unk) mk=1

    (Unk) pi (K) n=1

    (Un) pi K n=1

    Un. .

    3. (U) = (U) U T . (U) (U), U T . pipi (U) < +. :

    (U) = inf

    { n=1

    (Vn) : Vn T n=1

    Vn U}.

    -pipi , pipi

    {Vn, n N} T n=1

    Vn U

    n=1

    (Vn) (n=1

    Vn) (U).

    (U) (U) U T .

    4. (A) = inf{(U) : U T U A} A X.

    (A) = + .

    (A) < + > 0 pi {Un, n N} T n=1

    Un A

    (A) n=1

    (Un) < (A) +

    127

  • V =n=1

    Un V A, V T

    (A) (V ) n=1

    (Un) n=1

    (Un)

    pi (A) (V ) < (A) + 5. (K) = (K) K K

    K K. 3,4

    (K) = inf{(U) : U T U K}

    pi (U) (K) U T ,K K U K. (K) (K). > 0 pi pi pi U T U K (C) < (K) + C K K C U. pi :

    (U) = sup{(C) : C K K C U} (K) +

    pi 3 (U) (K) + . U K (K) (K) + > 0

    128

  • Parrthma B

    Apdeixh tou Jewrmatoc

    2.4.4.

    pi pi pi- . pi {A, } :

    pipi Aa, Ab pi pi A pi AaAb A .

    pi pi pi pipipi i, ii, iv.

    .0.4. {U} A

    U = X.

    sup(U) = 1.

    pi. > 0 pi K X pi pi iv. pi pipi I K

    I

    U A pi (pi pipi pi ii)

    1 (I

    U) > 1

    pi I

    U U A pi

    1 (U) > 1 .

    U TX (U) = sup{(B) : B U,B A }

    pi pi (, TX).

    129

  • 1. {U} A U =

    U.

    (U) = sup(U)

    pi (U) (U) sup(U) < (U) pi.

    > 0 pi

    (U) sup(U) > 2 (1)

    pi pi B A B U

    (B) > (U) 2

    pi pi iii pipi F A F B

    (F) > (B) 2

    pi(F) > (U) (2)

    pi {U F c } A

    (U F c ) = X (pi )

    sup(U F c ) = 1 (3)

    (2), (1)

    sup(U F c ) sup

    [(U) + 1 (F)]

    sup(U) + 1 (U) +

    < 2+ 1 + = 1 < 1 pi

    2. {U} TX

    U = U

    (U) = sup(U)

    H = {A X : A A , A U pi }. H

    AH

    A = U .

    x U pi x U pi Api U =

    iI

    Ai Ai A , pi x Ai

    130

  • A U. A H . pi. 1

    (U) = sup{(A) : A H } (4)

    pi A H A U pi pi(A) (U) pi , (4) sup

    (U).

    (U) sup(U)

    pipi pi (U) (U) .

    3. (pi) pi, pipi -pipi. U1, U2 TX U1 U2 = . A pi pi

    U1 =aI

    V 1a V1a A ,

    pi

    U1 =

    (ai

    V 1a : i pipi I) =i

    U1i

    {U1i } A T pi . U2 =

    j

    U2j {U2j } A T pi

    U1i U2j = i, j

    {(i,j) = U1i U2j } A T pi(i,j)

    (i,j) = U1 U2 pi 1

    (U1 U2) = sup(i,j)

    (U1i U2j )

    = sup(i,j)

    [(U1i ) + (U2j )]

    = supi(U1i ) + sup

    j(U2j )

    = (U1) + (U2)

    -pipi, Un TX , n N.

    (n=1

    Un) = ({ni

    Un : i pipi. N})

    pi 2 pipi (pi

    131

  • pi pi pi)

    (n=1

    Un) = sup{(ni

    Un) : i pipi. N}

    supi

    ni

    (Un)

    n=1

    (Un)

    4.(U) = (U) U TX

    (U) (U) U X, pi. {Vn, n N} TX

    nVn U TX pi 3

    n

    (Vn) (n

    Vn) (U)

    pi pi (U) (U).

    5. > 0 pi pi K : (K) > 1 .pi pi iv pi pi K X

    (B) > 1 B A B K (5)

    Kc A pi pi Kc =

    i

    Ui {Ui} A T . pi 1,4

    (Kc ) = (Kc )

    = supi(Ui)

    = supi

    (1 (U ci ))= 1 inf

    i(U ci )

    pi pipi

    (Kc ) 1 (K)

    pi(K) inf

    i(U ci )

    U ci A U ci K. pi (5).

