471
Μιχάλης Παπαδημητράκης Ανάλυση Πραγματικές Συναρτήσεις μιας Μεταβλητής Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης

Ανάλυση - math.uoc.grpapadim/analysis.pdf · Foundations of Analysis, E. Landau. Principles of Mathematical Analysis, W. Rudin. A Course of Higher Mathematics, V. Smirnov

  • Upload
    lydang

  • View
    230

  • Download
    0

Embed Size (px)

Citation preview

  • , - .

    i

  • ii

  • .

    . () , , , . , , . .

    / . , , , , . .

    , , , . , , Bolzano - Weierstrass , , .

    ; - . , , , - , , . , , , . .

    .

    1. , , - - : - , , . . , , . , Supremum: - .2. . , n n 2.2, 2.3. , 3.5, 3.6.3. , , 10 . , , - .

    iii

  • 4. Riemann , , Darboux . , Riemann . Riemann , Darboux - Darboux Riemann.5. . , -. , (, ), .6. , , ). , ( , Jensen, , Riemann , -, ) . : . .6. Peano. , , . Foundations of Analysis E.Landau . () () Dedekind. , , Cauchy , ., , : , .7. . , Cauchy .8, , , , , . : - , , - .

    , , :Mathematical Analysis, T. Apostol.Differential and Integral Calculus, R. Courant.The Theory of Functions of Real Variables, L. Graves.

    iv

  • Foundations of Analysis, E. Landau.Principles of Mathematical Analysis, W. Rudin.A Course of Higher Mathematics, V. Smirnov.Calculus, M. Spivak.The Theory of Functions, E. C. Titchmarsh.

    , , Calculus, T. Apostol.Introduction to Calculus and Analysis, R. Courant - F. John., , , . (http://users.uoa.gr/apgiannop/). , . - . - . .

    , , ., , , .

    2011.

    v

  • vi

  • I : . 1

    1 . 31.1 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    1.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 91.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . 13

    1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.5 Supremum infimum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    2 . 272.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    2.1.1 , , . . . . . . . . . . . 272.1.2 n N . n N. . . . . . 29

    2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.4 . . . . . . . . . . . . . . . . . . . . . . . . . 382.5 . e, . . . . . . . . . . . . . . . . . . . . . . . . . 512.6 Supremum, infimum . . . . . . . . . . . . . . . . . . . . . . . . . . . 602.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672.9 limsup liminf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    3 . 773.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 773.1.2 . . . . . . . . . . . . . 82

    3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923.2.3 , , . . . . . . . . . . . . . . . . . . . . . 94

    3.3 . . . . . . . . . . . . . . . . . . . . . . . . 963.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    3.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    vii

  • 3.5.3 . . . . . . . . . . . . . . . . . . . . . 1123.5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163.7 Cauchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    4 . 1214.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1214.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 1334.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1364.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 1454.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    II : . 157

    5 . 1595.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    5.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1615.1.3 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    5.2 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1675.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1695.4 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1765.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1785.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

    5.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1845.6.2 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 1905.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1925.7.2 . . . . . . . . . . . . . . . . . . . . . . . . . 1925.7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1975.7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1975.7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

    5.8 . . . . . . . . . . . . . . . . . . . . . . . . . 2045.8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2045.8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    5.9 , . . . . . . . . . . . . . . . . . . . . . . . . . 2125.9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2125.9.2 . . . . . . . . . . . 215

    5.10 Taylor, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

    6 Riemann. 2236.1 Darboux. . . . . . . . . . . . . . . . . . . . . . . . . . 2236.2 . Darboux. . . . . . . . . . . . . . . . . . . . . . . . . 228

    6.2.1 . . . . . . . . . . . . . . . . . . . . . . 228

    viii

  • 6.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2326.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2356.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2376.5 . Riemann. . . . . . . . . . . . . . . . . . . . . . . . . 254

    7 . 2617.1 , . . . . . . . . . . . . . . . . . . . . . . . . 261

    7.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2617.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

    7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2677.3 . . . . . . . . . . . . . . . . . . . . . . . . . 272

    7.3.1 . . . . . . . . . . . . . . . 2727.3.2 . . . . . . . . . . . 2747.3.3 . . . . . . . . . . . . . . . . . . . . . . 2757.3.4 . . . . . . . . . . . . . . . . 2807.3.5 . . . . . . . . . . . . . . 285

    7.4 Taylor, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2927.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

    7.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2937.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . 2957.5.3 . . . . . . . . . . . . . . . . . . . 2967.5.4 Jensen. . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

    III : . 299

    8 . 3018.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3018.2 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3068.3 p- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3118.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

    8.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3178.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3188.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

    8.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3248.5.1 . . . . . . . . . . . . . . . . . . . . . . . 3248.5.2 Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3298.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

    9 . 3379.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3379.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3399.3 Weierstrass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

    10 . 35510.1 . . . . . . . . . . . . . . . . . . . . . . . 35510.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36110.3 Taylor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37410.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

    ix

  • 10.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 38110.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 384

    11 . 38711.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38711.2 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39511.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

    11.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39811.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

    11.4 . . . . . . . . . . . . . . . . . . . . . . . 40211.4.1 . . . . . . . . . . . . . . . . . . . . . 40211.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 40511.4.3 . . . . . . . . . . . . . . . . . . . 407

    11.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

    IV . 417

    12 . 41912.1 Peano. . . . . . . . . . . . . . . . . . . . . . . . 419

    12.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41912.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42212.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

    12.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42512.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42512.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42612.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42812.2.4 . . . . . . . . . . . . . . . . . . . . . . . 430

    12.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43112.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43212.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43312.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43512.3.4 R+ . . . . . . . . . . . . . . . . . . . . . . . . . 43712.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . 438

    12.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44112.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44112.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44212.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44312.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44412.4.5 R. . . . . . . . . . . . . . . . . . . . . . . . . . 444

    12.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44512.5.1 Cauchy. . . . . . . . . . . . . . . . . . . . . . 44512.5.2 . . . . . . . . . . . . . . . . . . 446

    12.6 : R N. . . . . . . . . . . . . . . . . . . . . 44712.6.1 R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44712.6.2 R. . . . . . . . . . . . . . . . . . . . . . . . . . 44812.6.3 , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

    x

  • I

    : .

    1

  • 2

  • 1

    .

    1.1 R . R. ,

    , , N, Z Q. R, .

    R , . .

    . R = R {,+}

    R. +, ,.

    R. , . ( ) ( ) . , : (+) + (+) = +. , , : (+)(+) . , ( ) , , : (+)0 , , . .

    . , + , +. :

    < x, x < +, < +.

    (+) = , () = + .

    3

  • (+) + x = +, x+ (+) = +, (+) + (+) = +,

    () + x = , x+ () = , () + () = .

    , (+) + (), () + (+)

    .

    (+) x = +, x () = +, (+) () = +,

    () x = , x (+) = , () (+) = .

    (+) (+), () ()

    .

    ()x = , x() = (x > 0),

    ()x = , x() = (x < 0),

    ()() = + , ()() = .

    ()0, 0()

    .

    1

    += 0,

    1

    = 0.

    1

    0

    . .

    x

    = (x > 0), x

    = (x < 0), x

    = 0.

    x

    0,

    0

    ,

    ,

    . x0= x1

    0

    10.

    0= ()1

    0 1

    0. = ()

    1 = ()0

    = ()1 = ()0 .

    ,

    |+| = +, | | = +.

    4

  • . 1. , , - (a, u, x,m, n, , ) (M,S ) , R. , , , , R. , . : a R, (a,+], A R, A [, 3].2. N = {1, 2, 3, . . . }. , 0 .

    .

    1. - ( ) ( ) ( ) .

    2. R R . , (, , ) R R , : . : (xy)z =x(yz) x, y, z R , xy, yz, (xy)z, x(yz).

    3. x y < 0 z w < 0, 0 < yw xz.

    4. (i) x y, z w, t s x+ z+ t = y+w+ s, x = y, z = w t = s.(ii) 0 < x y, 0 < z w, 0 < t s xzt = yws, x = y, z = w t = s.

    5. (i) |x| a a x a.(ii) |x| < a a < x < a.(iii) :

    |x| |y| |x y| |x|+ |y|.(iv) |x+ y| = |x|+ |y| x, y 0 x, y 0.(v) |x+y+z| |x|+ |y|+ |z|. , |x+y+z| = |x|+ |y|+ |z| x, y, z 0 x, y, z 0.

    6. , a x b a y b, |x y| b a.

    7. (i) x : |x+1| > 2, |x 1| < |x+1|,xx+2

    > x+33x+1

    , (x 2)2 4, |x2 7x| > x2 7x, (x1)(x+4)(x7)(x+5) > 0,

    (x1)(x3)(x2)2 0.

    (ii) x x : (, 3], (2,+),(3, 7), (,2) (1, 4) (7,+), [2, 4] [6,+), [1, 4) (4, 8], (,2] [1, 4) [7,+).

    1.2 . R, .

    , , :

    5

  • , , . , A,B - A B, : , .

    . - A,B a b a A, b B. a b a A, b B.

    R . , 1.5 Q .

    1.1 .

    1.1. b n N n > b.

    . - - b n b n N.

    B = {b |n b n N}

    . , n b n N, b B. ,

    n b (n N, b B).

    1 < , 1 B. n N n > 1 , ,n+ 1 > . , n+ 1 N.

    , , 0.

    . a > 0 n N 1n< a .

    . 1.1 b = 1a.

    1.1 .

    1.1. x k Z k x < k + 1.

    . 1.1 n N n > x m N m > x. l = m,

    l < x < n.

    l, n . , k Z, k x k + 1 x. l x, k x k Z, k l. , , n > l n > x. , , k Z k x k + 1 > x,

    k x < k + 1.

    k k x < k + 1 .

    k x < k + 1, k x < k + 1

    6

  • k, k Z. k < k + 1, k < k + 1,

    1 < k k < 1.

    k k Z, k k = 0,

    k = k.

    . k Z k x < k + 1, 1.1, x [x].

    , [x] x < [x] + 1, [x] Z.

    Q . , , .

    . a, b, a < b r Q a < r < b.

    . 1.1, n N

    n > 1ba .

    m = [na] + 1.

    na < [na] + 1 = m na+ 1 < nb

    , , a < mn< b. r = m

    n a < r < b.

    , , . -, , , : () . .

    .

    1. (i) a > 0, a 0.: a > 0. > 0 < a.(ii) a b+ > 0, a b.(iii) |a b| > 0, a = b.

    2. [a, b) (a,+) .

    3. A = (, 0], B = [0,+) : a b a A, b B. A = (, 0], B = (0,+), A = (4,2), B = (2,+) A = (, 0), B = [1, 13].

    7

  • 4. - A,B AB = , AB = R a b a A, b B. A = (, ), B = [,+) A = (, ], B = (,+).

    5. (i) - A,B a b a A, b B > 0 a A, b B b a . a b a A, b B.(ii) - A,B 0 < a b a A, b B > 0 a A, b B b

    a 1 + .

    a b a A, b B.

    6. (i) a 1n n N, a 0.

    (ii) a b+ 1n n N, a b.

    (iii) |a b| 1n n N, a = b.

    1: 1 R .

    7. A = { 1n|n N}, B = { 1

    n|n N}

    a b a A, b B. A = {r Q | r < 0}, B = {r Q | r > 0}.

    8. (i) x a x < b, b a.(ii) r a r Q, r < b, b a.(iii) {r Q | r > a} = {r Q | r > b}, a = b.(iv) {r Q | r < a} {r Q | r > b} = , a b.(v) {r Q | r a} {r Q | r b} = Q, b a.

    9. (i) , , . 6= 0 .(ii) , , .

    10. (i) [b] n Z n > b.(ii) [b] n Z n b.(iii) [b] n N n > b.(iv) [b] n N n b.(v) a > 0, [ 1

    a] n N 1

    n< a.

    11. k Z, [x+ k] = [x] + k.

