1ACESUG

  • Upload
    hiyeon

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

  • 7/30/2019 1ACESUG

    1/58

    Wave Prediction ACES Users Guide

    WINDSPEEDADJUSTMENTAND WAVE GROWTH

    TABLE OF CONTENTS

    Description .......................................................................................................................Procedure ..........................................................................................................................Single Case Mode .......................................................................................................Input .....................................................................................................................Main Input Screen .........................................................................................Specific Parameters .................................................................................Wind Observation Type ...........................................................................Wind Fetch Options .................................................................................Open-Water Wave Growth Equations Requestor . .. .. .. .. .. .. .. .. .. .. .. .. .. .Average Depth of Fetch Requestor ...........................................Restricted Fetch Requestor ...............................................................Keyboard Data Entry Requester . .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. . .. .. .. ... . .. .. .Fetch Geometry Data Entry Screen . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..Data File Entry Requester . . .. .. . .. .. . .. .. . .. . .. . .. .. . .. .. . .. . .. . .. . .. .. .. . .. .. . .. . .output ...................................................................................................................Multi~le Case Mode ...................................................................................................Input .....................................................................................................................Main Input Screen .........................................................................................Wind Observation Type ...........................................................................Wind Fetch Options .................................................................................Open-Water Wave Growth Equations Requestor . .. .. .. .. .. .. .. .. .. .. .. .. .. .Restricted Fetch Requestor ...............................................................Specific Parameters Data Entry Screen ... . .. . .. . .. .. . .. .. . .. . .. .. .. . .. .. . .. .. . .. .. . .. .. .output .:.................................................................................................................

    Example Problems ............................................................................................................Example 1 - Offshore to Onshore Winds - Open-Water Fetch - Shallow-WaterWave Equations ................................................................................................Example 2- Shipboard Wind Observation - Open-Water Fetch - DeepwaterWave Equations ................................................................................................Example 3 - Overwater Wind Observation - Deepwater Wave Equations -Restricted Fetch ...............................................................................................References and Bibliography ..........................................................................................

    1-1-11-1-11-1-11-1-11-1-21-1-21-1-31-1-31-1-41-1-51-1-51-1-71-1-81-1-91-1-111-1-121-1-121-1-121-1-131-1-131-1-131-1-141-1-151-1-161-1-171-1-171-1-181-1-191-1-21

    Windspeed Adjustment and Wave Growth 1-1

  • 7/30/2019 1ACESUG

    2/58

    Wave Prediction

    WINDSPEEDADJUSTMENTAND WAVE GROWTHACES Users Guide

    DESCRIPTIONThe methodologies presented in this ACES application provide quick and simpleestimates for wave growth over open-water and restricted fetches in deep andshallow water. Also, improved methods (over those given in the Shore ProtectionManual (SPM), 1984) are included for adjusting the observed winds to thoserequired by wave growth formulas. Because of the complexity of this methodologyand the input requirements, familiarization with the Technical Reference for thisapplication is strongly recommended.

    PROCEDUREThis section provides instructions for running this application in the Single Caseand Multiple Case modes.

    Single Case Mode

    The bulleted items listed below provide instructions for accessing the application.0 Press (@ on the Main Menu to select Single Case Mode.0 Fill in the highlighted input fields on the General Specifications

    screen (or leave the default values). Press ~ when all data onthis screen are correct.

    0 Press (@ on the Functional Area Menu to select Wave Prediction.o Press (@ on the Wave Prediction Application Menu to select

    Windspeed Adjustment and Wave Growth.

    InputFor the Single Case Mode, data input for this application is accomplished throughone main input screen, plus some support screens (for restricted fetch geometry),and several pop-up windows (hereafter called requesters in this document) thatrequest additional specific data or choices between menu-style items. These aredescribed in the following section.

    Windspeed Adjustment and Wave Growth 1-1-1

  • 7/30/2019 1ACESUG

    3/58

    Wave PredictionCES Users Guide

    Main Input ScreenThe main input screen for the Single Case Mode is shown in Figure 1-1-1. Itis used for entering data values and corresponding units for six specificparameters, and choosing between six Wind Observation Types and two WindFetch Options. Final results from the computations are displayed on this screen.

    I tem Value Units .L Wind Obs Type

    El of Observed Wind Zobs: ? ? Overwater (ship)Obsened Wind Speed Uobs: ? ? OverwaterAir Sea Temp. Diff. AT: ? ? Shore (windward)Dur of Observed Wind DurO: ? ? Shore (leeward)Dur of F inal Wind DurF: ? ? InlandLat. of Obsemation LAT: ? deg GeostrophicWind Fetch Length F:

    Eq Neutral Wind Spd u,:Adjusted Wind Speed Ua: BasR5ElWave Height H mo: Options:Wave Period Tp: aec Fl: Proceed

    Nave Growth: F1O: Exit Applicm:----- * * * ,,_: ,----- 0 ----- 11:--,. m___ II- J.rluure L-L-L. man MIIJ UU cxreen - nmgm utxw Ivmue

    Specific ParametersThe following list describes the specific input parameters on the main inputscreen (indicated by ? in Figure 1-1-1 ) with corresponding units and range ofdata recognized by this application:

    mElevation of observed windObserved wind speedAir-sea temperature differenceDuration of observed windDuration of final windLatitude of wind observation

    SYm!2Q!nits Data Rangeohs ft, m 1.0 to 5000.0Uob, ft/see, mph, 0.1 to 200.0

    m/see, knotsAT oC, OF -100.0 to 100.0

    DurO hr, rein, sec 0.1 to 86400.0DurF hr, rein, sec 0.1 to 86400.0LAT deg 0.0 to 180.0

    1-1-2 Windspeed Adjustment and Wave Growth

  • 7/30/2019 1ACESUG

    4/58

    Wave Prediction ACES Users Guide

    Wind Observation Type

    Select a Wind Observation Type by moving the cursor to the desired type andpressing Q. The options available are:

    Location ~ Observation Wind DirectionOver water (shipboard)

    Over water (not shipboard)At shoreline (windward) Offshore to onshoreAt shoreline (leeward) Onshore to offshore

    Over landGeostrophic

    Wind Fetch Options

    Select a Wind Fetch Option by moving the cursor to the desired option andpressing ~. The options available are:

    0 Open Water0 Restricted (Fetch)

    Selecting either of these options will display requesters for further input. Theformat and data requirements of these requesters are described below.

    ------------------------------------------------------------------

    Windspeed Adjustment and Wave Growth l-l-.?

  • 7/30/2019 1ACESUG

    5/58

    ACES Users Guide Wave Prediction

    Open-Water Wave Growth Equations RequestorThe Open-Water Wave Growth Equations requester for the Single Case Mode isshown in Figure 1-1-2. It requests choosing between the deep- and shallow-waterwave growth equations and values for the length and units of wind fetch.

    Open Water Wave Growth EqsI Deep I Shallow

    r ? Place x nextto choiceOpen Water Fetch Input

    Length of Wind Fetch: ? ?Options:

    Fl : Accept wave eq selection and fetchand return to main ecreenAlt+FIO: Exit abdication

    Figure 1-1-2. Open-Water Requestor - Single Case Mode

    Select a Wave Growth Equation by moving the cursor to the desired type andpressing @. The options available are:

    0 Deep (deepwater wave growth relationships).0 Shallow (shallow-water wave growth relationships).

    When the Shallow option is chosen, another requester will appear on the screenasking for the value and units of the average depth of the fetch. See the sectiontitled ztverage Depth of Fetch Requestor and Figure 1-1-3 for more details.The following list summarizes the requested input (indicated by ? in Figure1-1 -2) for the Open-Water Wave Growth Equations requester. The list identifiesthe specific input parameter, units, and range of data recognized by thisapplication:~ SYm!2Q!Units Data RangeLength of wind fetch F ft, m, mi, km 0.0 to 9999.0When all data on the Open-Water Wave Growth Equations requestor are correct,press ~ of the following keys to select the appropriate action:

    m Accept wave eq selection and fetch and return to main screen.~ ~ Exit application.------------------------------------------------------------------

    1-1-4 Windepeed Adjustment and Wave Growth

  • 7/30/2019 1ACESUG

    6/58

    Wave Prediction ACES Users Guide

    Average Depth of Fetch RequestorThe Average Depth of Fetch requestor is shown in Figure 1-1-3 and appearswhen the shallow-water wave growth equations are selected.

    Avg Depth of Fetch d: ? ?Options:F l: Accept avg fetch depth data and

    return to previous windowAlt+FIO: Exit applicationFigure 1-1-3. Average Depth of Fetch Requestor - Single Case Mode

    The following list summarizes the requested input (indicated by ? in Figure1-1 -3) for this requester. The list identifies the specific input parameter, units,and range of data recognized by this application:

    ~ Symbol Units Data RangeAverage depth of fetch d ft, m 0.1 to 10000.0

    When the data for this requester are correct, press m of the following keys toselect the appropriate action:

    m Accept avg fetch depth data andreturn to previous window.~ ~ Exit application.

    ------------------------------------------------------------------

    Restricted Fetch RequestorThe data requirements for the Restricted Fetch approach are substantially largerthan the simpler Open-Water fetch approach. In addition to choosing betweenthe deepwater and shallow-water wave growth equations, the wind approachdirection must be specified as well as an accurate description of the geometryof the subject basin. Radial fetch lengths measured (clockwise from north) fromthe point of interest are used to describe the geometry of the basin. The.

    Windspeed Adjustment and Wave Growth 1-1-5

  • 7/30/2019 1ACESUG

    7/58

    ACES Users Guide Wave Prediction

    conventions and notations associated with data solicited by this group of requestersas well as the remainder of the data for the Fetch Geometry Data Entry Screenwhich follows are presented in Figure 1-1-4.