    132

  • 6.M B(X)

    U T (A) (A U) + (A U c) A T

    pi pipi pi U T pipi U c = L. pi x U pi pi Nx x NL L Nx NL = . pi pi Nx U Nx A A pi pi. Nx N cL = N cL U piU =

    xU

    Nx Nx A Nx U . U =

    V V A V U pi

    U =

    (i

    V : i pipi. ) =i

    Ui

    pi {Ui} A Ui = Fi U . A = (A Ui) (A U ci ) (A Ui) (A F ci ). pi 3 4

    (A) [(A Ui) (A F ci )]= (A Ui) + (A F ci ) (A Ui) + (A F ci ) i

    F ci U c

    (A) (A Ui) + (A U c) i pi 2 4

    supi(A Ui) = (A U) = (A U)

    pi

    (A) (A U) + (A U c) A TX U TX U c pi M pi M KX . pi 5 pi pi Kn X,n N (Kn) > 1 1n pi Y =

    n=1

    Kn Y M (Y ) = 1. U T F = U c F =(F Y ) (F Y c). pi (F Y c) (Y c) = 0 F Y c M F Y =

    n=1

    (F Kn) F Kn KX .

    133

  • 7.(A) = inf{(U) : U T U A} , A X

    > 0 pi {Un, n N} TX nUn A pi

    (A) n

    (Un) < (A) +

    U =n=1

    Un U TX , U A

    (A) (U) < (A) +

    8. = A B A . U TX U B

    (U) = (U) = sup{() : U, A } (B)

    piinf{(U) : U TX U B} (B)

    pi 7 pi (B) (B). pi ii, iii

    (B) = inf{(U) : U A , U U B}

    > 0 pi U A TX

    U B (U) < (B) +

    pi A

    () < (B) + A Upi , 4 U B pi > 0

    (B) (U) = (U) (B) +

    (B) (B) (X,M) pipi pi 5,6,7 pi 2.4.9. pi v. pi 2.2.5. ( 14).

    134

  • Parrthma G

    Apdeixh tou Jewrmatoc

    Prohorov

    pi :

    .0.5. KX pi pi. X :1. K =

    iI

    P1i (Pi(K)) K KX

    2. K,L KX K L = pi i I Pj(K)Pj(L) = j I i j.

    3. Pj(K) P1ij (Pi(K)) i j I K KX .pi.

    1. K P1i (Pi(K)) K iI

    P1i (Pi(K)). pi

    K 6= ( pi) x iI

    P1i (Pi(K)).

    Pi(x) Pi(K) i I pi Kxi = {y K :Pi(y) = Pi(x)} , i I - K Kxi ( Pi ) pi pi. pi i j Pj(y) = Pj(x) (Pij Pj)(y) = (Pij Pj)(x) Pi(y) = Pi(x) Kxj Kxi i j. pi , pi Kxi , i I Kxi 6= pi

    iI

    Kxi 6= pipi y X y Kxi i I pi Pi(y) = Pi(x) i I. {Pi, i I} x = ypi x Kxi K.

    2. Mi = P1i (Pi(K))L, i I. pi K,L

    Pi pi Mi, i I pi. pipi i j :(Pij Pj)(K) = Pi(K) pi Pj(K) P1ij (Pi(K)) pi

    135

  • P1j (Pj(K)) P1j (P1ij (Pi(K))) = (Pij PJ)1(Pi(K)) = P1i (Pi(K)) Mj Mi i j.pi pi (1)

    iI

    Mi = KL = mk=1

    Mik = {i1, ..., im} I. pi I pi pi i I i1, ..., im i Mi = . j I i j Mj = . P1j (Pj(K)) L = Pj(K) Pj(L) =

    3. i j I (Pij PJ)(K) = Pi(K) P1ij (Pij(Pi(K))) =P1ij (Pi(K))

    Pi(K) P1ij (Pi(K))

    .0.6. I pi pi ai 0 bi 0 :i j aj ai bj bi.

    infiI

    (ai + bi) = infiI

    ai + infiI

    bi

    pi. infiai = a, inf

    ibi = b > 0 pi i, j I

    a ai < a+ 2 b bj < b+ 2 . pi I k I i, j k pi ak ai bk bj pi

    a+ b ak + bk a+ b+ infi{ai + bi} = a+ b

    Apdeixh tou Jewrmatoc

    1. Pi(K) pi Xi K KX i I. : KX 7 [0,)

    (K) = inf{i(Pi(K)) : i I}

    pi 0.5. pi

    j(Pj(K)) j(P1ij (Pi(K))) = i(Pi(K))

    i j I K KX pi

    (K) = inf{j(Pj(K)) : i j} (1)

    pi pi 2.4.2.:

    K L KX (K) (L). .

    136

  • K,L KX K L = 0.4. pi i I :Pj(K)Pj(L) = i j pi (1) :

    (K L) = inf{j(Pj(K L)) : i j}= inf{j(Pj(K)) + j(Pj(L)) : i j}= inf{j(Pj(K)) : i j}+ inf{j(Pj(L)) : i j}.