    12. [x+ y] = [x] + [y] [x+ y] = [x] + [y] + 1. [x+ y + z].

    13. [x] + [x+ 1n] + + [x+ n2

    n] + [x+ n1

    n] = [nx] n N, n 2.

    14. k N, a < b. ba, r (a, b) r = m

    n, m,n Z, 1 n k.

    8

  • 1.3 .1.3.1 .

    . , n N, an a n :an = a a (n N),

    n a., a 6= 0, n Z, n < 0, a0 , an :

    a0 = 1, an =1

    an=

    1

    a a(a 6= 0, n Z, n < 0),

    |n| = n a.

    00

    ., n Z , (a)n = an , n Z ,

    (a)n = an . , n Z , an > 0 a 6= 0. n Z , an > 0, a > 0, an < 0, a < 0.

    1.2 . ! 1.2. (1) :axbx = (ab)x , axay = ax+y , (ax)y = (ay)x = axy .(2) 0 < a < b, (i) ax < bx , x > 0, (ii) a0 = b0 = 1, (iii) ax > bx , x < 0.(3) x < y, (i) ax < ay , a > 1, (ii) 1x = 1y = 1, (iii) ax > ay , 0 < a < 1.

    . (1) : x > 0,

    axbx = (a a)(b b) = (ab) (ab) = (ab)x . x > 0. : x, y > 0,

    axay = (a a)(a a) = a a = ax+y . x, y > 0. : x, y > 0,

    (ax)y = ax ax = (a a) (a a) = a a = axy . x, y > 0 (ay)x = axy (ax)y = axy x, y.(2) (i) a < b x ,

    ax = a a < b b = bx . (iii) (i) (ii) .(3) (i) 1 < a y x ,

    ax = (a a)(1 1) < (a a)(a a) = ay . (iii) (i) (ii) .

    . - , 1.2, , R . , , 1.2 .

    9

  • 1.3.2 .

    , 1 6 1.2. .

    Bernoulli. a 1,

    (1 + a)n 1 + na

    n N. a > 1, a 6= 0 a = 1, n 2, .

    . .

    1.2 , n , a 0 xn = a - .

    1.2. n N, a 0 x 0 xn = a.

    . a = 0, , , xn = a 0. a > 0. 0 n = a, , , > 0.

    Y = {y | y > 0, yn a}, Z = {z | z > 0, zn a}.

    y0 = min{a, 1}, z0 = max{a, 1}.

    y0 Y z0 Z , Y, Z . y Y ,z Z yn a zn, yn zn , y, z > 0, y z. ,

    y z (y Y, z Z).

    n = a. 0 < < . < , Z. 0 ( )n < a. ,

    ( )n < a. Bernoulli

    an>

    (1

    )n 1 n ,

    nann1

    < .

    > 0, < , > 0.

    nann1

    0,

    n a.

    > 0. + > , + Y . + 0 ( + )n > a. ,

    ( + )n > a.

    10

  • Bernoulli

    n

    a>

    (+

    )n=

    (1

    +

    )n 1 n +

    ,

    anna

    < +

    <

    , ,(an)na

    < .

    > 0, (an)na

    0, ,

    n a. n a n a

    n = a.

    xn = a. 1, 2 > 0, 1n = a 2n = a, 1n = 2n , 1 = 2 .

    1.2 4.4.

    . n N, a 0, - xn = a, 1.2, n- a

    na (a 0, n N).

    , n0 = 0 n

    a > 0, a > 0.

    1.2 - xn = a. 1.3 ; , 1.2, .

    1.3. n N , xn = a , na

    na , a > 0, , n

    0 = 0, a = 0, , a < 0.

    n N , xn = a , na , a > 0,

    n0 = 0, a = 0, n

    a , a < 0.

    - - . .

    1.4. n, k. nk k n-

    .

    . k n- , m N

    k = mn .

    nk = m

    , , ., n

    k .

    nk = m

    l,

    11

  • m, l N - - m, l > 1. - - l > 1, p l. l,m > 1, p m. k = mn

    ln,

    lnk = mn .

    p l, lnk , , mn . , , . p mn = m m, m . l = 1,

    k = rn = mn

    n- .

    , , R . 1.2 , , .

    1.5. R \Q .

    . 2 , 1.4 2

    .

    , , , Q : 2. 1.2 Q: , x2 = 2 Q.

    , , , : , , .

    . a, b, a < b x R \Q a < x < b.

    . a+2 < b+

    2, r Q a+

    2 < r < b+

    2 . (r

    2) R\Q

    a < r 2 < b.

    1.3.3 .

    1.1. a > 0, m, k Z, n, l N mn= k

    l. ( n

    a)m = ( l

    a)k .

    .

    (( na)m)nl = ( n

    a)mnl = (( n

    a)n)ml = aml , (( l

    a)k)nl = ( l

    a)knl = (( l

    a)l)kn = akn .

    ml = kn, aml = akn , (( na)m)nl = (( l

    a)k)nl . , ( n

    a)m > 0

    ( la)k > 0, ( n

    a)m = ( l

    a)k .

    . , a > 0, r Q. m Z, n N r = mn.

    , 1.1, ( na)m . ,

    ar = ( na)m (a > 0, r = m

    n,m Z, n N).

    , r Q, r > 0,

    0r = 0 (r Q, r > 0).

    12

  • , 0r , 0r = ( n0)m r = m

    n, m,n N. ,

    n N a 1n = na (a 0, n N). , ar ,

    ar > 0 a > 0, r Q.

    1.2 . . x = m

    n y = k

    l, m, k Z, n, l N.

    (ax)n = am :

    (ax)n = (( na)m)n = (( n

    a)n)m = am .

    (1) : a, b > 0.

    (axbx)n = (ax)n(bx)n = ambm = (ab)m = ((ab)x)n

    , axbx > 0 (ab)x > 0, axbx = (ab)x . a = 0 b = 0 . : x+ y = ml+kn

    nl. a > 0.

    (axay)nl = (ax)nl(ay)nl = ((ax)n)l((ay)l)n = (am)l(ak)n = amlakn = aml+kn = (ax+y)nl

    , axay > 0 ax+y > 0, axay = ax+y . a = 0 . : xy = mk

    nl. a > 0.

    ((ax)y)nl = (((ax)y)l)n = ((ax)k)n = ((ax)n)k = (am)k = amk = (axy)nl

    , (ax)y > 0 axy > 0, (ax)y = axy . (ay)x = axy (ax)y = axy x, y. a = 0 .(2) (i) x > 0, m > 0.

    (ax)n = am < bm = (bx)n

    , ax > 0 bx > 0, ax < bx . (iii) (i) (ii) .(3) (i)

    (ax)nl = ((ax)n)l = (am)l = aml , (ay)nl = ((ay)l)n = (ak)n = akn .

    x < y n, l > 0, ml < kn. aml < akn , (ax)nl < (ay)nl . ax > 0 ay > 0, ax < ay . (iii) (i) (ii) .

    1.3.4 .

    a > 1. r, s, t Q, s < r < t as < ar < at . , s, t Q, x R \ Q, s < x < t as < ax < at . as , at ax . , ax : as < ax < at s, t Q, s < x < t.

    1.2. a > 1.(1) b > 1 n N bn > a.(2) b a 1n n N, b 1.

    13

  • . (1) n N n > a1

    b1 .

    , Bernoulli,

    bn = (1 + b 1)n 1 + n(b 1) > a.

    (2) (1).

    1.3. (1) a > 1, x R \ Q. as < < at s, t Q, s < x < t.(2) a > 1, x Q. as < < at s, t Q, s < x < t ax .

    . (1) x R \Q.

    S = {as | s Q, s < x}, T = {at | t Q, t > x}.

    S, T , s, t Q s < x < t. , S T . , s < x < t s < t , a > 1, s, t Q, as < at . S, T ,

    as at (s, t Q, s < x < t).

    as < < at . , , s, t Q

    s < s < x < t < t,

    as < as

    at < at

    , ,as < < at (s, t Q, s < x < t).

    (2) x Q. = ax , as < < at s, t Q, s < x < t. , (1) (2), . 1, 2 as < 1 < at as < 2 < at s, t Q, s < x < t.

    21< ats , 1

    2< ats

    s, t Q, s < x < t. , n N s, t Q

    x 12n< s < x < t < x+ 1

    2n.

    t s < 1n, ,

    21< a

    1n , 1

    2< a

    1n .

    n N, 1.2 21

    1, 12

    1.

    1 = 2 .

    14

  • . a > 1, x R \Q, ax 1.3.

    ax = (a > 1, x R \Q).

    , , ax as < ax < at s, t Q,s < x < t . 1.3, a > 1, x Q ax .

    9 1.5 ax , a > 1 x R \Q.

    . a = 1, x R \Q,

    1x = 1 (x R \Q).

    0 < a < 1, x R \Q, 1a> 1, ( 1

    a)x .

    ax =1

    (1/a)x(0 < a < 1, x R \Q).

    , x R \Q, x > 0,

    0x = 0 (x R \Q, x > 0).

    , , ax a > 0, a = 0, x > 0 a < 0, x Z. , ax a = 0, x 0 a < 0, x R \ Z.

    . 4.3 - ax a < 0 x .

    ax . a > 0. x Q, ax > 0. x R \ Q, , ax , ax > as s Q, s < x,, as > 0, ax > 0. ax > 0 a > 0 x.

    1.3. (1) s, t Q, s < x + y < t. s, s, t, t Q s < x < t,s < y < t , s = s + s , t = t + t.(2) x, y > 0, s, t Q, 0 < s < xy < t. s, s, t, t Q 0 < s < x < t,0 < s < y < t , s = ss , t = tt.

    . (1) , s Q

    s y < s < x

    s = s s Q.

    s < x, s = s + s s = s s < y. , t Q

    x < t < t y

    t = t t Q.

    15

  • x < t, t = t + t y < t t = t.(2) s Q

    sy< s < x

    s = s

    s Q.

    s < x, s = ss s = ss< y. , t Q

    x < t < ty

    t = t

    t Q.

    x < t, t = tt y < tt= t.

    1.2 . - .(1) : a, b > 1. s, t Q, s < x < t as < ax < at bs < bx < bt ,

    (ab)s = asbs < axbx < atbt = (ab)t .

    axbx (ab)s , (ab)t s, t Q, s < x < t, (ab)x

    axbx = (ab)x .

    - - a, b > 1. : a > 1. s, t Q, s < x+ y < t , 1.3, s, s, t, t Q s < x < t, s < y < t , s = s + s , t = t + t . as < ax < at

    as < ay < at , ,

    as = asas

    < axay < at

    at

    = at .

    axay as , at s, t Q, s < x + y < t, ax+y

    axay = ax+y .

    a > 1. : a > 1, x, y > 0. s, t Q, s < xy < t s1 Q s1 s, 0 < s1 < xy < t. 1.3, s, s, t, t Q 0 < s < x < t, 0 < s < y < t , s1 = ss , t = tt. 1 < as

    < ax < at

    , ,

    as as1 = (as)s < (ax)s < (ax)y < (ax)t < (at)t = at .

    (ax)y as , at s, t Q, s < xy < t, axy

    (ax)y = axy .

    a > 1, x, y > 0 (ay)x = axy (ax)y = axy x, y.(2) (i) s Q 0 < s < x, , 1 < b

    a,

    1 < ( ba)s < ( b

    a)x .

    16

  • ,ax < ax( b

    a)x = (a b

    a)x = bx .

    (ii) (iii) (i).(3) (i) r Q x < r < y, ax < ar < ay . (ii) (iii) (i).

    (2) 1.2 ax a (0,+), x > 0, 1 (0,+), x = 0, (0,+), x < 0. (3) 1.2 ax x (,+), a > 1, 1 (,+), a = 1, (,+), 0 < a < 1. ax a [0,+), x > 0.