    North A

    -;(

    Wo;es Fetchn

    Fetch,

    Fetch,

    Figure 1-1-4. Restricted Fetch Conventions

    The Restricted Fetch requestor for the Single Case Mode is shown in Figure1-1-5. It requests a value for the wind approach direction and a choice betweenthe deepwater and shallow-water wave growth equations. It also requests a choicebetween entering all of the fetch geometry interactively or reading the fetchgeometry from a data file.

    Restricted Fetch IWind Direction a : ? deg I

    EEislEEiiE3r rPlace x on desired choice

    Options:F l: Accept these data and

    return to main screenAlt+FIO: Exit Application

    Figure 1-1-5. Restricted Fetch Requestor - Single Case Mode

    The following list summarizes the requested input (indicated by ? in Figure1-1 -5) for the Restricted Fetch requestor. The list identifies the specific inputparameter, units, and range of data recognized by this application:~ Symbol Units Data RangeWind Direction a deg o to 360

    1-1-6 Windspeed Adjustment and Wave Growth

  • 7/30/2019 1ACESUG

    8/58

    Wave Prediction ACES Users Guide

    Next, select a Wave Growth Equation by moving the cursor to the desired typeand pressing ~. The options available are:

    o Deep (deepwater wave growth relationships).0 Shallow (shallow-water wave growth relationships).When the Shallow option is chosen, another requestor will appear on the screenrequesting the average depth of the fetch. See the section titled Average Depthof Fetch Requestor and Figure 1-1-3 for data input details.Finally, select a Fetch Geometry Znput Option by moving the cursor to the desiredoption and pressing @. The options available are:

    0 Keyboard (geometry keyed in now).o Data File (geometry read from file).Selecting either of these options will display requesters for further input. Theformat and data requirements of these requesters are described below.

    ------------------------------------------------------------------

    Keyboard Data Entry RequestorThe Keyboard Data Entry requestor is shown in Figure 1-1-6.

    I Restricted Fetch Geometry Input IRadial Angle Increment A(3:?Dir of 1st Radial Fetch p,:?

    No of Radial Fetches Nfet: ?Options:Alt+Fl: Display radial fetch lengths

    F1O: Return to previous windowAlt+FIO: Exit application

    Figure 1-1-6. Keyboard Data Entry Requestor - Single Case Mode

    The following list summarizes the requested input (indicated by ? in Figure1-1 -6) for the Restricted Fetch Keyboard Data Entry requestor. The list identifiesthe specific input parameter, units, and range of data recognized by thisapplication:

    Windspeed Adjustment and Wave Growth 1-1-7

  • 7/30/2019 1ACESUG

    9/58

    ACES Users Guide

    bRadial Angle IncrementDir of 1t Radial Fetch

    NOTE:No of Radial Fetches

    NOTE:

    Wave Prediction

    Svmbol Units Data RangeA(3 deg 1.0 to 180.0b, deg 0.0 to 360.0

    f3, is measured clockwise from north.Nfet 2 to 360

    The total angular coverage of the radials mustnot exceed 360 deg.

    When the data on this requestor are correct, press m of the following keys toselect the appropriate action:

    ~ ~ Display radial fetch lengths.~ Return to previous window.@!@ = Exit application.

    When the ~ (@ option is selected, a Fetch Geometry Data Entry Screen(described below) will appear to allow input of fetch lengths.

    Fetch Geometry Data Entry ScreenThe majority of the data describing the restricted fetch geometry are collectedon this data entry screen. A total of N/et individual radial fetch lengths mustbe provided at their corresponding angles (measured clockwise from north andprescribed by p, , AP ). The radial fetch index numbers and corresponding anglesare displayed as an input aid on this screen. The units and allowed range ofradial fetch values considered by this application are tabulated below:

    ~ Svmbol Units Data RangeFetch Length ft, m, mi, km 0.0 to 9999.0

    1-1-8 Windspeed Adjustment and Wave Growth

  • 7/30/2019 1ACESUG

    10/58

    Wave Prediction ACES Users Guide

    Up to 20 values may be input and displayed on this screen. If more that 20radial fetch values are specified (N~et > 20), the screen will subsequently bere-invoked for the next 20 values and so on. When the data on this screencorrect, press ~ of the following keys to select the appropriate action:

    are

    ~ Accept data.NOTE: The next 20 values may then be input when thescreen is re-invoked in this fashion. If all (Nfet) valuesfor radial fetch length have been specified, this actionwill signify acceptance of the data as entered and returnto the main input screen (Figure 1-1-1).

    ------------------------------------------------------------------

    Data File Entry RequestorAs an alternative to interactively keying in the restricted fetch geometry data,a data file containing the information may be specified. This requestor providesa mechanism for declaring the name of the data file which contains the restrictedfetch geometry. The format of the Data File Entry requester is shown in Figure1-1-7.

    I Data Fi le Name: WAWG.IN IOptions:Alt+F l: Read the data file now

    F1O: Return to previous windowAlt+FIO: Exit Application

    F igure 1-1-7. Data F ile Entry Requestor - Single Case Mode

    Use this requestor to access and/or modify fetch geometry data saved in anexternal file. Typically this data file has been created with a text editor or savedas a trace file (default name TRACE.OUT) from a previous execution of thisapplication. The format and contents of a trace file produced by this applicationmatch exactly the requirements of this input file. The default input file nameis WAWG.IN, but other filenames (including pathname) are acceptable. Formore information on files, see the section of this manual entitled, GeneralInstructions and Information.

    Windspeed Adjustment and Wave Growth 1-1-9

  • 7/30/2019 1ACESUG

    11/58

    ACES Users Guide Wave Prediction

    After specifying the name of the file, press ~ of the following keys to selectthe appropriate action:

    ~ ~ Read the data file now.NOTE: Use this option to open and read the data fileat this time. Upon successfully reading the file, theFetch Geometry Data Entry Screen is displayed andshows the restricted fetch geometry read from the file.The data may then be edited or accepted usingprocedures described in the previous section.

    @@ Return to previous window.NOTE: Use this option to return to the previous windowwithout accepting any fetch geometry data.

    ------------------------------------------------------------------

    Finally, the application is executed with the selected options and data by pressing(@ from the main input screen (Figure 1-1-1). Input and output data aredisplayed on the screen using the original units for related parameters. The oneexception is the wave height (H~ ~) , which is reported in the final system ofunits. The following section entitled Output summarizes the parameters generatedby this application.

    After completion of the computations, press w of the following keys to selectthe appropriate action:

    m Solve a new case.B Send a summary of this case to the print file or device.ml Exit this application and return to the Wave PredictionApplication Menu.

    1-1-1o Windspeed Adjustment and Wave Growth

  • 7/30/2019 1ACESUG

    12/58

    Wave Prediction ACES Users Guide

    outputResults from this application are displayed on the main input screen in SingleCase Mode. The report also includes the original input values. The followingdata are always reported:

    m

    Equivalent neutral wind speed

    Adjusted wind speed

    Wave heightPeak wave period

    Svmbol

    Ue

    u=

    HmoTP

    EmzlishUnits

    ft/see, mph,knots

    ft/see, mph,knotsftsec

    MetricUnitsm/see

    m/see

    msec

    In addition to the above output, a message is provided indicating whether deep-er shallow-water equations were employed and whether the wave growth wasultimately determined by fetch-limited, duration-limited, or fully developedcriteria.

    If the restricted fetch approach was selected, the individual radial fetch data arenot reported as output. However, the resultant maximized fetch as well asdirectional data for wind and wave growth are also displayed:& Symbol Emzlish Metric

    Units UnitsFetch Length F ft, mi m, kmWind Direction a deg degWave Direction 0 deg deg

    Windspeed Adjustment and Wave Growth 1-1-11

  • 7/30/2019 1ACESUG

    13/58

    ACES Users Guide Wave Prediction

    Multiple Case Mode

    The bulleted items listed below provide instructions for accessing the application.o Press @ on the Main Menu to select Multiple Case Mode.o Fill in the highlighted input fields on the General Specifications screen

    (or leave the default values). Press (@ when all data on this screenare correct.

    o Press @ on the Functional Area Menu to select Wave Prediction.0 Press ~ on the Wave Prediction Application Menu to select Windspeed

    Adjustment and Wave Growth.

    InputAs in most ACES applications, the data requirements for the Multiple Case Modeare essentially the same as for Single Case Mode, but are organized in a differentfashion, Data entry is accomplished through several screens and requeskws whichare described in the following sections.

    Main Input ScreenThe main input screen for the Multiple Case Mode is shown in Figure 1-1-8.It facilitates choosing a Wind Observation Type and Wind Fetch Option for all ofthe computations which follow.

    I I Type of Observation I Wind DirectionI I Over Water (shipboard) ]I I Over Water I

    I I G eostmphic I

    mI I Restricted

    T Place x next to choice Options:Fl: ProceedF1O: Exit Application

    1-1-12

    F igure 1-1-8. M ain I nput Screen - M ultiple Case M ode

    Windspeed Adjustment and Wave Growth

  • 7/30/2019 1ACESUG

    14/58

    Wave Prediction ACES Users Guide

    Wind Observation TypeSelect a Wind Observation Type by moving the cursor to the desired type andpressing @. The options available are:

    Location ~ Observation Wind DirectionOver water (shipboard)

    Over water (not shipboard)At shoreline (windward) Offshore to onshoreAt shoreline (leeward) Onshore to offshore

    Over LandGeostrophic

    Wind Fetch OptionsSelect apressing

    0

    0

    Wind Fetch Option by moving the cursor to the desired option and~. Two options are available:Open WaterRestricted (Fetch)

    Selecting either of these options will display appropriate requesters for furtherinput. The format and data requirements of these requesters are described below.

    ----------------------------------------------------

    Open-Water Wave Growth Equations RequestorThe Open-Water Wave Growth Equations requestor for the Multiple Case Modeis shown in Figure 1-1-9. It provides a mechanism for choosing between thedeepwater and shallow-water wave growth equations.

    Open Water Wave Growth EqsI Deep I Shallow

    r T Place x nextto choiceOptions:Fl: Accept wave eq selection and

    return to main screenAlt+FIO: Exit application

    Windspeed Adjustment and Wave Growth

    Figure 1-1-9. Open-Water Requestor - Multiple Case Mode.

