05 Chem Equilibrium

  • Upload
    dt5632

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

  • 7/31/2019 05 Chem Equilibrium

    1/30

    Chapter 5 Chemical equilibrium

  • 7/31/2019 05 Chem Equilibrium

    2/30

    5.1 The general equilibrium expression

    For any chemical reaction, the general reaction

    equation can be written as

    B

    B

    0 B Recall the criterion of Gibbs function, at constant T, p

    and W=0

    m

    spontaneity

    0 equilibriumrG

    mrA G Define: is called the chemical affinity

  • 7/31/2019 05 Chem Equilibrium

    3/30

    if an infinitesimal amount of reaction takes place at constant T

    andp, the change in the Gibbs function is given by

    B B

    B

    dG dn

    B B

    B

    dG d

    ,

    B B r m

    BT p

    GG

    is the change of Gibbs function per mole of reaction.r mG

  • 7/31/2019 05 Chem Equilibrium

    4/30

    At constant temperature and pressure,

    0r mG

    0r mG

    0r mG

  • 7/31/2019 05 Chem Equilibrium

    5/30

    We now consider a reaction of ideal gasesA B C Da b c d ln BB B

    pRT

    p $

    $

    ln Br m B B B B B

    B B B

    pG RT

    p

    $ $

    r m B B

    B

    G $ $ lnB

    Br m r m

    B

    pG G RT

    p

    $ $

    B

    Bp

    B

    pJ

    p

    $ lnr m r m pG G RT J $

    The quantity Jp is called the pressure quotient.

  • 7/31/2019 05 Chem Equilibrium

    6/30

    5.2 Chemical reactions of ideal gases

    5.2.1 Standard equilibrium constant

    When a chemical reaction attains equilibrium at constanttemperature and pressure

    eqln 0r m r m pG G RT J $

    We call the standard equilibrium constant and

    denote it by K. It is only a function ofT.

    eq

    pJ

    eq

    B

    B(ideal gases)

    B

    p

    K p

    $

    $

  • 7/31/2019 05 Chem Equilibrium

    7/30

    2 2 3N (g) + 3H (g) = 2NH (g)

    2

    3

    1 32 2

    (NH )

    (N ) (H )

    eq

    eq eq

    p

    pK

    p p

    p p

    $

    $

    $ $

    31 2 2 32 2N (g)+ H (g)=NH (g)

    312 2

    3

    2

    2 2

    (NH )

    (N ) (H )

    eq

    eq eq

    p

    pK

    p pp p

    $

    $

    $ $

    2

    1 2

    ( )K K$ $ ,1 ,22r m r mG G $ $

    r mln /K G RT $ $

  • 7/31/2019 05 Chem Equilibrium

    8/30

    r m, then 0, 0pJ K G A $

    r m

    , then 0, 0p

    J K G A $

    r m, then 0, 0pJ K G A $

    the forward reaction is

    spontaneous

    the reverse reaction is

    spontaneous.

    the reaction is at

    equilibrium.

    $

  • 7/31/2019 05 Chem Equilibrium

    9/30

    5.2.2 Reactions involving pure condensed phases

    and gases

    If the pressure of a system does not differ very muchfromp, the chemical potentials of pure condensed

    phases approximate the standard state chemical

    potentials, i.e.

    B(condensed) B(condensed) $

    B(condensed) B(condensed) $

    The activity of a pure liquid or solid is

    1 (pure condensed phases near )B

    a p $

    Therefore, the condensed substances can be omitted

    from the expression of equilibrium constant .B(g)eq

    B(g)

    B(g)

    pK

    p

    $ $

  • 7/31/2019 05 Chem Equilibrium

    10/30

    For example, for the reaction,12

    C(s) + O2(g) = CO(g)

    eq

    1/2eq

    2

    (CO,g) /

    (O ,g) /

    p pK

    p p

    $

    $

    $

  • 7/31/2019 05 Chem Equilibrium

    11/30

    5.2.3 Relationship between equilibrium constants of

    related reactions

    When the equilibrium constant for a particular reaction isnot available, it can be found by combining the