    . , ,

    a+ = 0 (0 a < 1), a+ = + (a > 1),a = + (0 < a < 1), a = 0 (a > 1),

    (+)b = + (b > 0 b = +), (+)b = 0 (b < 0 b = ),

    , 00 ,

    1 , (+)0 , 0

    .

    .

    1. Bernoulli 1.3. 1.2, .

    2. S = {s Q | s

    2}.

    S, T Q s t s S , t T . Q s t s S , t T . Q .

    3. - ( ) - ( ) ( ) 1 . .

    4. (i) a 2 > 0, a 0.(ii) a 1 + + 2 > 0, a 1.

    5. 0 < a < 1. ax at < < as s, t Q,s < x < t.

    6. n N (1 + a)n 1 + na + n(n1)2

    a2 a 0 (1 + a)n 1 + na+ n(n1)

    2a2 + n(n1)(n2)

    6a3 a 1. .

    17

  • 7. n N , xn < yn x < y. n N , xn < yn |x| < |y|.

    8. , n N, n 2,

    xn yn = (x y)(xn1 + xn2y + + xyn2 + yn1)

    , n N, n 3 ,

    xn + yn = (x+ y)(xn1 xn2y + xyn2 + yn1).

    9. x, y 0, x2+xy+y2 > 0 x4+x3y+x2y2+xy3+y4 >0. ; x3 + x2y + xy2 + y3 > 0 x5 + x4y + x3y2 + x2y3 + xy4 + y5 > 0; ;

    10. n N n! = 1 2 n 0! = 1.

    (nm

    )= n!

    m!(nm)! m,n Z, 0 m n.(i)

    (nm

    ) n Z, n m (

    nm

    ) m Z, 0 m n.

    (ii) (nm

    )+(

    nm1

    )=

    (n+1m

    ) m,n Z, 1 m n.

    (iii) Newton: x, y n N

    (x+ y)n =

    (n

    0

    )xn +

    (n

    1

    )xn1y + +

    (n

    n 1

    )xyn1 +

    (n

    n

    )yn =

    nk=0

    (n

    k

    )xnkyk .

    : .(iv) n N

    nk=0

    (nk

    )= 2n ,

    nk=0

    (nk

    )(1)k = 0.

    11. , :(i) n

    a nb = n

    ab n

    ma = m

    na = nm

    a, a 0, n,m N.

    (ii) na < n

    b , n N, 0 a < b.

    12. n N , nan = |a|.

    13. na+ b n

    a + n

    b n N, n 2, a, b 0.

    na+ b = n

    a+ n

    b a = 0 b = 0.

    14. 3 , 7

    129 ,

    2 + 3

    5 3

    2 +

    5 .

    15. 105105 106

    106 .

    1.4 . 1.4 , a > 0, a 6= 1, y > 0 ax = y

    .

    1.4. a > 0, a 6= 1. y > 0 x ax = y.

    18

  • . a > 1, y 1.

    U = {u | au y}, V = {v | av y}., 0 U . , 1.2, n N an > y , ,n V . U, V . u U , v V au y av , au av , a > 1, u v. U, V ,

    u v (u U, v V ). a = y. n N. 1

    n< , 1

    n V .

    a1n < y.

    , < + 1n, + 1

    n U .

    y < a+1n .

    ya< a

    1n , a

    y< a

    1n

    n N , 1.2,ya

    1, ay 1.

    a = y.

    : a > 1, 0 < y < 1, , 1

    y> 1, a = 1

    y, , =

    a = a = y. 0 < a < 1, , 1

    a> 1, ( 1

    a) = y, =

    a = a = y., ax = y . a1 = y, a2 = y, a1 = a2 , 1 = 2 .

    , a > 0, a 6= 1, ax loga y .

    . y > 0 a > 0, a 6= 1, ax = y, 1.4, y a

    loga y.

    y 0 a > 0, a 6= 1, ax = y . 9 1.5 loga y. 1.6 .

    1.6. a, b > 0, a, b 6= 1.(1) loga(yz) = loga y + loga z y, z > 0.(2) loga

    yz= loga y loga z y, z > 0.

    (3) loga(yz) = z loga y y > 0 z.(4) logb y =

    loga yloga b

    y > 0.(5) loga 1 = 0, loga a = 1.(6) 0 < y < z. (i) loga y < loga z, a > 1, (ii) loga y > loga z, 0 < a < 1.

    19

  • . (1) x = loga y, w = loga z, ax = y, aw = z. ax+w = axaw = yz, loga(yz) = x+ w = loga y + loga z.(2) loga

    yz+ loga z = loga(

    yzz) = loga y, loga

    yz= loga y loga z.

    (3) x = loga y, ax = y. azx = (ax)z = yz , , loga(yz) = zx =z loga y.(4) x = logb y, w = loga b, bx = y, aw = b. awx = (aw)x = bx = y. loga y = wx = loga b logb y.(5) loga 1 = 0 a0 = 1 loga a = 1 a1 = a.(6) x = loga y, w = loga z, y = ax , z = aw . ax < aw , a > 1, x < w , 0 < a < 1, x > w.

    (6) 1.6 loga y (0,+), a > 1, (0,+), 0 < a < 1.

    .

    1. ax = y a 0, a = 1, y 0;

    2. log2 3 log3 5 log5 7 log7 10 log10 8.

    3. log2 3 ;

    4. a > 0, a 6= 1. log 1ay = loga y y > 0.

    5. a > 0, a 6= 1. logaz(yz) = loga y y > 0 z 6= 0.

    1.5 Supremum infimum.. - A. A u u a a A , , A (, u]. u A. , A l l a a A , , A [l,+). l A. , A , l, u A [l, u].

    u A, u u , , A , l A, l l A.

    . (1) [a, b] u b . (a, b], [a, b), (a, b), (, b], (, b). : , b.(2) [a, b], (a, b], [a, b), (a, b), (a,+), [a,+) l a . : , a.(3) , (a,+), [a,+), (,+) (, b), (, b], (,+) .(4) N , 1 , N l 1 . , 1 N. , 1.1 , , N :

    20

  • u N u n N n > u. , N !!!

    1.5. - A.(1) A , A .(2) A , A .

    . (1)

    U = {u |u A}.

    U A. , a u a A, u U . ,

    a u (a A, u U).

    a a A, A. u u U , A.(2) : U , L = {l | l A}.

    . -, A supremum A

    supA.

    -, A infimum A

    infA.

    . [a, b], (a, b), (a, b], [a, b) (, b], (, b) supremum, b. , [a, b], (a, b), (a, b], [a, b), (a,+), [a,+) infimum, a.

    . , , A maximum A

    maxA.

    , , , A minimum A

    minA

    1.7. (1) maxA, supA = maxA.(2) minA, infA = minA.

    . (1) maxA A. A maxA, maxA A.(2) .

    21

  • . (1) A = {0} [2, 3] {4} minA = 0 maxA = 4. infA = 0 supA = 4.(2) minN = 1, infN = 1.(3) A = { 1

    n|n N} = {1, 1

    2, 13, 14, . . . } maxA = 1, supA = 1. A

    . infA., l 0 A. l > 0, , , n N 1

    n< l, l A.

    A - , A 0. , infA = 0.

    . - A ,

    supA = +.

    , - A ,

    infA = .

    . A , . , + , , , , , A.

    . N , supN = +.

    . , supA, , +. , , supA = u ( ) supA u, supA = u R . infA.

    1.8. - A supremum infimum

    infA supA.

    . - A , , 1.5, supA . A , , , supA = +. , - A , infA , , A , infA = ., a A.

    infA a supA, infA supA.

    . A , infA, supA , , infA = supA. A , infA < supA.

    1.9 , , supremum infimum.

    1.9. - A.(1) a supA a A. , u < supA a A a > u ,, u < a supA.(2) a infA a A. , l > infA a A a < l ,, infA a < l.

    22

  • . (1) A , supA ( ) A, a supA a A. A , supA = + , , a supA a A., u < supA. supA A, u A, a A a > u.(2) .

    1.5 .

    Supremum. -, .

    , Supremum . -, 1.10 Supremum. Supremum .

    1.10. -, . .

    . A,B - a b a A, b B., b B A , B , A . A , supA. supA A,

    a supA

    a A. b B A supA A,

    supA b

    b B. , = supA,

    a b

    a A, b B.

    , , Infimum, -, . 1.5 . 1.10, Infimum . 15.

    . , - - .

    A . A : x1, x2 A, x1 < x2 x x1 < x < x2 x A. : . 1.11 , - R, .

    1.11. - A : x1, x2 A, x1 < x2 x x1 < x < x2 x A. A .

    23

  • . u = supA, l = infA,

    l u +. , ,

    A [l, u].

    x (l, u). x A, x1, x2 A,

    x1 < x < x2 .

    , x A. ,

    (l, u) A.

    (l, u) A [l, u]

    : A = (l, u), A = [l, u], A = (l, u] A = [l, u). A .

    .

    1. 1.5 1.7 1.9.

    2. max{x, y} = x+y+|xy|2

    min{x, y} = x+y|xy|2

    .

    3. (i) t x, t y t z t min{x, y, z}.(ii) t x, t y t z t max{x, y, z}.

    4. (a,+), (a, b), (a, b] l a;

    5. (i) infima suprema {1, 0, 2, 5}, [1, 5], (1, 5), (1, 0] (2, 5]. -;(ii) infA = infB supA = supB. A = B;

    6. infima suprema {(1)nn |n N}, {1+(1)n

    2n+ 1(1)

    n

    2n |n N},

    {(1)n + 1n|n N}, {n(1)

    n(n1)2n

    |n N}, { 1n+ 1

    m|n,m N}, { 1

    n 1

    m|n,m N},

    {x + y | 0 < y < 1, 4 < x < 5}, {x y | 0 < y < 1, 4 < x < 5},+n=1[2n 1, 2n],+

    n=1[12n, 12n1 ].

    7. - A. A, : supA = +, supA < +.

    8. a < b A = {r Q | a < r < b}. infA supA.

    9. (i) a > 1, sup{as | s Q, s < x} = ax = inf{at | t Q, t > x}. - - ax x. a = 1 0 < a < 1;(ii) y > 0, a > 1, sup{u | au y} = loga y = inf{v | av y}. - - loga y. 0 < a < 1;

    24

  • 10. A = [0, 2], A = [0, 2), A = [0, 1] {2} 1.9, , , . - A u = supA.(i) A (u , u] 6= > 0;(ii) A (u , u) 6= > 0; , , u / A; l = infA.

    11. - A.(i) supA u a u a A.(ii) u supA < u a A, a > . infA.

    12. - A,B.(i) supA infB a b a A, b B.(ii) a b a A, b B. a b a A, b B.(iii) a b a A, b B > 0 a A,b B b a . supA = infB. (i) 5 1.2.

    13. - A,B, A B. infB infA supA supB.: supB B, A.

    14. - A,B. A supA supB a A < a b B, b > .

    15. Infimum.

    16. - A,B. sup(AB) = max{supA, supB} inf(AB) =min{infA, infB}.

    17. (i) - A A = {a | a A}. sup(A) = infA inf(A) = supA.(ii) - A,B A + B = {a + b | a A, b B}. sup(A+B) = supA+ supB inf(A+B) = infA+ infB.(iii) - A,B (0,+) A B = {ab | a A, b B}. inf(A B) = infA infB sup(A B) = supA supB.

    18. ; , inf , sup ; inf sup ;

    25

  • 26

  • 2

    .

    2.1 .2.1.1 , , .

    . ( )

    x : N R

    N . n N x(n) , , xn . ,

    xn = x(n) (n N).

    , : x1 , x2 , x3 . , / . xn+1 xn xn1 xn . n, - N, . x : N R

    (x1, x2, . . . , xn, . . . ), (xn), (xn)+n=1 .

    , , , x, n, : (yn), (xk), (zm) .

    . (1) ( 1n) (1, 1

    2, 13, . . . , 1

    n, . . . ).