    1-1-19

  • 7/30/2019 1ACESUG

    15/58

    ACES Users Guide Wave Prediction

    Select a wave growth equation by moving the cursor to the desired type andpressing @ Two options are available:

    0 Deep (deepwater wave growth relationships). Shallow (shallow-water wave growth relationships).

    After selecting a wave growth equation, press ~ to return to the Multiple CaseMode main input screen (Figure 1-1 -8) and press ~ to bring up the specificparameters data entry screen.

    ----------------------------------------------------

    Restricted Fetch RequestorThe Restricted Fetch requestor for the Multiple Case Mode is shown in Figure1-1-10. It requests a choice between the deepwater and shallow-water wavegrowth equations and a choice for the preferred mode of entering data for therestricted fetch geometry.

    E!!EIBr T Place x next tochoiceOptions:F l: Accept these data and returnto main screenAlt+FIO: Exit ApplicationFigure 1-1-10. Restricted Fetch Requestor - Multiple

    Case Mode

    Select a Wave Growth Equation by moving the cursor to the desired type andpressing Q. Two options are available:

    o Deep (deepwater wave growth relationships).0 Shallow (shallow-water wave growth relationships).

    1-1-14 Windspeed Adjustment and Wave Growth

  • 7/30/2019 1ACESUG

    16/58

    Wave Prediction ACES Users Guide

    Finally, select a Fetch Geometry Input Option by moving the cursor to the desiredoption and pressing ~. The options available are:

    o Keyboard (geometry keyed in now).0 Data File (geometry read from a file).Selecting either of these options will display requesters for further input. Thetwo corresponding requesters (Keyboard Data Entry and Data File Entry) havebeen described in the Single Case Mode portion of this document. Refer tothose earlier sections for details.After completing input on the reguestors, return to the main input screen (Figure1-1-8) and press ~ to proceed to the specific parameters data entry screen andfollow the steps outlined below for entering data on this screen.

    ----------------------------------------------------

    Specific Parameters Data Entry Screen1. Move the cursor to select a variable on this screen (the selected variable name

    blinks). The current set of values for the variable is displayed on the rightportion of the screen. When all variable sets are correct, go to Step 3.

    2. Enter a set of values for the subject variable by following m of the inputmethods:a. Press @ to select random method. Enter up to 20 values constituting

    a set for this variable (w in each field) on the right side of the screen.The set of 20 values originally displayed (first execution) in these fieldscontains the delimiting value, which delimits or ends the set. Thedelimiting value is not included as a member in the set unless it isthe sole member.

    b. Press ~ to select incremental method. Fill in the fields for minimum,maximum, and increment values for this variable on the right side ofthe screen. In this method, the members of the set include all valuesfrom the minimum to the maximum (both inclusive) at the specifiedincrement.

    Windspeed Adjustment and Wave Growth 1-1-15

  • 7/30/2019 1ACESUG

    17/58

    ACES Users Guide Wave Prediction

    The units field should also be specified for the variable regardless of inputmethod. All members of a set of values for a subject variable are assignedthe specified units. When all data are correct for the subject variable, press~ to return to Step 1. Errors are reported at the bottom of the screenand are corrected by pressing (@ to allow respecification of the data for thesubject variable.

    3. Press (@ to process the cases resulting from the combinations of the sets ofdata for all variables. The summary of each case will be sent to the printfile or device. The screen will display the total number of cases to beprocessed as well as report progress. Errors are reported at the bottom ofthe screen and are corrected by pressing (@ to allow respecification ofvariable sets.

    4. Press w of the following keys to select the appropriate action:

    m Return to Step 1 to specify new sets.m Exit this application and return to the Wave PredictionApplication Menu.

    outputResults from using this application in Multiple Case Mode are written to thePrint File or Device. The format and contents reported are described in theOutput section of the Single Case Mode portion of this document. Refer to thatsection for details. The primary difference is that the reported data are notdisplayed on the screen, but are always written to the Print File or Output Device.

    1-1-16 Windspeed Adjustment and Wave Growth

  • 7/30/2019 1ACESUG

    18/58

    Wave Prediction ACES Users Guide

    EXAMPLE PROBLEMS

    Example 1 - Offshore to Onshore Winds - Open-Water Fetch -Shallow-Water Wave EquationsInput

    Main Input Screenw Svmbol Value UnitsElevation of observed wind Zobs 25 ftObserved wind speed Uobs 45 mphAir-sea temperature difference AT oDuration of observed wind DUR 3 hrDuration of final wind DUR 3 hrLatitude of wind observation LAT 30 degWind Observation Type -> Shore (windward)Wind Fetch Option -> Open Water

    Open-Water Wave Growth Equations RequestorOpen-Water Wave Growth Equation -> ShallowLength of wind fetch F

    Average Depth of Fetch RequestorAverage depth of fetch d

    26

    13

    mi

    ft

    outputm Symbol Value UnitsEquivalent neutral wind speed Ue 46.42 mphAdjusted wind speed Ua 67.92 mphWave height Hmo 4.23 ftPeak wave period TP 4.77 secWave Growth: Shallow-water Fetch-limited

    ----------------------------------------------------

    Windspeed Adjustment and Wave Growth 1-1-17

  • 7/30/2019 1ACESUG

    19/58

    ACES Users Guide Wave Prediction

    Example 2 - Shipboard Wind Observation - Open-Water Fetch - DeepwaterWave EquationsInput

    Main Input Screenm Svmbol Value UnitsElevation of observed wind ohs 60 ftObserved wind speed Uobs 30 knotsAir-sea temperature difference AT -5 deg CDuration of observed wind DUR 1 hrDuration of final wind DUR 3 hrLatitude of wind observation LAT 45 degWind Observation Type -z Overwater (ship)Wind Fetch Option -> Open Water

    Open-Water Wave Growth Equations RequestorOpen-Water Wave Growth Equation -z DeepLength of wind fetch F 60 mi

    outputm Svmbol Value UnitsEquivalent neutral wind speed u= 27.71 knotsAdjusted wind speed Ua 36.18 knotsWave height Hmo 4.74 ftPeak wave period TP 4.65 secWave Growth: Deepwater Duration-limited

    1-1-18

    ----------------------------------------------------

    Windspeed Adjustment and Wave Growth

  • 7/30/2019 1ACESUG

    20/58

    Wave Prediction ACES Users Guide

    Example 3 - Overwater Wind Observation - Deepwater Wave Equations -Restricted Fetch

    InputMain Input Screenb Symbol Value UnitsElevation of observed wind ohs 30 ftObserved wind speed UOb, 45 mphAir-sea temperature difference AT -3 deg CDuration of observed wind DUR 5 hrDuration of final wind DUR 5 hrLatitude of wind observation LAT 47 degWind Observation Type -> OverwaterWind Fetch Option -j Restricted

    Restricted Fetch Requestor

    Wind Direction a 125 degNOTE: a is measured clockwise from north.

    Open-Water Wave Growth Equation -z DeepFetch Geometry Input Options -> Keyboard

    Keyboard Data Entry RequestorSee Figure 1-1-11 for illustration showing wind direction and fetch geometryfor example problem 3.

    Radial Angle Increment A~ 12 degDir of 1st Radial Fetch b] o deg

    NOTE: This direction angle is measured clockwise fromnorth.No of Radial Fetches Nfet 14

    Windspeed Adjustment and Wave Growth 1-1-19

  • 7/30/2019 1ACESUG

    21/58

    ACES Users Guide Wave Prediction

    Fetch Geometry Data Entry Screen

    Units miles RadialNumber

    1234567891011121314

    FetchAngle0.012.024.036.048.060.072.084.096.0108.0120.0132.0144.0156.0

    A( = 12deg ~

    FetchLength

    3.712.313.412.213.236.035.628.726.813.010.410.16.45.7

    1st Radial fetch7F7, i irection due north

    L=\ &

    1 \Riiiii#

    // (

    125 deg

    y krwigure 1-1-11. Restricted Fetch Geometry Illustration for Example31-1-20 Windspeed Adjustment and Wave Growth

  • 7/30/2019 1ACESUG

    22/58

    Wave Prediction ACES Users Guide

    outputw SymbolWind Fetch FWind DirectionEquivalent neutral wind speed UeAdjusted wind speed UaMean Wave DirectionWave height HmoPeak wave period TPWave Growth: Deepwater Fetch-limited

    Value26.61125.0044.0063.2793.007.805.74

    Unitsmidegmphmphdegftsec

    REFERENCES AND BIBLIOGRAPHYBretschneider, C. L., and Reid, R. O. 1954. Modification of Wave Height Dueto Bottom Friction, Perlocation and Refraction, Technical Report 50-1,The Agricultural and Mechanical College of Texas, College Station, TX.Cardone, V. J. 1969. Specification of the Wind Distribution in the MarineBoundary Layer for Wave Forecasting, TR-69- 1, Geophysical SciencesLaboratory, Department of Meteorology and Oceanography, School ofEngineering and Science, New York University, New York.Cardone, V. J., et al. 1976 Hindcasting the Directional Spectra ofHurricane-Generated Waves, Journal of Petroleum Technology, AmericanInstitute of Mining and Metallurgical Engineers, No. 261, pp. 385-394.Donelan., M.A. 1980. Similarity Theory Applied to the Forecasting of WaveHeights, Period!, and Directions, Proceedings of the Canadian CoastalConference, National Research Council, Canada, pp. 46-61.Garratt, J. R., Jr. 1977. Review of Drag Coefficients over Oceans andContinents, Monthly Weather Review, Vol. 105, pp. 915-929.Hasselmann,. K., Barnett, T. P., Bonws, E., Carlson H., Cartwright, D. C., Enke,K., Ewing, J., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg,A., Muller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H. 1973.Measurements of Wind-Wave Growth and Swell Decay During the JointNorth Sea Wave Project (JONSWAP), Deutches Hydrographisches Institut,Hamburg, 95 pp.Hasselmann,. K., Ross, D. B., Muller, P., and Sell, W. 1976. A ParametricPredictIon Model, Journal of Physical Oceanography, Vol. 6, pp. 200-228.Holton, J. R. 1979. An Introduction to Dynamic Meteorology, Academic Press,Inc., New York, pp. 102-118.Lumley, J. L., and Panofsky, H. A. 1964. The Structure of AtmosphericTurbulence, Wiley, New York.