    (K L) = (K) + (L). pi K,L KX

    (K L) (K) + (L).

    > 0 K KX . pi i I pi

    (K) i(Pi(K)) < (K) + 2

    (2)

    i pi pi U Xi U Pi(K)

    i(U) < i(Pi(K)) +

    2(3)

    W = P1i (U) W TX ,W K C KX K C W Pi(C) Pi(W ) = Pi(P1i (U)) U i(Pi(C)) i(U) pi

    (C) i(U) (4)

    pi (2),(3),(4) C KX K C W

    (C) < (K) +

    pi W X W K. pi 2.4.2. pi (X,B) (K) = (K) K K. pipi

    (P1i (B)) = sup{(K) : K pi P1i (B)} (5)

    i I B Bi. K P1i (B) Pi(K) Pi(P

    1i (B)) B pi

    i(Pi(K)) i(B) pi (K) = (K) i(B).pi (5) pipi

    (P1i (B)) i(B) i I, B Bi

    137

  • 2. pi i, j I k I i, j k k(P

    1ik (Xi)) = i(Xi) i(Xi) = k(Xk). j(Xj) =

    k(Xk) pi pi = i(Xi), i I. K KX

    (K) = infiI

    i(Pi(K))

    = infiI

    i [Xi \ (Xi \ Pi(K))]= infiI

    ( i(Xi \ Pi(K)))= sup

    iIi(Xi \ Pi(K)).

    pi

    (K) + supiI

    i(Xi \ Pi(K)) = ,K KX (6)

    pi Prohorov. > 0pi pi K KX sup

    iIi(Xi \ Pi(K))

    pi (6) pipi (K). pi pi (1) (K) (X) = (P1i (Xi)) i(Xi) = pi

    (K) = sup{(K) : Kpi X} (X) = . i I,B Bi

    (P1i (B)) = i(B)

    vi(B) = (P1i (B)), B Bi. vi (Xi,Bi)

    pi vi(Xi) = i(Xi). pipi pi (1) vi i. 2.2.6. vi = i. pi . pi (P1i (B)) =i(B) i I,B Bi. K KX 0.5. K =

    iI

    Fi Fi = P1i (Pi(K)), i I. Fi

    i j Fi Fj ( pi ). pi(K) = inf

    iI(P1i (Pi(K))) = inf

    iIi(Pi(K)) = (K) K KX

    , = . . pi (P1i (B)) = i(B) i I,B Bi Prohorov. = (X) = i(Xi), i I. (6) pi (K) + sup

    iIi(Xi \ Pi(K)) = K KX pi

    K KX(K) + sup

    iIi(Xi \ Pi(K)) = (X) (7)

    138

  • pi > 0 K KX (X) < (K) + pi pi (7)

    supiI

    i(Xi \ Pi(K)) < .

    139

  • 140

  • Bibliografa

    [1] Hewitt-Stromberg : Real and Abstract Analysis , Springer-Verlag.

    [2] Vulikh , B.Z : A Brief Course in the Theory of Functions of a Real Variable, mir editions.

    [3] Cohn , D. : Measure Theory , Birkhauser.

    [4] Parthasarathy , K.R : Probability Measures on Metric Spaces , AcademicPress.

    [5] Parthasarathy , K.R : Introduction to Probability and Meausure , McMillanCompany of India.

    [6] Kingman-Taylor : Measure and Integration , Cambridge University Press.

    [7] Bauer , H : Probability Theory and Elements of Measure Theory , Holt,Rinehart and Winston, Inc.

    [8] Ash , R. : Real Analysis and Probability , Academic Press.

    [9] Billingsley , P. : Probability and Measure , Wiley.

    [10] Dudley , R. : Real Analysis and Probability , Wadsworth Brooks / Cole.

    [11] Rogers , C.A : Hausdorff Measures , Cambridge University Press.

    [12] , . - pi, . : ,

    [13] Marle , C-M. : Mesures et Probabilites , Hermann , Paris.

    [14] Lang , S. : Real Analysis , Addison-Wesley.

    [15] Schwartz , L. : Radon Measures , Oxford.

    [16] Vakhania N.N - Taieladge V.I - Chobanyan S.A. : Probability Distributionson Banach Spaces , D. Reidel Publishing Company.

    [17] Malliavin , P. : Integration and Probability , Springer-Verlag.

    [18] Bourbaki , N. : Elements de Mathematique , Integration , Chapitre IX ,Paris 1969.

    141

  • [19] Neveu , J. : Calcul de Probabilites , Paris 1970

    [20] Rao , M.M : Measure Theory and integration, 2nd ed. Marcel-Dekker 2004.

    [21] Rudin , W. : Functional Analysis , McGraw-Hill 1973.

    [22] Jacobs , K. : Measure and Integral , Academic Press 1978.

    142