    (2) (n) (1, 2, 3, 4, . . . , n, . . . ).(3) (1) (1, 1, 1, . . . , 1, . . . ).(4) ((1)n1) (1,1, 1,1, . . . , 1,1, . . . ).(5)

    (1

    10n

    ) ( 1

    10, 1102

    , 1103

    , . . . , 110n

    , . . . ).(6) n- n, (1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, . . . ).(7) (m n)+n=1 (m 1,m 2,m 3, . . . ,m n, . . . ).(8) (m n)+m=1 (1 n, 2 n, 3 n, . . . ,m n, . . . ). (xn)+n=1 , (xn), - - .

    27

  • : . , , . (1)+n=1 {1} . , , (1, 1, 1, . . . ). , . , . , (1,1, 1,1, 1,1, . . . ),(1, 1,1, 1, 1,1, 1, 1,1, . . . ) {1, 1}. : (1, 1

    2, 13, 14, 15, 16, . . . ), (1

    2, 1, 1

    4, 13, 16, 15, . . . )

    {1, 12, 13, 14, 15, 16, . . . } = { 1

    n|n N}.

    . (xn) xn+1 xn n N, xn+1 > xn n N, xn+1 xn n N, xn+1 < xn n N. (xn) , . (xn) , c xn = c n N.

    , . , , . .

    . (xn) , u xn u n N. u (xn). (xn) , l xn l n N. l (xn). (xn) , l, u l xn u n N.

    , u (xn), u u , l (xn), l l .

    . (1) (c) .(2) ( 1

    n),( (1)n1

    n

    ), (n1

    n), ((1)n1)

    [1, 1].(3)

    ( (1+(1)n1)n2

    ) (1, 0, 3, 0, 5, 0, 7, 0, . . . ) -

    . , l 0 . - - u . (1+(1)

    n1)n2

    u n N,, n = 2k 1, 2k 1 u k N. k u+1

    2

    k N. .(4) (1, 0,3, 0,5, 0,7, 0, . . . ), , . l , l, l, .(5) ((1)n1n) (1,2, 3,4, 5,6, . . . ) -. , u l , , (1)n1n u n N l (1)n1n n N. , n N,.

    28

  • (xn) , l, u

    l xn u

    n N. M = max{u,l},

    M u M l , , M xn M , ,

    |xn| M

    n N. , (xn) , M |xn| M n N. : M

    |xn| M

    n N, M xn M

    n N, M M (xn). : (xn) M |xn| M n N.

    2.1.2 n N . n N.

    n N. : n 234 4 n n2 n > 8 xn < xn+1 (xn).

    . , , n N n0 N n N, n n0 .

    n (xn) (xn), (xn) , , n N . : xn+1 xn, xn+1 > xn,xn u, xn = c . , (xn) , , , , u, c .

    . (1) (1, 23,2 ,2,1,1,1,1, . . . ) ,

    .(2) (n2 14n + 8) . , n2 14n + 8 =(n 7)2 41 n N n 7 , , .

    n N. n0 N n N, n n0 n0 N, n0 n0 , n N, n n0 .

    , n N. n0, n0 N n N, n n0 n N, n n0 .

    n0 = max{n0, n0} N.

    29

  • n0 n0 , n N, n n0 . , n0 n0 , n N, n n0 . , , n N, n n0 . : , , , .

    . n2 3n 37 n N, n 157+32

    , , n N,n 8. , 2n+1

    n+1> 25

    13 n N, n > 12 , , n N, n 13.

    n2 3n 37 2n+1n+1

    > 2513

    n N, n max{8, 13} = 13.

    , , : , n0 , n0 , , . , , !

    . n N .

    . (1)n1 > 0 n N, n N., (1)n1 0 n N, n N. n N n N .

    n N. n N k N. n N, n k , n N, n > k . k N n N, n > k . , k N n N, n > k . n N, k N n N, n N, n > k . n N. , , : n N k N n N,n > k .

    n N. , n0 N n N, n n0 . n N, 1 n n0 1, n N. , n N. n0 N n N, n n0 , , n N, n n0 . : n N n N.

    , : n N n N .

    .

    1. : 1, 4, 9, 16, 25, 36. : 49; 24; ;

    30

  • 2. (i) (a+b2

    + (1)n1 ab2

    ).

    (ii) m N, (nm[ n

    m])+n=1

    .: m = 1, 2, 3.

    3. (i) , .(ii) .

    4. (xn) (yn) (xn + yn).(i) , , .(ii) , .

    5. ((1)n1n),( (1)n1

    n

    ),(

    18nn2+n+1

    ),(13n

    n!

    ),(n30

    2n

    ),(2[n

    2]),(n 3[n

    3])

    ; ; ;

    6. , , , , .

    7. (xn) . x xn = x n N.

    8. . a, b, p, q, p, q 0. (xn) :

    x1 = a, x2 = b xn+2 = pxn+1 + qxn (n N).

    n- xn . 1: p 6= 0, q = 0. xn = bpn2 n N, n 2. 2: p = 0, q 6= 0. xn = aq

    n12 n N

    xn = bqn22 n N.

    3: p 6= 0, q 6= 0. x2 = px+ q.(i) = p2 +4q > 0, , 1 = p+

    2, 2 = p

    2. ,

    + = a, 1 + 2 = b. xn = 1n1 + 2n1 (n N).(ii) = p2 + 4q = 0, , = p

    2. , = a, + = b.

    xn = n1 + (n 1)n1 (n N).(iii) = p2 + 4q < 0 ( q < 0), , 1 =

    p+i

    2, 2 = pi

    2. =

    q > 0,

    (p2

    )2+(

    2

    )2= 1 , ,

    [0, 2) cos = p2, sin =

    2

    . 1 = (cos +i sin ), 2 = (cos i sin ). 2 cos(2) = p cos + q, 2 sin(2) = p sin . , = a, ( cos + sin ) = b xn = n1 cos((n 1))+n1 sin((n 1)) (n N). n- x1 = x2 = 1 xn+2 = 3xn , xn+2 = xn+1 + xn ,

    31

  • xn+2 = 2xn+1xn , xn+2 = xn+1xn . Fibonnaci 1, 1, 2, 3, 5, 8, 13.

    9. - - (xn) xn+1 = x1 + + xn (n N); xn+3 = xn+2xnxn+1 (n N).

    2.2 .. (xn) x (xn) x x (xn) > 0 n0 N

    |xn x| <

    n N, n n0 . : (xn) x > 0 |xn x| < . (xn) x

    xn x limxn = x limn+

    xn = x.

    (xn) , (xn) .

    : (xn) x n- xn x . : (xn) x n- xn x n .

    . xn x, > 0 n0 N - - n N,n n0 () |xn x| < , , |xn x| < () n N, n n0. :

    (n N, n n0) |xn x| <

    |xn x| < (n N, n n0).

    . (1) ( 1n) 0. 1

    n 0.

    , > 0. n0 N | 1n 0| < n N, n n0 . n N, | 1n 0| <

    1n< n > 1

    .

    :| 1n 0| < 1

    n< n > 1

    .

    1.1 n0 N, n0 > 1 . , n >1

    n0 n N, n n0 . n0 N n N, n n0 n > 1

    , , | 1

    n 0| < . :

    (n N, n n0) n > 1 1n< | 1

    n 0| < .

    - - n0 N.

    32

  • 2.1. a 0, n0 = [a] + 1 n N, n > a. a < 0, n0 = 1 n N, n > a.

    . .

    : n N, n > 3 1, n N, n > 83 3 = [8

    3]+1

    n N, n > 2 3 = 2 + 1 = [2] + 1. .

    n0 = [1] + 1

    n N, n > 1. , n0 N, | 1n 0| < n N,

    n n0 .(2) (c) c.

    c c.

    > 0. n0 N |c c| < n N,n n0 . |c c| < 0 < . , 0 < n N. n0 = 1 N |c c| < n N, n n0 .(3) ((1)n1) , . - - ((1)n1) x. > 0 n0 N |(1)n1 x| < n N, n n0 . , n0 , n N, n n0 . n N,n n0 | 1 x| < n N, n n0 |1 x| < . | 1 x| < x (1 ,1 + ) |1 x| < x (1, 1+). , > 0, x (1 ,1+ ) (1 , 1+ ). , , 0 < 1, , .

    . (xn) + (xn) + + (xn) M > 0 n0 N

    xn > M

    n N, n n0 . : (xn) + M > 0 xn > M . (xn) +

    xn + limxn = + limn+

    xn = + .

    , (xn) (xn) (xn) M > 0 n0 N

    xn < M

    n N, n n0 . : (xn) M > 0 xn < M . (xn)

    xn lim xn = limn+

    xn = .

    33

  • : (xn) + n- xn . : (xn) + n- xn + n . .

    6, 7 8 .

    . (1) (n) +. n +. M > 0. n0 N n > M n N,n n0 . 1.1, n0 N, n0 > M . , n > M n0 n N, n n0 . - -

    n0 = [M ] + 1 N

    , n0 , n > M n N, n n0 .(2) (

    n) +.

    n +.

    M > 0. n0 N n > M n N, n n0.

    M > 0, n > M n > M2. :

    n > M n > M2 .

    n0 N n0 > M2 , , n N, n n0 n > M2, ,

    n > M . :

    (n N, n n0) n > M2 n > M.

    (3) , n < M n < M ,

    : n n .

    (4) ((1)n1n) (1,2, 3,4, 5,6, . . . ) . - - +. M > 0 n0 N (1)n1n > M n N, n n0 . n0 , n N, n n0 . n N, n n0 n > M n N, n n0 n > M . , n > M ,, , ., .

    , , .

    . (1) ( 1n).

    1

    na 0 (a > 0).

    > 0. n0 N | 1na 0| < n N, n n0 . n N, | 1

    na 0| < 1

    na< na > 1

    n > (1

    )1a .

    n0 N n0 > (1)1a , , n N, n n0 n > (1)

    1a

    , , | 1na

    0| < .(2) (n) (

    n).

    na + (a > 0).

    34

  • M > 0. n N, na > M n > M 1a . n0 N n0 > M

    1a , n N, n n0 n > M

    1a , , na > M .

    (3) loga n + (a > 1).

    M > 0. n N, loga n > M n > aM . n0 N n0 > aM , n N, n n0 n > aM , , loga n > M .(4) . (a, a2 , a3 , a4 , . . . ), (an). - : a. a = 1, (1) 1. , a = 0, (0) 0. a 1, (an) a 1, a2 1, a3 1, a4 1, . . . . (an) . , (an) x. > 0 n0 N |an x| < 1 n N, n n0 . x > an 1 0 n N, n n0 x < an + 1 0 n N,n n0 . x > 0 x < 0, . , (an) +. M > 0 n0 N an > M n N, n n0 . n N, n n0 . , (an) . 0 < |a| < 1, (an) 0. > 0. , |an 0| < |a|n < n > log|a| . n0 N n0 > log|a| , , n N, n n0 n > log|a| , , |an 0| < . a > 1, +. M > 0. , an > M n > logaM . n0 N n0 > logaM , , n N, n n0 n > logaM , , an > M .

    an

    +, a > 1 1, a = 1 0, 1 < a < 1 , a 1

    2.4 7 2.5 .

    . - . - 2.3(3) 2.23 - , - .

    . , lim, limn+ - , . , . limn+ xn , , R . , , limn+ xn = x ( ), limn+ xn x, limn+ xn = x R .

    .

    1. , , : limn+ n2n,

    limn+ (1)n8n

    32n, limn+ log3 n, limn+

    (1)n22n3n

    .

    35

  • 2. x limn+ (x+1)2n

    (2x+1)n;

    3. , : 1n+8

    0, 3n+12n+5

    32, 1

    n+5 0,

    n2 7n +, 2n + 2n +, 3+log2 n1+3 log2 n

    13.

    4. (i) 3+(1)n

    2n 0, 3+(1)

    n

    2n> 0 n N

    (3+(1)n2n

    ) .(ii) (3(1)

    n1)n2

    + ((3(1)n1)n

    2

    ) .