    Windspeed Adjustment and Wave Growth 1-1-21

  • 7/30/2019 1ACESUG

    23/58

    ACES Users Guide Wave Prediction

    Mitsuyasu, H. 1968. On the Growth of the Spectrum of Wind-Generated Waves(I), Reports of the Research Institute of Applied Mechanics, KyushuUniversity, Fukuoka, Japan, Vol. 16, No. 55, pp. 459-482.Resio, D. T. 1981. The Estimation of Wind Wave Generation in a DiscreteModel, Journal of Physical Oceanography, Vol. 11, pp. 510-525.Resio, D. T. 1987. Shallow Water Waves. I: Theory, Journal of Waterway,Port, Coastal and Ocean Engineering, American Society of Civil Engineers,Vol. 113, No. 3, pp. 264-281.Resio, D. T., Vincent, C. L., and Corson, W. D. 1982. Objective Specificationof Atlantic Ocean Wind Fields from Historical Data, Wave InformationStudy Report No. 4, US Army Engineer Waterways Experiment Station,Vicksburg, MS.Shore Protection Manual. 1984. 4th cd., 2 Vols., US Army Engineer WaterwaysExperiment Station, Coastal Engineering Research Center, US GovernmentPrinting Office, Washington, DC, Chapter 3, pp. 24-66.Smith, J.M. 1991. Wind-Wave Generation on Restricted Fetches, MiscellaneousPaper CERC-91 -2, US Army Engineer Waterways Experiment Station,

    Vicksburg, MS.Vincent, C. L. 1984. Deepwater Wind Wave Growth with Fetch and Duration,Miscellaneous Paper CERC-84- 13, US Army Engineer WaterwaysExperiment Station, Vicksburg, MS.

    1-1-22 Windspeed Adjustment and Wave Growth

  • 7/30/2019 1ACESUG

    24/58

    Wave Prediction ACES Users Guide

    BETA-RAYLEIGHISTRIBUTION

    TABLE OF CONTENTS

    Description .......................................................................................................................Input .............................................................................................................................O...output ...............................................................................................................................Screen Output .............................................................................................................Plot Output File 1 ...... . . .. . .. . . . .. . . .. . .. . . .. . . . .. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . . .. . . .. . . .Screen Plot ..................................................................................................................Procedure ..........................................................................................................................Single Case Mode ...... . .. . . . .. . . .. . .. . . .. . . . .. . . .. . .. . . .. . . . .. . .. . . .. . . . .. . .. . . .. . . . .. . .. . . .. . . . .. . .. . . . .. . . . .. . .. . . . ..Multiple Case Mode ..... . . .. . . .. . .. . . . .. . . .. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . .. . . . .. . . . .. . .. . . . .. .Exam~le Problem .............................................................................................................Inhut ...........................................................................................................................Oitput .........................................................................................................................Screen Output ..... . . . .. . .. . . . .. . . .. . .. . . .. . . . .. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . .. . . . .. . . .. . . .. . . . .. . . .. . . .Plot Output File 1 ..... . . .. . . .. . . .. . . .. . .. . . . .. . . .. . .. . . . .. . . .. . .. . . . .. . . .. . .. . . . .. . . .. . . .. . . .. . . . .. . .. . . . .. . . . .. .Screen Plot ............................................................................................................References and Bibliography ..........................................................................................

    1-2-11-2-11-2-11-2-11-2-21-2-21-2-21-2-21-2-31-2-41-2-41-2-51-2-51-2-51-2-61-2-7

    Beta-Ray leigh Distribution 1-2

  • 7/30/2019 1ACESUG

    25/58

    Wave Prediction ACES Users Guide

    BETA-RAYLEIGHISTRIBUTION

    DESCRIPTIONThis application provides a statistical representation for a shallow-water waveheight distribution. The Beta-Rayleigh distribution isexpressed in familiar waveparameters: HnO(energy-based wave height), TI, (peak spectral wave period),and d (water depth). After constructing the distribution, other statistically basedwave height estimates such as H,~, , H~,.. , H,,,0 can be easily computed. TheBeta-Rayleigh distribution features a finite upper bound corresponding to thebreaking wave height, and the expression collapses to the Rayleigh distributionin the deepwater limit. The methodology for this portion of the application istaken exclusively from Hughes and Bergman (1986).

    INPUTAll data input for this application is done on one screen. The following listdescribes the necessary input parameters with their corresponding units and rangeof data recognized by this application:

    M Svmbol Units Data RangeWave height H mo ft, m 0.1 to 60.0Wave period T ~, sec 2.0 to 30.0Water depth d ft, m 0.1 to 3000.0

    OUTPUT Results from this application are displayed on one screen. In addition, there isan option (available in the Single Case Mode only) to send data to plot outputfile 1 (default name PLOTDAT1 .OUT). This application also generates onescreen plot. Each of these outputs is described below.

    Screen OutputResults from this application are displayed on one screen. Those data includethe original input values (in final units) and the following parameters:b SYm!2!d Endish Metric

    Units UnitsRoot-mean-squared (rms) wave H,., ft mheight

    Median wave height H med ft m

    Beta-Ray leigh Distribution 1-2-1

  • 7/30/2019 1ACESUG

    26/58

    ACES Users Guide Wave Prediction

    H1,3 ft mH,,,. ft mH,,, oo ft m

    NOTE: The Beta-Rayleigh distribution will revert to the Rayleighdistribution when d/gT22 0.01. A message will appear at thebottom of the screen when this occurs.

    Plot Output File 1

    Plot output file 1 contains the Beta-Rayleigh or Rayleigh probability densityfunction (pdf) and is written in the following format (see Table 1-2-1 in theexample problem):

    Field Columns Format Data1 8-10 13 Point counter2 14-23 F1O.3 Wave height3 33-42 F1O.3 Beta-Rayleigh or Rayleigh probability

    density

    Screen PlotThis application generates one plot which contains seven curves. The first curve(solid line) is the Beta-Rayleigh or Rayleigh prediction. The remaining curves(represented by individual symbols) are various wave-height probabilities (seeFigure 1-2-1 in the example problem).

    PROCEDUREThe bulleted items in the following lists indicate potentially optional instructionsteps. Any application in ACES may be executed in a given session withoutquitting the program. The bulleted items provide instructions for accessing theapplication from various menu areas of the ACES program. Ignore bulletedinstruction steps that are not applicable.Single Case Mode

    oPress (@ on the Main Menu to select Single Case Mode.

    0 Fill in the highlighted input fields on the General Specifications screen(or leave the default values). Press @ when all data on this screenare correct.

    1-2-2 Beta-Rayleigh Distribution

  • 7/30/2019 1ACESUG

    27/58

    Wave Prediction ACES Users Guide

    0 Press (@ on the Functional Area Menu to select Wave Prediction.0 Press (@ on the Wave Prediction Menu to select Beta-Ray leigh

    Distribution.1. Fill in the highlighted input fields on the Beta-Rayleigh Distribution screen.

    Respond to any corrective instructions appearing at the bottom of the screen.Press (@ when all data on this screen are correct.

    2. All input and output data are displayed on the screen in the final system ofunits.

    3. Press u of the following keys to select the appropriate action:m Return to Step 1 for a new case.(El Plot the data.B Send a summary of this case to the print file or device.@l Generate a file containing the plot data (Plot Output File 1).ml Exit this application and return to the Wave Prediction Menu.

    Multiple Case Mode0 Press @ on the Main Menu to select Multi Case Mode.0 Fill in the highlighted input fields on the General Specifications screen

    (or leave the default values). Press (@ when all data on this screenare correct.

    0 Press (@ on the Functional Area Menu to select Wave Prediction.0 Press @ on the Wave Prediction Menu to select Beta-Rayleigh

    Distribution.1. Move the cursor to select a variable on the Beta-Ray leigh Distribution screen

    (the selected variable name blinks). The current set of values for the variableis displayed on the right portion of the screen. When all variable sets arecorrect, go to Step 3.

    2. Enter a set of values for the subject variable by following w of the inputmethods:a. Press @ to select random method. Enter up to 20 values constituting

    a set for this variable (~ in each field) on the right side of the screen.The set of 20 values originally displayed (first execution) in these fieldscontains the delimiting value, which delimits or ends the set. Thedelimiting value is not included as a member in the set unless it isthe sole member.

    Beta-Ray leigh Distribution 1-2-3

  • 7/30/2019 1ACESUG

    28/58

    ACES Users Guide Wave Prediction

    b. Press @ to select incremental method. Fill in the fields for minimum,maximum, and increment values for this variable on the right side ofthe screen. In this method, the members of the set include all valuesfrom the minimum to the maximum (both inclusive) at the specifiedincrement.

    The units field should also be specified for the variable regardless of inputmethod. All members of a set of values for a subject variable are assignedthe specified units. When all data are correct for the subject variable, press~ to return to Step 1. Errors are reported at the bottom of the screenand are corrected by pressing (@ to allow respecification of the data for thesubject variable.

    3. Press (@ to process the cases resulting from the combinations of the sets ofdata for all variables. The summary of each case will be sent to the printfile or device. The screen will display the total number of cases to beprocessed as well as report progress. Errors are reported at the bottom ofthe screen and are corrected by pressing ~ to allow respecification ofvariable sets.

    4. Press ~ of the following keys to select the appropriate action:m Return to Step 1 to specify new sets.ml Exit this application and return to the Wave Prediction Menu.