    constants for an appropriate set of reactions. For

    example

    2 2 r m,1 1(1) C(s) + O (g) = CO (g) lnG RT K $ $

    12 2 r m,2 22

    (2) CO(g) + O (g) = CO (g) lnG RT K $ $

    2 r m,3 3(3) CO (g) + C(s) = 2CO(g) lnG RT K $ $

    Because (3)=(1)-2(2), we have

    r m,3 r m,1 r m,22G G G $ $ $ 2

    3 1 2/ ( )K K K$ $ $

    5 2 4 M t f ilib i

  • 7/31/2019 05 Chem Equilibrium

    12/30

    5.2.4 Measurement of equilibrium

    constants

    Physical methodChemical method

    5.2.5 Calculation of chemical equilibrium composition

    Example: The standard Gibbs function of reaction for

    the decomposition

    is 11808kJ mol-1 at 2300K. What is the degree of

    dissociation of H2O at 2300K and 100kPa?

    1

    2 2 22

    H O(g) H (g)+ O (g)

  • 7/31/2019 05 Chem Equilibrium

    13/30

    Solution The equilibrium constant is 33

    r m

    118.08 10exp( / ) exp 2.08 10

    8.3145 2300K G RT

    $ $

  • 7/31/2019 05 Chem Equilibrium

    14/30

  • 7/31/2019 05 Chem Equilibrium

    15/30

    5.2.6 Equilibrium constants in other form

    For example

    eq

    BB

    ( )B

    pK p

    1

    2 2 22H O(g) H (g)+ O (g)

    2 2

    2

    1/2

    H O 1/2

    H O

    Pap

    p pK

    p

    / ( ) BpK K p $ $

  • 7/31/2019 05 Chem Equilibrium

    16/30

    B B B B

    BB BB y

    p py p pK y K

    p pp p

    B

    B B B BBB

    B B Bc

    nRT

    p c RT cc c RT c RT VK Kc p c pp p p

    B

    B BB

    B

    B

    BBB n

    B B

    n

    p np p pK n K

    p n p np p

    5 3 T t d d f th

  • 7/31/2019 05 Chem Equilibrium

    17/30

    5.3 Temperature dependence of the

    equilibrium constant

    2( / )

    p

    G T HT T

    r m r m

    2( / )d G T H

    dT T

    $ $

    r m lnG RT K $ $

    r m

    2

    ln Hd K

    dT RT

    $$

    This is called the vant Hoff equation.

  • 7/31/2019 05 Chem Equilibrium

    18/30

    If is temperature independent, carrying out theintegrationr mH

    $

    If an indefinite integral is taken, the result is

    2 2

    1 1

    r m

    2d ln d

    K T

    K T

    HK T

    RT

    $

    $

    $

    $

    2 r m

    1 2 1

    1 1ln ( )

    K H

    K R T T

    $ $

    $

    ln K

  • 7/31/2019 05 Chem Equilibrium

    19/30

    A plot of versus 1/Tshould yield a straight line

    with slope and intercept C.

    r mln HK CRT

    $

    ln K

    ln K

    r mH

    R

    $

  • 7/31/2019 05 Chem Equilibrium

    20/30

    5.4 Effects on the equilibrium

    5.4.1 Le Chatelier's principle

    equilibrium systems tend to compensate for the effects

    of perturbing influences.

    If the concentration of a reactant is increased, the

    equilibrium position shifts to use up the added reactants.

    If the pressure on an equilibrium system is increased,

    then the equilibrium position shifts to reduce the pressure.

    If the volume of a gaseous equilibrium system is reduced

    then the equilibrium position shifts to increase the volume.If the temperature of an endothermic equilibrium system

    is increased, the equilibrium position shifts to use up the heat

    by producing more products.