    5. (i) xn x. > 0 n0() n0 N |xnx| < n N, n n0 . , 0 < < , n0() n0().(ii) xn +. M > 0 n0(M) n0 N xn > M n N, n n0 . , M > M > 0, n0(M ) n0(M).

    6. :(i) (xn) x 0 > 0 |xn x| 0 n N.(ii) (xn) + M0 > 0 xn M0 n N.(iii) (xn) M0 > 0 xn M0 n N.

    7. .(i) 0 > 0, xn x , 0 < 0 |xnx| < .(ii) M0 > 0, xn + M M0 xn > M .(iii) xn + M - - xn > M .

    8. x (xn).(i) , > 0 |xn x| < , |xn x| . . : xn = (1)n1 , x = 0, = 1. : xn x > 0 |xn x| .(ii) , M > 0 xn > M , M xn M . . : xn = 1, M = 1. : xn + M > 0 xn M .

    9. (xn) x : n0 N > 0 |xn x| < n N, n n0 . ; xn x.

    10. (xn) . , xn x, (xn) x .: A (xn) d > 0 A. n0 N |xn x| < d2 n N, n n0 . n N, n n0 |xnxn0 | |xnx|+|xn0x| < d2+

    d2= d.

    xn = xn0 n N, n n0 .

    36

  • 11. (xn) xn Z n N. xn x, (xn) x Z.: 10: - Z 1.

    2.3 . , -

    .

    . > 0. (x , x+ ) - x

    Nx() = (x , x+ ).

    , x Nx . , Nx x . . . > 0 Nx() x . . . Nx x . . . > 0, Nx() x . . . .

    . > 0. (1,+] - + [,1

    )

    - .

    N+() =(1,+

    ], N() =

    [,1

    ).

    , N . M = 1 , =

    1M

    (M,+](M > 0) (1

    ,+] ( > 0) [,M) (M > 0)

    [,1) ( > 0).

    , x R , Nx() . 1. x Nx(). x Nx().

    |xn x| <

    xn x , ,

    x < xn < x+

    , ,xn (x , x+ )

    , ,xn Nx().

    , xn > M, xn < M

    xn , ,

    xn (M,+], xn [,M)

    37

  • , ,xn N+(), xn N(),

    = 1M

    ., , , .

    . x R . xn x > 0 n0 N xn Nx() n N, n n0 , , > 0 xn Nx(). : xn x Nx x xn Nx .

    . , , , . , .

    .

    1. x R .(i) , 0 < 1 2 , Nx(1) Nx(2).(ii) > 0 n N Nx( 1n) Nx().

    2. x R .(i)

    >0Nx() = {x} , ,

    x x.(ii)

    +n=1Nx(

    1n) = {x}.

    3. x, y R , x 6= y. > 0 Nx() Ny() = .

    2.4 . 2.1. (xn), (yn) . , .

    . (xn), (yn) k0,m0 N

    xk0 = ym0 , xk0+1 = ym0+1 , xk0+2 = ym0+2 , . . . .

    xn a R yn a. > 0. n0 N xn Na() n N, n n0 .

    n0 = max{n0, k0} N,

    n0 n0 n0 k0 . n0 n0 , xn Na() n N, n n0 .

    n0 = n0

    +m0 k0 .

    n0 k0 , n0 N. n N, n n0 n m0,

    yn = xnm0+k0 , nm0 + k0 n0 .

    n N, n n0 yn Na(). yn a.

    38

  • . (1) (1, 12, 13, 14, 15, 16, . . . ), (2, 5, 1

    4, 15, 16, . . . ). -

    0. , , , , 0.(2) (xn) . (xn) (x1, x2, x3, . . . ). (x2, x3, x4, . . . ), (xn+1), (xn). (x3, x4, x5, . . . ), (xn+2). , m N,

    xn x R xn+m x R .

    : 1n+3

    0 log2(n+ 8) +.

    . , 2.2 2.3 .

    2.2 () , .

    2.2. xn x R .(1) x > u, xn > u.(2) x < l, xn < l.(3) u < x < l, u < xn < l.

    . (1) xn x x > u. x u > 0,

    |xn x| < x u

    , , xn > x (x u) = u.

    xn +. M > 0 M u. xn > M , , xn > u.(2) .(3) xn > u xn < l. xn > u xn < l.

    2.3 - (), - - - ., 2.3 - : , . , . 14 2.7 12 2.9.

    2.3. (1) xn l n N xn x R, x l.(2) xn u n N xn x R, x u.(3) u < l xn u n N xn l n N, (xn) .

    . (1) x < l, xn < l, xn l n N.(2) .(3) (xn) , u l, l u.

    39

  • . (1) xn x R xn [l, u] n N, x [l, u].(2) a 1, (an) , an 1 n N an 1 n N.(3) ((1)n1n) , (1)n1n 1 n N (1)n1n 1 n N.(4)

    (n 3[n

    3]) , n 3[n

    3] = 0 n = 3k (k N)

    n 3[n3] = 1 n = 3k + 1 (k N).

    2.4 .

    2.4. .

    . (xn) . a . 2.2, xn > a , , xn < a. xn > a xn < a. .

    2.5 , , 2.3. - , - - - .

    2.5. xn yn n N xn x R, yn y R, x y.

    . x > y. a x > a > y. xn > a a > yn . , xn > a a > yn . xn > yn , , xn yn n N. .

    . 1n< 1

    n n N 1

    n 0, 1

    n 0.

    , xn < yn n N xn x R ,yn y R , x < y. xn < yn n N xn yn n N, x y.

    2.6 2.7 : .

    2.6. xn yn .(1) xn +, yn +.(2) yn , xn .

    . (1) M > 0. xn > M , yn xn , xn > M yn xn . yn > M , ,yn +.(2) .

    . (1) n+(1)n1 n1 n N. n1 +, n+ (1)n1 +.(2) n2+2n+1

    n+2 n n N n +, n2+2n+1

    n+2 +.

    (3) [n] >

    n 1 n N

    n 1 +. [

    n] +.

    2.7 .

    2.7. xn yn zn . xn a zn a, yn a.

    40

  • . > 0. |xn a| < , , |zn a| < .

    |xn a| < , |zn a| < , xn yn zn .

    xn > a , zn < a+ , xn yn zn .

    a < yn < a+ , , |yn a| < . yn a.

    . (1) 1n (1)

    n1

    n 1

    n n N. 1

    n 0 1

    n 0,

    (1)n1

    n 0.

    (2) , 1n sinn

    n 1

    n n N, sinn

    n 0.

    2.8. , .

    . xn x. n0 N |xn x| < 1 n N, n n0 . |xn x| < 1

    |xn| = |(xn x) + x| |xn x|+ |x| < 1 + |x|.

    |xn| < 1 + |x| n N, n n0 .

    M = max{|x1|, . . . , |xn01|, 1 + |x|}

    |xn| M n N, 1 n n0 1 |xn| < 1 + |x| M n N, n n0 . |xn| M n N, (xn) .

    . 2.8. H ((1)n1) - .

    2.9. (1) +, .(2) , .

    . (1) xn +. n0 N xn > 1 n N,n n0 .

    l = min{x1, . . . , xn01, 1},

    xn l n N, 1 n n0 1 xn > 1 l n N, n n0 . xn l n N, (xn) . , M > 0 xn > M . M > 0 (xn), (xn) .(2) .

    . (1), (2) 2.9 . -

    ((1+(1)n1)n

    2

    ), (1, 0, 3, 0, 5, 0, 7, . . . ), .

    , + (1+(1)n1)n

    2 0 n N.

    , (1, 0,3, 0,5, 0,7, . . . ) , .

    (xn) (xn). 2.10 .

    2.10. xn x R , xn x.

    41

  • . xn x. > 0. |xn x| < .

    |(xn) (x)| = |xn x| < .

    xn x. xn +. M > 0. xn > M , xn < M ,, xn = (+)., , xn , xn + = ().

    (xn) (yn) (xn+ yn). 2.11 .

    2.11. xn x R yn y R x+ y , xn + yn x+ y.

    . xn x, yn y. > 0. |xn x| < 2 |yn y| < 2 . |xn x| 0. M > 0 M M l. xn > M , xn > M l, xn+yn > (M l)+ l =M .

    xn + yn + ={

    (+) + y(+) + (+)

    }.

    .

    . (1) 1n 0 (1)

    n

    n 0, 1

    n+ (1)

    n

    n 0 + 0 = 0.

    (2) n 1n 0, n2+1

    n= n+ 1

    n () + 0 = .

    (3) n + n +, n+

    n (+) + (+) = +.

    (+)+ (), + R :

    . (1) n+ c +, n (n+ c) + (n) = c c.(2) 2n +, n 2n+ (n) = n +.(3) n +, 2n n+ (2n) = n .(4) n+ (1)n1 +, n (n+ (1)n1) + (n) = (1)n1 .

    (xn) (yn) (xn yn). (xn yn) , xnyn = xn+(yn). 2.12 .

    2.12. xn x R yn y R x y , xn yn x y.

    (xn) (yn) (xnyn). 2.13 .

    42

  • 2.13. xn x R yn y R xy , xnyn xy.

    . xn x, yn y. > 0. |xn x| < 3|y|+1 , , |yn y| < min{ 3|x|+1 ,

    13}. |xn x| < 3|y|+1 |yn y| 0. xn > Ml , , yn > l. xn >

    Ml

    yn > l.

    xnyn > Ml l =M , , xnyn + ={

    (+)y(+)(+)

    }.

    .

    . (1) 1n 0 (1)

    n

    n 0, (1)

    n

    n2= 1

    n(1)nn

    0 0 = 0.(2) n1

    n 1 1

    n 0, n1

    n2= n1

    n1n 1 0 = 0.

    (3) n + 1n , nn2 = n(1n) (+)() = . (nn2) .(4) c xn x R cx , , , c = 0 x = . , c c,

    cxn cx.

    , c = 0, , x R , cxn = 0xn = 0 0.(5) a > 0. c > 0, cna c(+) = +. c < 0, cna c(+) = .(6) a > 0, cna c0 = 0.(7) n. a0+a1x+ +akxk , ak 6= 0, k 1.

    a0 + a1n+ + aknk = aknk(a0ak

    1nk

    + a1ak

    1nk1

    + + ak1ak

    1n+ 1

    ).

    1, 0. ,akn

    k ak(+).

    a0 + a1n+ + aknk ak(+)1 =

    {+, ak > 0, ak < 0

    ., limn+(a0 + a1n+ + aknk) = limn+ aknk . : 3n2 5n+ 2 + 1

    2n5 + 4n4 n3 .

    (8) . a

    43

  • (1 + a+ a2 + + an1 + an), (1 + a, 1+ a+ a2 , 1+ a+ a2 + a3 , . . . ). :

    1 + a+ a2 + + an

    +, a 1 1

    1a , 1 < a < 1 , a 1

    . a > 1, 1 + a+ a2 + + an = an+11

    a1 (+)1a1 = +.

    a = 1, 1 + a+ a2 + + an = n+ 1 +. 1 < a < 1, 1 + a+ a2 + + an = an+11

    a1 01a1 =

    11a .

    a 1. : an+1 = 1 + (a 1)(1 + a + a2 + + an) n N. 1 + a +a2 + + an x R, an+1 1 + (a 1)x. , (an+1) . : 1 + a + a2 + + an = an+11

    a1 2

    1a n N 1 + a + a2 + + an = an+11

    a1 0 n N. 0 0. l 0 < l < x. xn > l. > 0. |xn x| < lx. xn > l |xn x| < lx. , 1xn 1x = |xnx|xnx < lxlx = , 1

    xn 1

    x.

    xn +. > 0. xn > 1 , 0 1, 1loga n 1

    + = 0.

    (2) xn 0. , (1)n1

    n 0, n

    (1)n1 = (1)n1n

    . 10 .

    . , ; 2.16.

    2.16. xn 6= 0 n N xn 0.(1) xn > 0, 1xn +.(2) xn < 0, 1xn .