    NOTE: Multiple Case Mode does not generate any plot outputfiles or plots.

    EXAMPLE PROBLEM

    InputAll data input for this application is done on one screen. The values andcorresponding units selected for this example problem are shown below.

    1-2-4

    ~ SY@2Q! Value UnitsWave height H mo 5.00 ftWave period Tp 6.30 secWater depth d 10.20 ft

    Beta-Rayleigh Distribution

  • 7/30/2019 1ACESUG

    29/58

    Wave Prediction ACES Users Guide

    outputResults from this application are displayed on one screen and, if requested,written to plot output file 1 (default name PLOTDAT1 .OUT). In addition, oneplot is generated. Each of these outputs for the example problem is presentedbelow.Screen OutputResults from this application are displayed on one screen. Those data includethe original input values and the following parameters:M &l@Q! Value UnitsWave heights H rms 3.72 ft

    H med 3.26 ftHL/3 5.18 ftH,,10 6.55 ftH,,, oo 7.48 ft

    Plot Output File 1Table 1-2-1 below is a partial listing of plot output file 1 (default namePLOTDAT1 .OUT) generated by this application for the example problem.

    Table 1-2-1Partial Listing of Plot Output File 1 for Example

    ProblemCounter Wave height Probability

    density12345678910111213u

    0.000000.102000.204000.306000.408000.510000.612000.714000.816000.918001.020001.122001.22400u

    0.000000.037070.076300.116180.156240.196210.235860.274990.313420.351000.387560.422970.45710

    u(Table 1-2-1 Continued on the Next Page)

    Beta-Rayleigh Distribution 1-2-5

  • 7/30/2019 1ACESUG

    30/58

    ACES Users Guide Wave Prediction

    (Table 1-2-1 Concluded)8990919293949596979899100101

    8.976009.078009.180009.282009.384009.486009.588009.690009.792009.894009.9960010.0980010.20000

    0.000850.000540.000330.000190.000100.000050.000020.000010.000000.000000.000000.000000.00000

    Screen PlotThis application generates one plot. The plot may be accessed by selecting thePlot Data option (~) from the Options menu on the data output screen. Theplot generated is shown in Figure 1-2-1 below. The first curve (solid line) isthe Beta-Ray leigh or Rayleigh prediction. The remaining curves (representedby single symbols) are various wave-height probabilities. (This figure has beenslightly altered from its actual appearance on screen to allow the wave heightprobability symbols to be clearly visible.)

    o.aQ - - Iirms = 3.72 FT+ tks.ed = 3.26 F7)n H(l/3) = S.18 FTo.6e- - u H(l/lQ) = 6.55 FTx H(l/10Q) = 7.48 FT

    0.40- -

    0.zO- -

    0.O-

    0.20 !o z 4 6 B 10 12Uauc Height [ft)

    1-2-6

    Figure 1-2-1. Beta- Rayleigh Predictions for Example Problem

    Beta-Ray leigh Distribution

  • 7/30/2019 1ACESUG

    31/58

    Wave Prediction ACES Users Guide

    REFERENCES AND BIBLIOGRAPHYBattjes, J. A. 1972. Set-Up Due to Irregular Waves: Proceedings of the 13thInternational Conference on Coastal Engineering, American Society of Civil

    Engineers, pp. 1993-2004.Collins, J. I. 1970. Probabilities of Breaking Wave Characteristics, Proceedingsof the 12th International Conference on Coastal Engineering, Amer~canSociety of Civil Engineers, pp. 399-412.Dattatri, J. 1973. Waves off Mangalore Harbor - West Coast of India, Journalof the Waterway, Port, Coastal, and Ocean Engineering Division, AmericanSociety of Civil Engineers, Vol. 99, No. 1, pp. 39-58.Earle, M. D. 1975. Extreme Wave Conditions During Hurricane Camille,Journal of Geophysical Research, Vol. 80, No. 3, pp. 377-379.Ebersole, B. A., and Hughes, S. A. 1987. DUCK85 Photopole Experiment,Miscellaneous Paper CERC-87- 18, US Army Engineer WaterwaysExperiment Station, Vicksburg, MS.Forristall, G. Z. 1978. On the Statistical Distribution of Wave Heights in a

    Storm, Journal of Geophysical Research, Vol. 83, No. C5, pp. 2353-2358.Goda, Y. 1975. Irregular Wave Deformation in the Surf Zone, CoastalEngineering in Japan, Vol. 18, pp. 13-26.Hughes, S. A., and Bergman, L. E. 1987. Beta-Rayleigh Distribution forShallow Water Wave Heights, Proceedings of the American Society of CivilEngineers Specialty Conference on Coastal Hydrodynamics, AmericanSociety of Civil Engineers, pp. 17-31.Kuo, C. T., and Kuo, S. T. 1974. Effect of Wave Breaking on StatisticalDistribution of Wave Heights, Proceedings of Civil Engineering in theOceans, 11], American Society of Civil Engineers, pp. 1211-1231.Longuet-Higgins, M. S. 1952. On the Statistical Distribution of the Heightsof Sea Waves, Journal of Marine Research, Vol. 11, No. 3, pp. 245-266.OchiL~ast~., M;:al::, S. B., and Wang, W. C. 1~~2. ~Rt.s~&~ Analysis of

    Observed During Project,UFL/COEL/TR-045, Coastal and Oceanographic Engineering Department,University of Florida, Gainesville, FL.Scheffner, N. W. 1986. Biperiodic Waves in Shallow Water, Proceedings ofthe 20th International Conference on Coastal Engineering, American Societyof Civil Engineers, pp. 724-736.Shore Protection Manual. 1984. 4th cd., 2 Vols., US Army Engineer WaterwaysExperiment Station, Coastal Engineering Research Center, US GovernmentPrinting Office, Washington, DC.Thompson, E. F. 1974. Results from the CERC Wave Measurement Program,Proceedings of the International Symposium on Ocean Wave Measurementand Analysis, American Society of Civil Engineers, pp. 836-855.Thompson, E. F., and Vincent, C. L. 1985. Significant Wave Height for Shallow

    Water Design, Journal of the Waterway, Port, Coastal, and Ocean EngineeringDivision, American Society of Civil Engineers, Vol. 111, No. 5, pp. 828-842.

    Beta-Rayleigh Distribution 1-2-7

  • 7/30/2019 1ACESUG

    32/58

    Wave Prediction ACES Users Guide

    EXTREMALSIGNIFICANTWAVEHEIGHTANALYSIS

    TABLE OF CONTENTS

    DescriMion .......................................................................................................................Input '.................................................................................................................................output ...............................................................................................................................Plot Output File 1 ......................................................................................................Procedure ..........................................................................................................................Single Case Mode ..... . . . .. . . .. . .. . . . .. . . .. . .. . . .. . . . .. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . .. . . . .. . . . ..Data Entry Options Menu ... . .. .. . .. .. .. . .. . .. . .. .. . .. . .. . .. .. . .. .. . .. . .. .. . .. .. . .. .. .. . .. . .. . .. . .. . .. . .. . ..Initial Case Data Entry .................................................................................Edit Case in External File: EXTREMAL.IN . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..Activity Menu ......................................................................................................Begin Computations ..... . . . .. . .. . . .. . . .. . . .. . . .. . . .. . . . .. . .. . . .. . . . .. . .. . . .. . . . .. . .. . . . .. . . . .. . .. . . . .. . . . .Significant Wave Height Data Entry . .. . .. . .. . .. .. . .. .. . .. .. .. . .. .. . .. .. .. . .. .. .. . .. .. . .. .. .. . ..Confidence Interval Limits Entry ................................................................Review Output Screens .................................................................................Plot Output Data ..... . . .. . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . . .. . .. . . . .. . . . .. . .. . . . .. . . .. .Example Problem .............................................................................................................Input ...........................................................................................................................output .........................................................................................................................Screen Output ......................................................................................................Plot Output File 1 ..... . .. . . .. . . . .. . .. . . .. . . . .. . .. . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . . .. . . .. . .Screen Plots ..........................................................................................................References and Bibliography ...... . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . . .. . . .. . . .

    1-3-11-3-11-3-11-3-21-3-21-3-21-3-21-3-21-3-31-3-31-3-31-3-31-3-41-3-41-3-51-3-61-3-61-3-71-3-71-3-91-3-151-3-17

    Extremal Significant Wave Height Analysis 1-3

  • 7/30/2019 1ACESUG

    33/58

    Wave Prediction ACES Users Guide

    EXTREMALSIGNIFICANTWAVEHEIGHTANALYSIS

    DESCRIPTIONThis application provides significant wave height estimates for various returnperiods. Confidence intervals are also provided. The approach developed byGoda (1988) is used to fit five candidate probability distributions to an inputarray of extreme significant wave heights. Candidate distribution functions areFisher-Tippett Type I and Weibull with exponents ranging from 0.75 to 2.0.Goodness-of-fit information is provided for identifying the distributions whichbest match the input data.

    INPUTThe input requirements of this application consist of the following information

    o Estimated total number of events (NT) from the population during thelength of record.

    o Length of the record in years (K).0 Water depth to check for depth-limited wave heights.0 Significant wave heights (H,) from long-term data source of

    measurements, hindcasts, or observations.0 Confidence level for calculating a confidence interval.

    Data input to this application is accomplished through numerous input screensor through data saved in an external file. Detailed lists of the screens and inputparameters are presented in the Procedure section of this document.

    OUTPUTResults from this application are displayed on three screens and written to plotoutput file 1 (default name PLOTDAT1 .OUT). This application also generatesfive plots. The three output screens and five plots are described in the Proceduresection of this document. The content of the plot output file is described below(refer to the Example Problem section for a paradigm). Equation numbers givenbelow and referenced in the plot output file refer to equations in Section 1-3of the ACES Technical Reference, titled Extremal Significant Wave HeightAnalysis.