  • 7/31/2019 05 Chem Equilibrium

    21/30

    5.4.2 The effect of pressure on the equilibrium

    BB B B

    B

    B

    B BB

    B B B

    B BB

    B

    B BB

    B

    B

    B

    since ( ) ( ) ( )

    if 0, then

    if 0, then

    if 0, no effect

    p y p p

    K yp p p

    p y

    p y

    $

    $ $ $

    For example

    CaCO3(s) = CaO(s) + CO2(g) pgo backward

    N2(g) + 3H2(g) = 2NH3(g) pgo forward

    5 4 3 Th ff t f i t t th

  • 7/31/2019 05 Chem Equilibrium

    22/30

    5.4.3 The effect of inert components on the

    equilibrium

    B

    B

    B 0 BB

    B

    B 0 BB

    B

    if 0, then

    if 0, then

    n n

    n n

    BB

    B 0 B

    ( )n p

    n n pK

    $

    $

    Suppose nB is componentn0 is inert componentB B

    B

    B0 B

    B

    /( )

    p pn

    n n

    $

    Therefore, for reactions of , the addition of inert gases, such aswater vapor or nitrogen, will make the reaction produce more products.

    B

    B

    0

    5 4 4 Th ff t f t ti ti th

  • 7/31/2019 05 Chem Equilibrium

    23/30

    5.4.4 The effect of concentration ratio on the

    equilibrium

    For gas reactionA B Y Za b y z

    suppose there is no product in the beginning, and let

    the mole ratio of reactants B to A be

    B

    A

    nr

    n

    When, that is, the molar ratio of two reactants is

    equal to the ratio of their stoichiometric coefficients, thecontent of products Y and Z have the maximum values of

    mole fraction.

    br

    a

  • 7/31/2019 05 Chem Equilibrium

    24/30

    5.5 Reactions involving real gases

    B B ln Bf

    RTp

    $ $Real gas

    B

    eq

    Br m ln ( ) ln

    fG RT RT K

    p

    $ $$

    B B B

    eq eqeqB BB

    B B B

    ( ) ( )f p

    Kp p

    $ $ $

    B B Bf p

    KK

    5 6 Ch i l ilib i i li id i t

  • 7/31/2019 05 Chem Equilibrium

    25/30

    5.6 Chemical equilibriums in liquid mixture

    and solution

    B B BlnRT a $

    5.6.1 Chemical equilibriums in a liquid mixtureunder ordinary pressure

    Beq

    r m B

    Bln ( ) lnG RT a RT K

    $ $

    Beq

    B

    B

    ( )K a $ B B Ba f x

    For ideal liquid mixtures

    B

    B B

    B

    1 , 1f f B

    eq

    B

    B

    ( )K x $

  • 7/31/2019 05 Chem Equilibrium

    26/30

    5.6.2 Chemical equilibriums in a solution under

    ordinary pressure

    A A AlnRT a $

    A Beq eq

    r m A BBln( ) ( ) lnG RT a a RT K

    $ $

    A Beq eq

    A B

    B

    ( ) ( )K a a $

    solute

    For ideal dilute solutions

    B

    eq

    B

    B

    ( )b

    Kb

    $ $

    solvent

    B B BlnRT a $

    equilibrium

    A A Aa f x

    B B B/a b b$

    eq

    B

    B

    bif is mall

  • 7/31/2019 05 Chem Equilibrium

    27/30

    JACOBUS HENRICUS VANT HOFF

    JACOBUS HENRICUS VANT HOFF (1852-1911)Dutch physical chemist, received the first Nobel

    Prize in chemistry in 1901 for the discovery of the laws

    of chemical dynamics and of osmotic pressure. VantHoff was one of the early developers of the laws of

    chemical kinetics, developing methods for

    determining the order of a reaction; he deduced the

    relation between temperature and the equilibrium

    constant of a chemical reaction.

  • 7/31/2019 05 Chem Equilibrium

    28/30

    JACOBUS HENRICUS VANT HOFF

    In 1874, vant Hoff (and also J.A. Le Bel, independently)

    proposed what must be considered one of the most

    important ideas in the history of chemistry, namely the

    tetrahedral carbon bond. Vant Hoff carried Pasteurs

    ideas on asymmetry to the molecular level , and

    asymmetry required bonds tetrahedrally distributed

    about a central carbon atom. Structural organic

    chemistry was born.

  • 7/31/2019 05 Chem Equilibrium

    29/30

    VANT HOFF (1852-1911) Dutch physical chemist

  • 7/31/2019 05 Chem Equilibrium

    30/30

    Home work

    5.1 (calculation of equilibrium constant)5.3 (equilibrium and components)

    5.10 (calculation of enthalpy, vant Hoff equation)

    5.13 (thermodynamics)