    . (1) M > 0. |xn 0| < 1M . xn > 0, |xn 0| < 1M xn > 0. 0 < xn M , 1

    xn +.

    (2) .

    (xn) (yn) (xnyn

    ). (xn

    yn)

    , xn

    yn= xn

    1yn

    . 2.17 .

    2.17. yn 6= 0 n N. xn x R yn y R xy , xn

    yn x

    y.

    . (1) n. a0+a1x++akxkb0+b1x++bmxm ,

    ak 6= 0, bm 6= 0.

    a0+a1n++aknkb0+b1n++bmnm =

    aknk

    bmnm

    a0ak

    1

    nk+

    a1ak

    1

    nk1++

    ak1ak

    1n+1

    b0bm

    1nm

    +b1bm

    1nm1

    ++ bm1bm

    1n+1

    , , 1. akn

    k

    bmnm= ak

    bmnkm ,

    a0 + a1n+ + aknk

    b0 + b1n+ + bmnm

    akbm(+), k > m

    akbm, k = m

    0, k < m

    . : n32n2+n+1

    2n23n1 +,n2+nn+2

    , n4n3n4+1

    1 n2+n+4n3+n2+5n+6

    0.(2) 2n3+n2+n+1

    2n+3 ,

    (2n3+n2+n+12n+3

    )7 ()7 = .(3) n3+n+73n3+n2+1

    13,

    (n3+n+73n3+n2+1

    )3 (13)3 = 1

    27.

    , 00 +

    + , 0 0 + + R, , [0,+], , :

    45

  • . (1) cn 0, 1

    n 0 ( c

    n)/( 1

    n) = c c.

    (2) 1n 0, 1

    n2 0 ( 1

    n)/( 1

    n2) = n +.

    (3) 1n2

    0, 1n 0 ( 1

    n2)/( 1

    n) = 1

    n 0.

    (4) 1n 0, 1

    n2 0 ( 1

    n)/( 1

    n2) = n .

    (5) 1n

    2+(1)n1

    n 3

    n n N, 2+(1)

    n1

    n 0. , 1

    n 0

    (2+(1)n1

    n)/( 1

    n) = 2 + (1)n1 , 2 + (1)n1 1 n N

    2 + (1)n1 3 n N.(6) (1) c > 0, (2), (3) (5) (xn) (yn) + [0,+] .

    (xn) (|xn|). 2.18 .

    2.18. xn x R , |xn| |x|.

    . xn x. > 0. |xn x| < . |xn| |x| |xn x| < , , |xn| |x|. xn + xn . M > 0. xn > M xn < M ,. , |xn| > M , |xn| + = | |.

    . 2.18 . ,(1)n1 = 1 1

    (1)n1 .

    - - .

    . (1) a > 0.

    na 1 (a > 0).

    a = 1 : n1 = 1 1.

    a > 1. : > 0. | n

    a1| < ( n

    a > 1) n

    a1 <

    na < 1+ 1

    n< loga(1+) n >

    1loga(1+)

    . n0 N n0 > 1loga(1+) . n N, n n0 n >

    1loga(1+)

    ,, | n

    a 1| < . n

    a 1.

    : Bernoulli

    (1 + a1n)n 1 + na1

    n= a

    , ,1 n

    a 1 + a1

    n

    n N. na 1.

    0 < a < 1, 1a> 1, n

    a = 1

    n

    1/a 1

    1= 1.

    (2) nn 1.

    46

  • Bernoulli,

    (1 +n1n

    )n 1 + nn1n

    =n ,

    1 n

    n (1 +

    n1n

    )2 < (1 + 1n)2

    n N. , , nn 1.

    (3) a > 1.

    an

    n + (a > 1).

    : Bernoulli,

    (a)n = (1 +

    a 1)n 1 + n(

    a 1) > n(

    a 1)

    , ,an

    n> n(

    a 1)2

    n N. ann +.

    : b 1 < b < a. Bernoulli

    bn = (1 + b 1)n 1 + n(b 1) > n(b 1)

    n N. an

    n= b

    n

    n(ab)n > (b 1)(a

    b)n

    n N , ab> 1, an

    n +.

    (4) (an) - a > 1, |a| < 1. a > 1. : b = a 1 > 0. Bernoulli,

    an = (1 + b)n 1 + nb > nb

    n N. nb +, an +. : an > nb. M > 0. , an > M nb > M n > M

    b. n0 N

    n0 > Mb . n N, n n0 n >Mb

    , , an > M . an +. : |a| < 1, : 0 < 1

    a< 1, 1

    an= ( 1

    a)n 0 , , an +.

    |a| < 1. a = 0 , 0 < |a| < 1. : 1|a| > 1, , ,

    1|a|n = (

    1|a|)

    n +. |a|n 0. ,

    |a|n an |a|n

    n N, an 0. : b = 1|a| 1 > 0. Bernoulli,

    |a|n = 1(1+b)n

    11+nb

    < 1nb

    47

  • n N. 1nb< an < 1

    nb

    n N, an 0. : > 0. |a|n < 1

    nb |an 0| <

    1nb< n > 1

    b. n0 N n0 > 1b .

    n N, n n0 n > 1b , , |an 0| < . an 0.

    ., 2.19, 4.3.

    , - - . 1.3 ab . 00 , 1+ , 1 ,(+)0 , 0 .

    (xn) (yn) (xn

    yn).

    2.19. xn > 0 n N. xn x R yn y R xy , xnyn xy . , xn 0 yn , xn

    yn +.

    . (1) 2.19, na 1 a > 0.

    , (a) ( 1n). a a 1

    n 0,

    na = a

    1n a0 = 1.

    (2) (an) a > 1, 0 < a < 1 , , 2.19. (a) (n). a a n +, an a+ , +, a > 1, 0, 0 < a < 1.(3) n

    n 1 2.19. (n)

    ( 1n), n + 1

    n 0, (+)0 .

    (+)0 00 , - + 0 0 0 [0,+] .

    . (1) n +, 1n 0 n 1n = n

    n 1.

    (2) a > 1, an +, 1n 0 (an) 1n = a a.

    (3) a > 1, an +, 1n 0 (an) 1n = 1

    a 1

    a.

    (4) nn +, 1n 0 (nn) 1n = n +.

    (5) nn +, 1n 0 (nn) 1n = 1

    n 0.

    (6) nn +, (1)n1

    n 0 (nn)

    (1)n1n = n(1)

    n1 . , n(1)

    n1= n 1 n N n(1)n1 = 1

    n 1

    2 n N.

    (7) , (xn) . xn 0, yn 0 (xnyn) [0,+] .

    2.19 0 = +, , , . 0 .

    48

  • . (1) 1n 0, n ( 1

    n)n = nn +.

    nn n n N.(2) 1

    n 0, 2n 1 ( 1

    n)2n1 = n2n+1 .

    (3) (1)n

    n 0, n

    ( (1)nn

    )n= (1)n2nn , (1)n2nn =

    nn 4 n N (1)n2nn = nn 1 n N.

    , 1+ 1 , - 2.5.

    .

    1. 2.2, 2.3, 2.6, 2.9, 2.10, 2.11, 2.12, 2.13, 2.15,2.16 2.17.

    2. ((n+1)27(n+3)79

    (2n+1)106

    ),(n2+(1)nn+ 1

    n

    3n+2(1)n1n

    ),(n(n+1)n+4

    4n34n2+1

    ), ((1

    n)5 + n4),(( n

    3+n+13n2+3n+1

    )9),( 3n+(2)n3n+1+2n+1

    ), (n2 + n+ 1

    n2 + 1).

    3. - - (1 2+ 22 + + (1)n2n), (1+ 2+ 22 + + 2n),

    (1 + 1

    2+ + 1

    2n

    ),(27

    37+ 2

    8

    38+ + 2n+6

    3n+6

    ),(2n

    3n+ 2

    n+1

    3n+1+ + 22n

    32n

    ).

    4. xn 6= 1 n N, x 6= 1. xn x xn1+xn x

    1+x.

    5. (xn) - : xn+1 = xn+2, xn+3 = xn3, xn+1 = xn23, xn+2 = xn2+3,xn+1 = xn

    2 + 3, xn+2 = xn+1 + xn3 ;

    6. (xn)(i) 1 < xn n

    2+3nn2+1

    .(ii) log10 n2

    2 log10 n+4< xn 00, x = 0, x < 0

    [nx] [ny]

    +, x > y0, x = y, x < y

    nx [ny]

    +, x > y 0, x = y Z , x < y , x = y R \ Z

    10. : 22n+(1)n1n 0,(12+ (1)

    n1

    4

    )n 0.49

  • 11. n

    k=1n

    n2+k 1

    nk=1

    1n2+k

    1.: n n

    n2+n

    nk=1

    nn2+k

    n nn2+1

    n N.

    12. n2x2n 2n(n 1)xn + n2 2n 3 0, xn 1.

    13. 0 < a xnn b, xn 1.

    14. 0 a b c. nan + bn b, n

    an + bn + cn c.

    : bn an + bn 2bn .

    15. : nn3 1, n

    n4 + 3n2 + n+ 1 1.

    16. 1nn

    nk=1 k

    k 1.

    17. , :(i) n5 + 4n3 < 100;(ii) n7 35n6 + n3 47n < 84 n N;(iii) 3

    2< 7n

    3n+54n3+n2+35

    < 2;(iv) 2n4n3+7n3+n2+3 78;(v) 2n3n2+7n+1

    n3+n2+3 1 n N;

    18. 2.3, (2(1)

    n1),((1 + (1)

    n1

    2

    )n), ((1)n1 + 10n3

    ),((1)n1 n

    n+1

    ).

    19. |xn| 0, xn 0 : .

    20. xn x yn y, x, y R, max{xn, yn} max{x, y} min{xn, yn} min{x, y}.

    21. (i) : n 1n= 1

    n+ + 1

    n 0 + + 0 = 0.

    (ii) : (1 + 1n)n = (1 + 1

    n) (1 + 1

    n) 1 1 = 1.

    2.11, 2.13, 2.19;

    22. xn x R yn y R . x < y, xn < yn .

    23. , xn [l, u] n N xn x, x [l, u]. x (xn), xn (l, u) n N; ;

    24. (i) xn + (yn) , xn + yn +.(ii) xn (yn) , xn + yn .(iii) xn 0 (yn) , xnyn 0.(iv) xn + yn > l > 0, xnyn + , .(v) xn + yn < u < 0, xnyn +, .

    50

  • 25. (i) a < 1 |xn+1| a|xn|, xn 0.: |xn+1| a|xn| n n0 , |xn|

    |xn0 |an0

    an n n0 .(ii) a > 1 xn+1 axn > 0, xn +.(iii)

    xn+1xn

    a < 1, xn 0.(iv) xn+1

    xn a > 1, xn + xn .

    (v) , a > 1, ann +. , (n!)

    2

    (2n)! 0 2nn!

    nn 0.

    26. (i) (xn), (yn) (xn + yn) .(ii) (xn), (yn) (xnyn) .

    27. (i) (xn + yn) (xn), (yn) , , , .(ii) (xnyn) (xn), (yn) , , , .

    28. (xn), (yn) xn, yn > 0 n N, xn 0, yn + (xnyn) .

    29. x1 > 0 xn+1 x1 + + xn n N. 0 < a < 2, xnan

    +. (2n) a = 2.

    30. (i) x (rn) rn Q n N rn x.: , n N rn Q x 1n < rn 0. M {xn |n N}, n0 N xn0 > M . (xn) ,

    xn xn0 > M

    n N, n n0 . xn +. (xn) . x = sup{xn |n N} xn x. > 0. x < x, x {xn |n N}. n0 N x < xn0 . (xn) ,

    x < xn0 xn

    n N, n n0 . x {xn |n N},

    xn x < x+

    n N. x < xn < x+ n N, n n0 , , xn x.(2) .