    Extremal Significant Wave Height Analysis 1-3-1

  • 7/30/2019 1ACESUG

    34/58

    ACES Users Guide Wave Prediction

    Plot Output File 1This file contains, for each of the five distributions, tabular summaries of

    0 Correlation and the sum of the squares of the residuals.0 Estimates of the scale and location parameters from linear regression

    analysis.0 The probability assigned to each significant wave height (Equation 3).0 A reduced variate (Equation 5).0 An ordered variate (Equation 4).0 Difference between the significant wave height and the ordered variate.0 Expected extreme wave height for a given return period (Equation 6).o Absolute magnitude of the standard deviation of significant wave height

    (Equation 10).PROCEDURE

    This application provides only a Single Case Mode. The Multiple Case Mode isnot available. The Single Case Mode requires interaction with the applicationand provides two options of interactive participation. The first option allowsentering new data sets, and the second option allows the editing of existing datafiles.Single Case Mode

    0 Press (@ on the Main Menu to select Single Case Mode.0 Fill in the highlighted input fields on the General Specifications screen

    (or leave the default values). Press ~ when all data on this screenare correct.0 Press (@ on the Functional Area Menu to select Wave Prediction.0 Press @on the Wave Prediction Menu to select Extremal Significant

    Wave Height Analysis.

    Data Entry Options MenuThis menu provides two options of interactive participation with the application.

    ~ Initial Case Data EntryUse this option to enter an initial (new) set of data. These data willbe written to the Trace Output file (default name TRACE.OUT) andbecome available for subsequent editing and use.

    1-3-2 Extremal Significant Wave Height Analysis

  • 7/30/2019 1ACESUG

    35/58

    Wave Prediction ACES Users Guide

    ~ ~ Edit case in External File: EXTREMAL.INUse this option to access and modify data saved in an external file.This external data file is created by saving (or copying) a trace filefrom a previous execution of this application. The format and contentsof the trace file for this application match exactly the requirements ofthis input file. The default input filename is EXTREMAL.IN, butother filenames (including pathname) are acceptable. After enteringthe filename, press ~ to accept this file. For more informationon files, see the section of this manual entitled, General Instructionsand Information.

    Activity MenuThe Activity Menu is a point from which all options for Single Case data entry,modification, and execution are accessible. The options are:

    m Begin Computations.B Significant Wave Height Entry.B Confidence Interval Limits Entry.m Review Output Screens.B Plot Output Data.m Exit Menu.

    Each option and the required data are described below.

    n Begin ComputationsUse this option only after all data have been entered.

    ~ Significant Wave Height Data EntryThis screen provides for input of general parameters required to run theapplication. Values for all parameters listed are required.

    Extremal Significant Wave Height Analysis 1-3-3

  • 7/30/2019 1ACESUG

    36/58

    ACES Users Guide Wave Prediction

    ~ Units Data RangeUnits ft,mNT o to 10000.0Period (yr) K years o to 999.9Water Depth ft,m o to 1000.0Significant Wave Height for Each Storm ft,m o to 100.0

    NOTE: There is space provided on this screen to enter a title ordescription (optional) to identify where the significant wave datais coming from. This title will appear in the plot output file forreference.NOTE: If there are more than 50 significant heights to be entered,press ~ to access subsequent screens for entering the remainingvalues. Each screen will allow input of 50 values. The applicationwill allow for a maximum of 200 values to be entered. Aftercompleting data entry on this screen, press ~ to return to theActivity Menu.

    (@ Confidence Interval Limits EntryThis screen provides for selecting a particular Confidence ]nterval. Use thearrow keys to move the blinking cursor to the desired Confidence Interval andpress (@ to select it. The choices are:

    80h Confidence Interval85% Confidence Interval900/0 Confidence Interval95% Confidence Interval99% Confidence Interval

    (@ Review Output ScreensThis option allows for viewing the output of this application, which appears onthree screens. The three screens are described below:

    1-3-4 Extremal Significant Wave Height Analysis

  • 7/30/2019 1ACESUG

    37/58

    Wave Prediction ACES Users Guide

    0 The first screen is a table of extremal significant wave heights fordifferent return periods for the five distribution functions. Alsoincluded in the table are two statistics (correlation and sum of thesquares of the residuals) to assist in selecting the best fit distributionfunction.

    0 The second screen is a table of confidence intervals for different returnperiods for the five distribution functions.

    0 The third screen is a table of percent chance that the significant waveheight will equal or exceed the return-period significant height duringthe period of concern.

    B plot Output DataThis application generates five plots. The plots may be accessed from theEXTREMAL WAVE HEIGHT PLOT MENU, which appears when the Plot OutputData option is requested. To access a plot, move the cursor (using the arrowkeys) to the desired plot and press ~. (Appendix C describes options tocustomize plots.) Available plots are:

    0 Fisher-Tippett (FT-1) (see Figure 1-3-1)o Weibull Dist (k=O.75) (see Figure 1-3-2)0 Weibull Dist (k=l .00) (see Figure 1-3-3)0

    Weibull Dist (k=l .40) (see Figure 1-3-4)0 Weibull Dist (k=2.00) (see Figure 1-3-5)0 ALL PLOTS

    NOTE: This option will make all the plots available forviewing. Use the NEXT option of the graphics package(Appendix C) to view each plot successively.

    0 EXIT MENU

    Each plot contains four curves:o Expected extreme wave heights for given return periods.0 Candidate probability distribution.0 Upper confidence limit.0 Lower confidence limit.

    Extremal Significant Wave Height Analysis 1-3-5

  • 7/30/2019 1ACESUG

    38/58

    ACES Users Guide Wave Prediction

    EXAMPLE PROBLEM

    InputThe input for this example problem has been saved in an example file calledEXTDELFT.IN. Refer to the section titled Procedure for instructions to invokeand run this data set.

    @ Significant Wave Height Data Entry

    ~UnitsNTPeriod (yr) KWater DepthSignificant Wave Height for Each

    Storm123456789101112131415

    Valuemeters2020500

    9.328.117.197.066.376.156.035.724.924.904.784.674.644.193.06

    @ Confidence Interval Limits Entry900/oConfidence Interval

    1-3-6 Extremal Significant Wave Height Analysis

  • 7/30/2019 1ACESUG

    39/58

    Wave Prediction ACES Users Guide

    output

    Results from this application are displayed on three screens and written to plotoutput file 1 (default name PLOTDAT1 .OUT). In addition five plots aregenerated. Each of these outputs is described below.

    Screen OutputThe first screen is a table of extremal significant wave heights for differentreturn periods for the five distribution functions. Also included in the table aretwo statistics (correlation and sum of the squares of the residuals) to assist inselecting the best fit distribution function.

    I First Screen IN = 15 NU = 0.75 FT-I Weibull DistributionNT =20 K=20yrLAMBDA = 1.00 I k=O.75 k=l.00 k=1.40 I k=2.00Correlation 0.9813 0.9414

    0.1601 0.78160.9674 0.9818 I 0.9866Sum Square of Residuals 0.3568 0.2201 I 0.1034

    Hs (ft) I Hs (ft) Hs (ft) I H, (ft)eturn Period (Yr)2

    Hs (ft)

    +

    15.94 15.9621.50 20.1825.18 24.00

    15.7920.9124.79

    15.77 I 15.865

    *

    21.56 22.0225.29 25.5329.76 29.44

    10

    29.84 I 29.66 29.91532.90 I 32.030 33.29 I 34.33 33.79

    100 36.72 I 39.29 37.66 35.89 I 34.40

    1-3-7Extremal Significant Wave Height Analysis

  • 7/30/2019 1ACESUG

    40/58

    ACES Users Guide Wave Prediction

    The second screen is a table of confidence intervals for different return periodsfor the five distribution functions.

    Second Screen90~o Confidence Interval (Lower Bound - Upper Bound) UNITS (ft)

    Return FT-I Weibull DistributionPeriod k=O.75 k=l.00 k=l.40 k=2.00

    5 17.7 -25.3 15.1 -25.3 16.4 -25.4 17.2 -25.9 17.8 -26.210 19.7 -30.7 15.8 -32.2 17.9 -31.7 19.2 -31.3 20.1 -31.025 22.0 -37.7 16.5 -42.8 19.7 -40.1 21.6 -38.0 22.5 -36.450 23.6 -43.0 17.1 -51.5 21.1 -46.5 23.2 -42.6 24.1 -40.0100 25.2 -48.2 17.8 -60.8 22.4 -52.9 24.7 -47.1 25.5 -43.3

    The third screen is a table of percent chance that the significant wave heightwill equal or exceed the return-period significant height during the period ofconcern.

    Third ScreenPercent Chance for Significant Height Equaling or Exceeding ReturnPeriod H8

    Return I Period of Concern (Yr)Period 2 5 10 25 50 100

    2 75 97 100 100 100 1005 36 67 89 100 100 10010 19 41 65 93 99 10025 8 18 34 64 87 9850 4 10 18 40 64 87100 2 5 10 22 39 63

    1-3-8 Extremal Significant Wave Height Analysis

  • 7/30/2019 1ACESUG

    41/58

    Wave Prediction ACES Users Guide

    Plot Output File 1This file contains, for each of the five distributions, tabular summaries of

    Correlation and the sum of the squares of the residuals.0 Estimates of the scale and location parameters from linear regression

    anal ysis.0 The probability assigned to each significant wave height (Equation 3).0 A reduced variate (Equation 5).0 An ordered variate (Equation 4).0 Difference between the significant wave height and the ordered variate.0 Expected extreme wave height for a given return period (Equation 6).0 Absolute magnitude of the standard deviation of significant wave height

    (Equation 10).Equation numbers refer to equations in Section 1-3 of the ACES TechnicalReference, titled Extremal Significant Wave Height Analysis.

    Table 1-3-1 is a complete listing of plot output file 1 (default namePLOTDAT1 .OUT).