    2.1. (xn) , , 2.1, (xn) , x, . , xn x n N. , , (xn) , xn < xn+1 x , ,xn < x n N. .: (xn) xn x, xn x n N. , , (xn) , xn < x n N. (xn) xn x, xn x n N. , , (xn) , xn > x n N.

    2.1 . - , . : , , , , n- . 2.1 (, ), .

    52

  • 2.1 . , - , - - . , , 5 2.4.

    2.1 Supremum R ,, . 2.1 , , Supremum. , Supremum . 12.

    . (xn) x1 = 1 xn+1 =2xn n N.

    (xn) 1,2 ,

    22 , . . . .

    . , x1 x2 xn xn+1 n N. 0 1 . : xn xn+1 2xn 2xn+1

    2xn

    2xn+1

    xn+1 xn+2 . xn xn+1 n N, (xn) , , . xn xn+1 xn

    2xn , xn 2

    n N. (xn) , , . xn x. xn+12 = 2xn n N, x2 = 2x, x = 0 x = 2. (xn) x1 = 1, xn 1 n N. x 1 ,, x = 2. (xn) . xn xn+1 xn

    2xn ( xn 0) xn 2. ,

    xn 2 n N, (xn) 2. . x1 2 . xn 2 n N. xn+1 =

    2xn

    2 2 = 2,

    xn 2 n N.

    2.20. ((1 + 1n)n) .

    . (1+ 1n)n < (1+ 1

    n+1)n+1 (n+1

    n)n < (n+2

    n+1)n+1

    nn+1

    (n+1n)n+1 < (n+2

    n+1)n+1 n

    n+1< ( n

    2+2nn2+2n+1

    )n+1 nn+1

    < (1 1n2+2n+1

    )n+1

    Bernoulli. ,

    (1 1n2+2n+1

    )n+1 > 1 n+1n2+2n+1

    = 1 1n+1

    = nn+1

    n N. (1 + 1

    n)n < 4 , , 1

    2 1 nn+1

    n

    n

    = 1n(n+ 1

    n) = 1

    n

    n+1+n> 1

    n

    2n= 1

    2

    n N.

    . 2.1 2.20, ((1 + 1n)n) ,

    e. ,

    e = limn+

    (1 +

    1

    n

    )n.

    53

  • ((1 + 1n)n) , (1 + 1

    n)n < e n N.

    e . 8.8.

    . e y > 0

    log y ln y

    loge y.

    2.21 , , 1.6.

    2.21. (1) log(yz) = log y + log z y, z > 0.(2) log y

    z= log y log z y, z > 0.

    (3) log(yz) = z log y y > 0 z.(4) loga y =

    log ylog a y > 0 a > 0, a 6= 1.

    (5) log 1 = 0, log e = 1.(6) 0 < y < z, log y < log z.

    1+ 1 , 1 + 1 [0,+] .

    . (1) 1 1, n + 1n = 1 1.(2) a > 1 b = log a. 1 + 1

    n 1, bn + (1 + 1

    n)bn = ((1 + 1

    n)n)b eb = a.

    (3) nn 1, n + ( n

    n)n = n +.

    (4) (xn) (yn) xn 1, yn + (xnyn) [0, 1].

    (5) 1nn n(1)n1

    n nn n N, n

    (1)n1n 1. , n + (

    n(1)n1

    n

    )n= n(1)

    n1 , n(1)n1 = 1n 1

    2 n N

    n(1)n1

    = n 1 n N.(6) (xn) (yn) xn 1, yn (xn

    yn) [0,+] .

    .

    . (1) (xn), xn = 1 + 11! +12!+ + 1

    n!(n N).

    (xn) , ,

    1 +1

    1!+

    1

    2!+ + 1

    n! e.

    xn+1 = 1 +11!+ 1

    2!+ + 1

    n!+ 1

    (n+1)!= xn +

    1(n+1)!

    > xn

    n N, (xn) . k! 2k1 k N. k = 1 , k N, k 2 k! = 1 2 3 k 1 2 2 2 = 2k1 . ,

    xn = 1 +11!+ 1

    2!+ + 1

    n! 1 + 1

    20+ 1

    21+ + 1

    2n1= 1 +

    1( 12)n

    1 12

    < 1 + 11 1

    2

    = 3

    54

  • n N. (xn) , , , , ., tn =

    (1 + 1

    n

    )n(n N). Newton (

    10 1.3),

    tn = 1 +(n1

    )1n+(n2

    )1n2

    + +(nk

    )1nk

    + +(nn

    )1nn

    = 1 + 11!+ 1

    2!(1 1

    n) + + 1

    k!(1 1

    n)(1 2

    n) (1 k1

    n)

    + + 1n!(1 1

    n) (1 n1

    n).

    > 0 < 1,

    tn 1 + 11! + +1n!

    = xn

    n N. k, n N, 1 k n, () k-,

    tn 1 + 11! +12!(1 1

    n) + + 1

    k!(1 1

    n)(1 2

    n) (1 k1

    n).

    n +,

    e 1 + 11!+ 1

    2!+ + 1

    k!= xk

    k N , , e xn n N.

    tn xn e

    n N , tn e, xn e. 8 10.(2) (xn), xn = 1 + 12 +

    13+ + 1

    n(n N).

    1 +1

    2+

    1

    3+ + 1

    n +.

    xn+1 xn = 1n+1 > 0 n N, (xn) .

    x2n xn = 1n+1 + +1

    n+n 1

    n+n+ + 1

    n+n= n

    n+n= 1

    2

    n N. ,

    x2 x1 > 12 , x22 x2 >12, x23 x22 > 12 , . . . , x2k1 x2k2 >

    12, x2k x2k1 > 12 .

    , x2k x1 > k2 ,

    x2k >k2+ 1

    k N. (xn) . , u xn u n N, x2k u k N. k2 + 1 u ,, k 2u 2 k N. . (xn) . xn +. 5 2.7 1 2.8.(3) (xn), xn = 1 + 122 +

    132

    + + 1n2

    (n N). (xn) . xn+1 xn = 1(n+1)2 > 0 n N, (xn) .

    xn 1 + 112 +123 + +

    1(n1)n = 1 +

    11 1

    2+ 1

    2 1

    3+ + 1

    n1 1n= 2 1

    n< 2

    n N. (xn) , , . 2.8.

    55

  • , , 0.

    . (an) (bn) an bn n N. , [a1, b1], [a2, b2], [an+1, bn+1] [an, bn] n N. :(i) (an) (bn) .(ii) x an x bn n N.(iii) x (ii) bn an 0. , (an), (bn) x .

    . (bn) , an bn b1 n N, (an) , , . (an)

    an a.

    , (an) , a1 an bn n N, (bn) , , . (bn)

    bn b.

    an bn n N, a b.

    an a b bn

    n N. x [a, b] an a x b bn n N. , x an x bn n N, a x b, x [a, b]. x an x bn n N [a, b]. , x a = b , ,bn an 0. x x = a = b.

    (ii) , , 13.

    . (1) , , . 1 , n N, n 2, 2n - 2n . pn qn , , . ,, (pn)+n=2, (qn)

    +n=2 .

    p2 = 42, q2 = 8 - -

    pn+1 = 2pn(2 +

    (4 pn2

    4n

    ) 12) 1

    2 , qn+1 = 4qn(2 +

    (4 + qn

    2

    4n

    ) 12)1

    (n N, n 2)

    qn = pn(1 pn2

    4n+1

    ) 12 (n N, n 2).

    56

  • (pn) (qn) ,

    pn+1 = 2pn(2 +

    (4 pn2

    4n

    ) 12) 1

    2 > 2pn(2 + 4

    12

    ) 12 = pn

    qn+1 = 4qn

    (2 +

    (4 + qn

    2

    4n

    ) 12)1

    < 4qn(2 + 4

    12

    )1= qn

    n N, n 2. ,

    qn = pn(1 pn2

    4n+1

    ) 12 > pn

    n N, n 2. , (pn), (qn) pn p qn q. qn = pn

    (1 pn2

    4n+1

    ) 12 n N, n 2,

    q = p(1 p20

    ) 12 = p.

    qnpn 0, , , x pn x qn n N, n 2. x : p = q = x. , , , 2, : pn 2 qn n N, n 2.

    limn+

    pn = limn+

    qn = 2.

    . 20 7.3.(2) p- . x [0, 1) p N, p 2.

    xn = [pnx] p[pn1x]

    n N. xn Z n N. [pn1x] pn1x < [pn1x] + 1 p[pn1x] pnx < p[pn1x] + p p[pn1x] [pnx] < p[pn1x] + p, 0 xn < p , xn Z,

    0 xn p 1.

    , n N xn 0, 1, . . . , p 1.

    sn =x1p+ + xn

    pn, tn =

    x1p+ + xn

    pn+ 1

    pn(n N).

    sn+1 = sn +xn+1pn+1

    sn , tn+1 = tn + xn+1pn+1 +1

    pn+1 1

    pn tn + p1pn+1 +

    1pn+1

    1pn

    = tn

    n N. (sn) (tn) . ,

    sn tn

    n N, - . ,

    tn sn = 1pn 0,

    57

  • (sn), (tn) . ;

    sn =([px]p

    [x])+([p2x]p2

    [px]p

    )+ +

    ([pn1x]pn1

    [pn2x]pn2

    )+([pnx]pn

    [pn1x]pn1

    )= [p

    nx]pn

    [x] = [pnx]pn

    .

    , [pnx] pnx < [pnx] + 1

    sn x < sn + 1pn = tn .

    sn x tn x.

    . (sn) p- ( ) x (tn) p- x. (xn) p- x.

    p- x [0, 1) : p 1. - - n0 N xn = p 1 n N, n n0 .

    tn+1 = tn +xn+1pn+1

    + 1pn+1

    1pn

    = tn +p1pn+1

    + 1pn+1

    1pn

    = tn

    n N, n n0 . (tn) , tn x, tn = x. sn x < tn n N.

    : p = 2 0, 1, p = 3 0, 1, 2 , , p = 10 0, 1, . . . , 9.

    p- 8.

    .

    1. 2.1.

    2. (i) : (1 + 1n)n+3 e, (1 + 1

    n+2)3n+5 e3 , (1 1

    n)n 1

    e, (1 + 2

    n)n e2 ,

    (1 2n)n 1

    e2.

    (ii) (1 + kn)n ek k Z.

    3. ((1 + 1

    n)n+1

    ) , e

    (1 + 1n)n+1 > e n N.

    4. x1 = 1 xn+1 = xn + 1xn2 n N. (xn) .

    5. 7xn+1 = xn3 + 6 n N. , x1 , (xn) .

    6. x1 > 0 xn+1 = 6+6xn7+xn n N. , x1 , (xn) .

    7. (i) a > 1, (an) , an+1 = aan (n N), an +. 0 < a < 1.(ii) a > 1, (an

    n) ,

    58

  • an+1n+1

    = ann+1

    an

    n(n N), an

    n +.

    (iii) a > 1, ( na) ,

    (

    2na)2

    = na (n N), n

    a 1.

    a = 1, 0 < a < 1;

    8. (i) a, x1 > 0 xn+1 = 12(xn +

    axn

    ) n N, (xn)

    , , .(ii) xn, yn Z n N, x1 = y1 = 1 xn+1 + yn+1

    2 = (xn + yn

    2)2

    n N, xnyn

    2.

    9. (xn) 2xn+1 xn+xn+2 n N. yn = xnxn+1 n N. (yn) yn 0.

    10. (i) 0 < x1 y1 xn+1 =xnyn yn+1 = xn+yn2 n N,

    (xn) , (yn) , xn yn n N (xn),(yn) .(ii) 0 < x1 y1 xn+1 = 2xnynxn+yn yn+1 =

    xnyn n N,

    (xn) , (yn) , xn yn n N (xn),(yn) .