    Table 1-3-1Listing of Plot Output File 1 for Example Problem

    EXTREMAL SIGNIFICANT WAVE HEIGHT ANALYSISDELFT Data

    N = 15 STORMSNT = 20 STORMSNU = 0.75K = 20.00 YEARSLAMBDA = 1.00 STORMS PER YEARMEAN OF SAMPLE DATA = 19.053 FEETSTANDARD DEVIATION OF SAMPLE = 5.341 FEET

    Extremal Significant Wave Height Analysis

    (Table 1-3-1 Continued on the Next Page)

    1-3-9

  • 7/30/2019 1ACESUG

    42/58

    ACES Users Guide Wave Prediction

    (Table 1-3-1 Continued)FISHER-TIPPETT TYPE I (FT-1) DISTRIBUTION

    F(Hs) = EXP(-EXP(-(Hs-B)/A)) - Equation 1A = 4.910 FEETB = 14.136 FEETCORRELATION = 0.9813SUM SQUARE OF RESIDUALS = 0.1601 FEET

    RANK

    123456789101112131415

    Hsm(Ft)

    30.5826.6123.5923.1620.9020.1819.7818.7716.1416.0815.6815.3215.2213.7510.04

    F(Hs

  • 7/30/2019 1ACESUG

    43/58

    Wave Prediction ACES Users Guide

    (Table 1-3-1 Continued)WEIBULL DISTRIBUTION k= O.75

    F(Hs) = 1-EXP(-((Hs-B)/A)* *k) Equation 2A = 3.310 FEETB = 13.933 FEETCORRELATION = 0.9414SUM SQUARE OF RESIDUALS = 0.7816 FEET

    RANK

    123456789101112131415

    Hsm(Ft)

    30.5826.6123.5923.1620.9020.1819.7818.7716.1416.0815.6815.3215.2213.7510.04

    F(Hs

  • 7/30/2019 1ACESUG

    44/58

    ACES Users Guide Wave Prediction

    (Table 1-3-1 Continued)WEIBULL DISTRIBUTION k = 1.00

    F(Hs) = 1-EXP(-((Hs-B)/A)* *k)A = 5.592 FEETB = 11.913 FEETCORRELATION = 0.9674SUM SQUARE OF RESIDUALS = 0.3568 FEET

    RANK

    123456789101112131415

    Hsm(Ft)

    30.5826.6123.5923.1620.9020.1819.7818.7716.1416.0815.6815.3215.2213.7510.04

    F(Hs

  • 7/30/2019 1ACESUG

    45/58

    Wave Prediction ACES Users Guide

    (Table 1-3-1 Continued)WEIBULL DISTRIBUTION k = 1.40

    F(Hs) = 1-EXP(-((Hs-B)/A)* *k)A = 9.115 FEETB = 8.756 FEETCORRELATION = 0.9818SUM SQUARE OF RESIDUALS = 0.2201 FEET

    RANK

    123456789101112131415

    Hsm(Ft)

    30.5826.6123.5923.1620.9020.1819.7818.7716.1416.0815.6815.3215.2213.7510.04

    F(Hs

  • 7/30/2019 1ACESUG

    46/58

    ACES Users Guide Wave Prediction

    (Table 1-3-1 Concluded)WEIBULL DISTRIBUTION k = 2.00

    F(Hs) = 1-EXP(-((Hs-B)/A) **k)A = 14.115 FEETB = 4.112 FEETCORRELATION = 0.9866SUM SQUARE OF RESIDUALS = 0.1034 FEET

    RANK

    123456789101112131415

    Hsm(Ft)

    30.5826.6123.5923.1620.9020.1819.7818.7716.1416.0815.6815.3215.2213.7510.04

    F(Hs

  • 7/30/2019 1ACESUG

    47/58

    Wave Prediction ACES Users Guide

    Screen PlotsThis application generates five plots. The plots may be accessed from theEXTREMAL WAVE HEIGHT PLOT MENU, which appears when the Plot OutputData option (@ from the Activity Menu is requested. To access a plot, movethe cursor (using the arrow keys) to the desired plot and press @. (AppendixC describes options to customize plots.) The plots generated are shown in Figures1-3-1 through 1-3-5.

    !iQ- - Dfim ,.,......- FT I DISTR11HITIIP4 ,.-

    40- - ........ 9W CONFIDENCE ItiTERuAL ~DS -.................-----.......-3e - ....-............-.....-.- ...........................-........zO- - ..................-........................-

    ,,,.

    f10 !1.0 10RETURN PER IOD (YR1

    Figure 1-3-1. Fisher-Tippett Distribution and Expectedwith Confidence Limits

    . . 16)83

    Extreme Wave Heights

    [ Df3TII UEIBULL DIST. (k=O.7Slm .........-9W CONFIDENCE INTESWL BOU?iDS .,-,..,..-t

    ..se ...-..-.....,. ...

    1.0 10 leeRETURN PER IOD (YR1

    Figure 1-3-2. Weibul l Distr ibution (k= O.75) and Expected Extreme Wave Heightswith Confidence Limits

    Extremal Significant Wave Height Analysis 1-3-15

  • 7/30/2019 1ACESUG

    48/58

    ACES Users Guide Wave Prediction

    7 DhTfi UEIBULL DIST. (k=l.=)5e ----------&z CONFIDENCE INTERML BMJNDS ....,,--/....----.,-.-,,..-0!l.e 10 100RETURN PERIOD (YR)

    Figure l-3-3. Weibull Distr ibution (k=.00) and Expected Extreme Wave Heightswith Confidence Limits

    5e- - DhTfi ..... UEIBULL DIST. (k=l .40) ,...-.------------0x CIMFIDEME INTEIWML BOUNDS ,....-4e- - .....-.,-,.....-.......,..--

    3e- - .,-----.,,.,,...----..........-. ................-.............--.-.ze - ....

    .....le- ,..Q!1.0 10 1*RETURN PERIOD (YR)

    Figure 1-3-4. Weibull Distr ibution (k=.40) and Expected Extreme Wave Heightswith Confidence Limits

    1-3-16 Extremal Significant Wave Height Analysis

  • 7/30/2019 1ACESUG

    49/58

    Wave Prediction ACES Users Guide

    5e- - Dhm UEIBULL DIST. (k=Z.=)

    4e- - ----------W (XINFIDEIKEIHTEIUML BCIUNDS ...--.--.._.----......-.........-.,,----....--.---3e - _.,---...-----.,......-.-....--- ...............................---.-,.ze- - .----- ......-.----.---

    ..-

    e-~

    10 !l.e 10 leeRETURN PERIOD [WI>Figure 1-3-5. W+bull Distribution (k=2.00) and Expected Extreme Wave Heights

    with Confidence Limits

    REFERENCES AND BIBLIOGRAPHYGoda, Y. 1988. On the Methodology of Selecting Design Wave Height,Proceedings, Twenty-first Coastal Engineering Conference, AmericanSociety of Civil Engineers, Costa del Sol-Malaga, Spain, pp. 899-913.Gringorten, I. I. 1963. A Plotting Rule for Extreme Probability Paper, Journalof Geophysical Research, Vol. 68, No. 3, pp. 813-814.Gumbel, E. J. 1958. Statistics of Extremes, Columbia University Press, NewYork.Muir, L. R., and E1-Shaarawi, A. H. 1986. On the Calculation of ExtremeWave Heights: A Review, Ocean Engineering, Vol. 13, No. 1, pp. 93-118.Petrauskas,C., and Aagaard, P. M. 1970. Extrapolation of Historical StormData for Estimating Design Wave Heights, Proceedings, 2nd OffshoreTechnology Conference, OTC1 190.Headquarters, Department of the Army. 1989. Water Levels and Wave Heightsfor Coastal Engineering Design, Engineer Manual 1110-2-1414,Washington, DC, Chapter 5, pp. 72-80.

    Extremal Significant Wave Height Analysis 1-3-17

  • 7/30/2019 1ACESUG

    50/58

    Wave Prediction ACES Users Guide

    CONSTITUENTTIDE RECORDGENERATION

    TABLE OF CONTENTS

    Description ....................................................................................................................... 1-4-1Input ................................................................................................................................. 1-4-1output ............................................................................................................................... 1-4-1Plot Output File 1 ..... . . .. . .. . . . .. . . .. . . .. . .. . . . .. . . .. . .. . . .. . . . .. . .. . . .. . . .. . . .. . . .. . . . .. . .. . . . .. . . . .. . .. . . . .. . . .. . . .. 1-4-1Procedure .......................................................................................................................... 1-4-2Single Case Mode ...... . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . .. . . .. . . . .. . .. . . .. . . . .. . .. . . .. . . . .. . .. . . . .. . . .. . . .. . . . .. . . .. . . .. 1-4-2Data Entry Options Menu ... . .. .. . .. .. .. . .. .. . .. .. . .. . .. .. . .. .. . .. .. .. . .. .. . .. .. . .. . .. .. . .. .. . .. . .. .. . .. .. . . 1-4-2Initial Case Data Entry ..... . . .. . . .. . . .. . . .. . .. . . . .. . . .. . .. . . . .. . . .. . .. . . . .. . . . .. . .. . . . .. . . .. . . .. . . .. . . . 1-4-2Edit Case inan External File . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. . .. .. .. .. .. .. .. 1-4-3Activity Menu ..... . . .. . . .. . .. . . . .. . . .. . .. . . .. . . . .. . .. . . .. . . . .. . . .. . .. . . .. . . . .. . .. . . . .. . . .. . . .. . . .. . . . .. . .. . . . .. . . .. 1-4-3Generate the Tide Elevation Record . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1-4-3General Time& Output Specifications ...................................................... 1-4-4Constituent Data Entry ................................................................................ :-j::Write Tide Record to Plot Output File 1 ...................................................Plot the Tide Record ................................................................................... 1:4-5Example Problem ...... . .. . . . .. . .. . . .. . . . .. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. . . . .. . .. . . . .. . . . .. . .. . . . 1-4-6Input ........................................................................................................................... 1-4-6General Time &Output Specifications Data Entry . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 1-4-6Constituent Data Entry ....................................................................................... 1-4-6output ......................................................................................................................... 1-4-7Screen Plot ............................................................................................................ 1-4-7Plot Output File 1 ..... . .. . . .. . . . .. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . .. . . . .. . . . .. . .. . . . .. . . .. . . 1-4-8References and Bibliography ..... . .. . . . .. . . .. . . .. . . .. . . .. . . .. . .. . . . .. . . .. . .. . . .. . . . .. . . .. . . .. . . . .. . .. . . . .. . . . .. . . .. . . . 1-4-8

    Constituent Tide Record Generation 1-4

  • 7/30/2019 1ACESUG

    51/58

    Wave Prediction ACES Users Guide

    CONSTITUENTIDERECORDGENERATION

    DESCRIPTIONThis ACES application predicts a tide elevation record at a specific time andlocale using known amplitudes and epochs forindividual harmonic constituents.

    INPUTThe input requirements of this application consist of two general types ofinformation.

    General temporal data.0 Constituent data for the particular desired location.

    Data input to this application is accomplished by interaction with several inputscreens or by reading data from an external file. Detailed lists of the screensand input parameters are presented in the Procedure section of this document.

    OUTPUTThis application generates one plot (see section titled Plot Output Data). Inaddition, there is an option to send data to plot output file 1 (default namePLOTDAT1 .OUT). The contents and organization of output data in the plotoutput file are summarized below.

    Plot Output File 1This file contains the tide elevation at specific times. Plot output file 1 is writtenin the following format:

    Field Columns Format Data1 1-8 F8.2 Time in hours from beginning of

    simulation2 19-26 F8.2 Elevation of the tide

    Constituent Tide Record Generation 1-4-1

  • 7/30/2019 1ACESUG

    52/58

    ACES Users Guide Wave Prediction

    PROCEDUREThis application provides only aSingle Case Mode. The Multiple Case Mode isnot available. Single Case Mode requires interaction with the application andprovides two options of interactive participation. The first option allows enteringnew data sets, and the second option allows editing of data sets read from anexternal file.

    Single Case ModeThe bulleted items in the following lists indicate potentially optional instructionsteps. Any application in ACES may be executed in a given session withoutquitting the program. The bulleted items provide instructions for accessing theapplication from various menu areas of the ACES program. Ignore bulletedinstruction steps that are not applicable.

    0 Press @ on the Main Menu to select Single Case Mode.0 Fill in the highlighted input fields on the General

    Specifications screen (or leave the default values). Forinformation on input requirements on the GeneralSpecifications screen, please refer to the section of the UsersGuide entitled General Instructions and In formation. Pressn when all data on this screen are correct.

    0 Press @ on the Functional Area Menu to select WavePrediction.

    o Press @on the Wave Prediction Menu to select ConstituentTide Record Generation.

    Data Entry Options MenuThis menu provides two options of interactive participation with theapplication

    Initial Case Data EntryUse (@ option to enter an initial (new) set of data. These data will bewritten to the Trace Output file and become available for subsequent editingand use.

    1-4-2 Constituent Tide Record Generation

  • 7/30/2019 1ACESUG

    53/58

    Wave Prediction ACES Users Guide

    Edit Case in an External FileUse ~ ~ option to access and modify data from an external file. Thisexternal data file is created by saving (or copying) a trace file from aprevious execution of this application. The format and contents of thetrace file for this application match exactly the requirements of this inputfile. The default input file name is TIDES. IN, but other filenames(including pathname) are acceptable. After entering the filename, press~ to accept this file. For more information on files, see the sectionof this manual entitled General Instructions and In formation.

    Activity MenuThe Activity Menu is a pivotal point from which all options for Single Casedata entry, modification, and execution are accessible. The options are:

    Generate the Tide Elevation Record.General Time & Output Specifications.Constituent Data Entry.Write Tide Record to current plot output filename.Plot the Tide Record.Exit Menu.

    Each option and the required data are described below.

    ~ Generate the Tide Elevation RecordUse this option only after all data have been entered.

    Constituent Tide Record Generation 1-4-3

  • 7/30/2019 1ACESUG

    54/58

    ACES Users Guide Wave Prediction

    @ GeneralThis screenapplication.&

    Time & Output Specificationsprovides for input of general parameters required to run theValues for all parameters listed except Description are required.

    Units Data RangeSimulation Start Time:

    YearMonthDayHour

    Length of RecordOutput Time IntervalMean Water Level Height aboveDatumDescription

    1900 to1 to1 too to

    hr o tohr,min 1 toft,m -1oo to

    alphanumericCAUTION: The number of points used in calculating the tiderecord is determined by dividing the Length of Record by theOutput Time Interval. A maximum of 1,500 points are allowedby this application. If this maximum is exceeded, an errormessage will be displayed on screen.

    NOTE: When all required data have been entered on this screenpress ~ to return to the Activity Menu.

    205012312474460100

    @ Constituent Data EntryThis series of screens provides for input of constituent data (amplitude andepoch) for any of 37 constituents. The major tidal constituents accepted by thisapplication are listed in Table A-5 in Appendix A.

    m Units Data RamzeGage Longitude deg West -180.0 to 180.00Amplitude Units ft,mAmplitude of Individual ft,m 0.0 to 999.99

    Constituentn

    1-4-4 Constituent Tide Record Generation

  • 7/30/2019 1ACESUG

    55/58

    Wave Prediction ACES Users Guide

    Epoch of Individual deg 0.0 to 360.00Constituent.

    NOTE: The symbols of 37 common harmonic constituents (seeTable A-5 in Appendix A) are displayed on a series of screens.Place the values of amplitude and epoch by the appropriate desiredconstituent symbol.

    Press (@to continue additional constituent input on subsequentscreens. When finished entering all data, press ~ to return tothe Activity Menu.

    The number of constituents needed to describe the astronomical tide varies withthe location. More terms are needed where the tide must travel a great distanceover shallow water than when the tide station is near the open sea. Additionalterms may be needed to obtain an adequate representation when the tidal rangeis large rather than small (Harris, 1981). In the United States, 37 standardsconstituents (Table A-5, Appendix A) are found to be adequate for most tidestations (Schureman, 1971). These harmonic constituents are available for manyUS locations from the National Ocean Survey.

    @ Write Tide Record to Plot Output File 1This option generates a plot output file (default name PLOTDAT1 .OUT)containing tide elevations at specific times. Plot output file 1 is written in thefollowing format (see Table 1-4-1

    Field Columns Format1 1-8 F8.22 19-26 F8.2

    in the Example Problem):

    DataTime in hours from beginning of

    simulationElevation of the tide

    @ Plot the Tide RecordThis application generates one plot (see Figure 1-4-1 in the Example Problem)consisting of the tide elevation against time for the Length of Simulation specifiedon the General Time & Output Specifications screen..

    Constituent Tide Record Generation 1-4-5

  • 7/30/2019 1ACESUG

    56/58

    ACES Users Guide Wave Prediction

    EXAMPLE PROBLEM

    Input

    1-4-6

    ~ General Time & Output Specifications Data Entryw Value UnitsSimulation Start Time:

    Year 1989Month 1Day 10Hour 10.00

    Length of Record 120.00 hrOutput Time Interval 15.00 minMean Water Height above Datum 1.79 ftDescription Buzzards Bay Entrance, MA (Datum MLLW)

    ~ Constituent Data EntrywGage LongitudeAmplitude Units

    Value Units70.62 deg West

    ft

    Amplitude1.6210.3030.4470.2620.2660.2210.0700.0450.1130.0770.0700.0710.0110.0380.0160.0170.037

    Epoch269.90283.60245.10114.00136.70123.90241.90138.0082.20262.20225.00225.70276.3055.30119.00109.0044.60(Constituent Data Entry continued on the next page)

    Constituent Tide Record Generation

  • 7/30/2019 1ACESUG

    57/58

    Wave Prediction ACES Users Guide

    (Constituent Data Entry concluded)SA 0.112 151.60Q1 0.045 112.60Tz 0.018 283.60PI 0.091 123.80Lz 0.045 294.702MK3 0.039 159.00Kz 0.091 274.20MS4 0.076 231.00NOTE: All other harmonic constituents are 0.0 for this example.

    output

    Screen PlotFigure 1-4-1 is the one plot generated for this Example Problem. The plot maybe accessed from the Activity menu screen by pressing (@.

    Tide Elevations (from constituents)Buzzards Bag Entrance, IM (Datum MLLW )5.e

    t

    1.0 !e Zo 49 be 09 100 lZOI irne [hr)Figure 1-4-1. Tidal Elevation Curve for the Example Problem

    Constituent Tide Record Generation 1-4-7

  • 7/30/2019 1ACESUG

    58/58

    ACES Users Guide Wave Prediction

    Plot Output File 1In addition to the screen plot, the data can be sent to plot output file 1 (defaultname PLOTDAT1 .OUT) by pressing @l. This file contains tide elevations atspecific times. Table 1-4-1 is a listing of the plot output file 1 for the ExampleProblem.

    Table 1-4-1Listing of Plot Output File 1 for

    Example Problem

    CONSTITUENT TIDEELEVATION RECORD

    Buzzards Bay Entrance, MA(Datum MLLW)

    TIME(hrs)0.000.250.500.751.004

    118.50118.75119.00119.25119.50119.75120.00

    ELEVATION(feet)4.264.354.394.384.32

    40.650.520.380.250.120.01-0.08

    REFERENCES AND BIBLIOGRAPHYHarris, D. L. 1981. Tides and Tidal Datums in the United States,: SpecialReSport SR-7, US Army Engineer Waterways Experiment Station, Vicksburg,Headquarters, Department of. the Army. 1989. Water Levels and Wave Heightsfor Coastal Engineering Design, Engineer Manual 1110-2-1414,Washington, DC, Chapter 2, pp. 5-10.Schureman, P. 1971 (reprinted). Manual of Harmonic Analysis and Predictionof Tides, Coast and Geodetic Survey Special Publication No. 98, Revised(1940) Edition, US Government Printing Office, Washington, DC.