    11. I f : I R x I 0 > 0 f(x) f(x) f(x) x, x (x 0, x+ 0) I , x < x < x . f I .: a, b I a < b, f(a) > f(b). f(a) > f(a+b

    2), a1 =

    a, b1 =a+b2

    , f(a+b2) > f(b), a1 = a+b2 , b1 = b. f(a1) > f(b1).

    , [a1, b1], [a2, b2], . . . [an+1, bn+1] [an, bn], f(an) > f(bn) bn an = ba2n n N. an bn n N an , bn . 0 , .

    12. . Supremum.: . 1

    2n 0. , - A. x1 A

    y1 A. [x1, y1] A A. x1+y1

    2 A, x2 = x1, y2 = x1+y12 , , x2 =

    x1+y12

    ,y2 = y1 . [x2, y2] A A. , [x1, y1], [x2, y2], . . . [xn+1, yn+1] [xn, yn] ynxn = y1x12n1 n N [xn, yn] an A un A. u xn u, yn u , , an u, un u. u A.

    13. (an) (bn) an bn n N. {an |n N} {bn |n N} , , x an x bn n N.

    59

  • 14. A - R - - a : N A -- . an = a(n), A - A = {an |n N} , , A . , A - . I ( ) .: I = {an |n N}. [x1, y1] I y1x1 > 0 a1 / [x1, y1]. [x2, y2] [x1, y1] y2 x2 > 0 a2 / [x2, y2]. , [x1, y1], [x2, y2], . . . [xn+1, yn+1] [xn, yn] an / [xn, yn] n N. [xn, yn] n N , , 6= an n N. .

    2.6 Supremum, infimum . A. (xn) A xn A

    n N, (xn) A. 2.22 supremum -

    infimum - : supA A infA A.

    2.22. - A.(1) A supA A supA.(2) A infA A infA.

    . (1) A , x = supA . n N x 1

    n A, xn A

    x 1n< xn x.

    (xn) A xn x., A , supA = +. n N A, n N xn A

    xn > n.

    (xn) A xn +., (xn) A. (xn) , supA, xn supA n N. A supA.(2) .

    .

    1. 2.22.

    60

  • 2. [0, 2], [0, 2), {2}, [0, 1] {2} supremum . , ( ) , , . ,, , .

    3. N, Z, Q, { 1n|n N} ,

    supremum infimum .

    4. - A u A. u = supA A u. infA l A.

    5. - A. supA A A supA. supA / A, A supA. infA.

    6. f : [0, 1] R [0, 1] f(0) > 0 f(x) 6= x x [0, 1]. A = {x [0, 1] | f(x) > x}, supA A f(1) > 1.

    2.7 .. (xn). n1 , n2 , n3 , . . . , nk , . . . n, , n1 < n2 < < nk < nk+1 < . (xn). x1 , x2 , . . . , xn , . . . xn1 , xn2 , . . . , xnk , . . .. : xn1 , xn2 . , (xnk). , (xnk) (xn). , (xnk) x n : N R (x n)(k) = x(n(k)) = xn(k) = xnk , n : N N x : N R, , , (nk) (xn).

    , n1 < n2 < < nk < nk+1 < , .

    . (1) n1 = 1, n2 = 3, n3 = 10, n4 = 11, (xn) x1 , x3 , x10 , x11 .(2) n1 = 2, n2 = 5, n3 = 6, n4 = 9, n5 = 13, (xn) x2 , x5 , x6 , x9 , x13 .(3) , n1 = 2, n2 = 5, n3 = 6, n4 = 10, n5 = 8 (xn). x2 , x5 , x6 , x10 , x8 (xn) : x10 x8 (xn) - x9 - x10 x8 .

    . .(1) nk = 2k (k N), (x2k) (x2, x4, x6, x8, x10, . . . )

    61

  • (xn).(2) nk = 2k 1 (k N), (x2k1) (x1, x3, x5, x7, x9, . . . ) (xn).(3) nk = k (k N), (xk) (x1, x2, x3, x4, x5, . . . ), (xn). , (xn) (xn).(4) nk = 2k1 (k N), (x2k1) (x1, x2, x4, x8, x16, . . . ).(5) nk = k2 (k N), (xk2) (x1, x4, x9, x16, x25, . . . ).

    (xnk) k. k 1, 2, 3, . . . , nk (xn).

    2.2. nk N nk < nk+1 k N. nk k k N.

    . n1 1 n1 N. nk k k N. nk+1 > nk nk, nk+1 N, nk+1 nk + 1, nk+1 k + 1. nk k k N.

    2.23. , .

    . xn x R (xnk) (xn). xnk x. > 0. n0 N xn Nx() n N, n n0 . , k N, k n0 nk n0 , , 2.2, nk k. k N, k n0 xnk Nx(). xnk x.

    2.23 , , : , . - 14 12 2.9.

    . ((1)n1) . , (1)(2k1)1 = 1 1 (1)(2k)1 = 1 1.

    2.24 .

    2.24. x R x2k x, x2k1 x. xn x.

    . x R x2k x, x2k1 x. > 0. k0 N x2k Nx() k N, k k0 . , k0 N x2k1 Nx() k N, k k0 .

    n0 = max{2k0, 2k0 1}.

    n0 N xn Nx() n N, n n0 .

    .

    . (xn) xn = 1 12 +13 1

    4+ + (1)n1 1

    n(n N).

    (xn) .

    x2k+2 x2k = 12k+1 1

    2k+2> 0

    62

  • k N. ,

    x2k = 1 (12 13) (1

    4 1

    5) ( 1

    2k2 1

    2k1)12k< 1

    k N, . (x2k) , , .

    x2k+1 x2k1 = 12k +1

    2k+1< 0

    k N. ,

    x2k1 = (1 12) + (13 1

    4) + + ( 1

    2k3 1

    2k2) +1

    2k1 > 0

    k N . (x2k1) , , .,

    x2k x2k1 = 12k 0,

    (x2k), (x2k1) . (xn) . 2 2.8.

    . . , ((1)n1) . , ((1)n1), , : 1. ((1)n1) . , .

    Bolzano - Weierstrass. .

    . (xn) l, u l xn u n N. (xn) , : , , . 1. [l, u] [l, l+u

    2], [ l+u

    2, u]. ()

    (xn) [l, u], (xn). [l1, u1]. -, [l, l+u

    2] (xn) [ l+u2 , u]

    , [l1, u1] [l, l+u2 ]. [l+u2, u] [l, l+u

    2]

    , [l1, u1] [ l+u2 , u]. , , , [l1, u1] . [l1, u1] [l, u], u1 l1 = ul2 [l1, u1] (xn). (xn) ( ) [l1, u1]: xn1 [l1, u1]. 2. [l1, u1] [l1, l1+u12 ], [

    l1+u12, u1]. [l1, u1]

    (xn), (xn). [l2, u2] - . [l2, u2] [l1, u1], u2 l2 = u1l12 [l2, u2] (xn). (xn) ( ) [l2, u2]: xn2 [l2, u2]. , , n2 > n1. ,

    63

  • (xn) [l2, u2]. 3. [l2, u2] [l2, l2+u22 ], [

    l2+u22, u2].

    [l2, u2] (xn), (xn). [l3, u3]. [l3, u3] [l2, u2], u3 l3 = u2l22 [l3, u3] (xn). (xn) ( ) [l3, u3]: xn3 [l3, u3]., , n3 > n2 . . [lk, uk](k N)

    [lk+1, uk+1] [lk, uk], uk+1 lk+1 = uklk2

    k N. , xnk (k N) (xn) nk+1 > nk

    xnk [lk, uk]

    k N. uk+1 lk+1 = uklk2 k N

    uk lk = ul2k

    k N, uk lk 0.

    , (lk), (uk) . lk x uk x. , nk+1 > nk k N, (xnk) (xn) ,

    lk xnk uk

    k N, xnk x.

    8 Bolzano - Weierstrass. + .

    . , (1, 0, 3, 0, 5, 0, 7, . . . ) +. , +, +: , (1, 3, 5, 7, . . . ). .

    2.25. (1) +.(2) .

    . (1) (xn) . +. . 1. (xn) , > 1. : xn1 > 1. 2. (xn) , > 2. > 2; - -

    64

  • (xn) 2. n0 N xn 2 n N, n n0 .

    u = max{x1, . . . , xn01, 2}

    xn u n N, 1 n n0 1 xn 2 u n N, n n0 . xn u n N, u (xn) . , , (xn) 2: xn2 > 2. ,, n2 > n1. > 2. 3. (xn) , - - > 3. (xn) 3: xn3 > 3. , , n3 > n2. . xnk (k N) (xn) nk+1 > nk

    xnk > k

    k N. (xnk) (xn) xnk +.(2) .

    2.26 2.25 Bolzano - Weierstrass.

    2.26. .

    . (xn) , . (xn) , +. , (xn) , .

    .

    1. 2.25.

    2. a < b < c < d. a, b, c d.

    3. (xn) : () , (-) , , , . (xnk) (xn) .

    4. x R x3k x, x3k1 x, x3k2 x. 2.24, xn x.

    5. (i) (xn) (xnk) xnk x R. xn x.(ii) (xn) (xnk) xnk x R. xn x.(iii) xn = 1 + 12 +

    13+ + 1

    n(n N). 2.5

    x2k k2 + 1 k N. xn +.(iv) (1+ a1)(1+ a2) (1+ an) 1+ a1+a2 + + an n N a1, . . . , an 0.(v) b . a = b, a > b, a < b, limn+ (a+1)(a+2)(a+n)(b+1)(b+2)(b+n) .

    65

  • 6. x1 > 0 xn+1 = 1 + 21+xn n N.(i) (x2k), (x2k1) .(ii) (xn) .

    7. a, b, x R , a 6= b. x2k a, x2k1 b (xnk) xnk x.(i) (xnk) (x2k) (x2k1).(ii) x = a x = b.

    8. (i) (xn). xn - m N, m > n xm > xn . , (xn) -, (xn) , (xn) -, .(ii) (i) Bolzano - Weierstrass , , 2.26.

    9. (xn) n N (xnk) k N.

    10. , .

    11. (xn) x R (xn) x.

    12. xn < x n N. sup{xn |n N} = x (xn) x.

    13. (xn) (xnk). (xnk) (xn).

    14. (i) (xn) . 2.23.(ii) (xn) l, u, u < l xn u n N xn l n N. 2.3(3).

    15. (i) xn x xn 6= x n N. (xn) .(ii) (rn) , rn =

    qnpn

    , qn Z, pn N n N. pn +.(iii) x (rn) rn x rn = qnpn , qn Z, pn N n N. qn + pn +, x > 0, pn , x < 0.

    16. (i) 2 2.5, (1 +12n)n e 12 , (1 + 2

    3n)n e 23 , , (1 + r

    n)n er r Q.

    x.(ii) > 0. ex s, t Q, s < x < t

    66

  • ex < es < et < ex + .(iii) (i), ex < (1+ s

    n)n < (1+ x

    n)n < (1+ t

    n)n < ex+.

    (1 + xn)n ex .

    2.8 .. (xn) Cauchy > 0 n0 N

    |xn xm| < n,m N, n,m n0 . :

    limn,m+

    (xn xm) = 0.

    : (xn) Cauchy .

    2.27. (xn) , Cauchy.

    . xn x. > 0. n0 N |xn x| < 2 n N, n n0 . , n m, |xm x| < 2 m N, m n0 .

    |xn xm| = |(xn x) (xm x)| |xn x|+ |xm x| < 2 +2=

    n,m N, n,m n0 . (xn) Cauchy.

    2.3. (xn) Cauchy, .

    . n0 N |xnxm| < 1 n,m N, n,m n0. , n N, n n0 |xn xn0 | < 1 , ,

    |xn| = |(xn xn0) + xn0 | |xn xn0 |+ |xn0 | < 1 + |xn0 |.

    M = max{|x1|, . . . , |xn01|, 1 + |xn0 |}.

    |xn| M n N, 1 n n0 1 |xn| < 1+ |xn0 | M n N,n n0 . |xn| M n N, (xn) .

    Cauchy 2.27.