22 Baranenko Vniiaes Ntd En

Embed Size (px)

Citation preview

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    1/27

    1

    VNIIAESVNIIAES, 109507,, 109507, Moscow,Moscow,FerganskayaFerganskaya strstr.,., 2525

    EE--mailmail:: baranenkovi@[email protected]

    [email protected]@erec.ru

    IAEA Technical Workshop Erosion-corrosion wear including flow

    accelerated corrosion (FAC) and environmentally assisted racking (EAC)issues at nuclear plants

    April 21-23, 2009, Moscow, Russian Federation

    VNIIAES V.I. Baranenko

    On Development and Implementation of Normative Documentation on Evaluationof Technical Status and Residual Life of NPP Pipelines

    Subjected to Erosion-Corrosion Wear

    VNIIAES

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    2/27

    2

    Developed Normative Documentation

    on Erosion-Corrosion Wear (E/C) 1. Software ECI-02. ECI-02 software registration and qualification

    certificate date is 17.03.2003, passport issued 19.09.2003.

    2. Software ECI-03. ECI-03 software registration and qualificationcertificate date is 17.03.2005, passport issued 23.06.2005.

    3. Guidelines Norms of permissible thickness for pipelineelements from carbon steel at nuclear plants RD EO 0571-2006. Putinto force in 01.11.2006.

    4. Methodological instruction Analysis of steel chemicalcomposition by spectral and photoelectric method. Pipelines andcomponents at power units 3&4 of Novovoronezh NPP .

    27.18.05.010-2004. Methodological instruction. Agreed byM.Miroshnichenko, Director of nuclear plant safety control departmentof Federal Service on environmental and nuclear inspection,25.11.2004.

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    3/27

    3

    Factors Considered by the Software Tools

    Software tools consider erosion-corrosioninfluence of the following factors:

    water chemistry indicators (type of amine applied,water , oxygen content in water);

    parameters of mode (water velocity andtemperature);

    content of chemical elements in pipeline metal(chromium, molybdenum and copper);

    pipeline geometry (inner diameter, wall thickness,Keller factor);

    duration of operation (start and finish of pipelineoperation).

    steam wetness (for ECI-DS software)

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    4/27

    4

    Software Possibilities

    ECI-OS & ECI-DS software allows for:

    Data input for calculations;

    Checking correctness of data input; Calculations of initial, final and average rate of E/C and wall

    thinning for a defined time period

    With one set of initial parameters;

    With many sets of initial parameters (one or two variableparameters);

    Output calculation results in graphs and tables:

    to display;

    to printer;

    to file; Adjust graphic presentation of calculation results;

    Get help working with a software.

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    5/27

    5

    Dialog Box of ECI 02.1 Software

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    6/27

    6

    Example of Calculations by

    ECI-02.1 Software

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    7/27

    7

    Comparison of Calculation Results by

    ECI-01 Software with Operating Measurement Data of Wall

    Thinning in Feedwater Pipelines

    Measurement, mm

    Calculation,m

    m

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    8/27

    8

    RD EO 0571-2006 Guidelines

    Permissible thickness of pipeline elements

    from carbon steel at nuclear plants.Put into force 01.11.2006

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    9/27

    9

    Erosion-corrosion wearVNIIAES

    Local Wear of Pipeline Wall with Main Dimensions

    Circumferencedirection

    Axial direction

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    10/27

    10

    VNIIAES

    Scanning of Pipeline Surface Divided into Three Areas

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    11/27

    11

    Permissible Depth and Length of Local Thinning Area(fig. )

    Lt/

    R

    sr

    La/Rsr

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    12/27

    12

    VNIIAES

    Comparison of Permissible Thickness Calculations by Developed Method and by Data

    fig. A when Lt1 = 1,0, Rsr, and L t1 = 2,65RS(1,2 Guideline, 1, 2 data fig. )

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    13/27

    13

    VNIIAESDevelopment of norms for permissible thinning of NPP pipelines subjected to E/C wear

    Graphs Defining the Values for Permissible Thickness ofPipelines with 53028 mm Diameter

    Initial dataInitial dataInitial dataInitial data Calculated valuesCalculated valuesCalculated valuesCalculated values

    SteelSteelSteelSteel

    typetypetypetype

    OuterOuterOuterOuter

    diamdiamdiamdiam.,.,.,., DDDDaaaa

    (2(2(2(2RRRRaaaa)))) mmmmmmmm

    Nom.Nom.Nom.Nom.

    thicknthicknthicknthickn.....,.,.,.,

    ssss,,,, mmmmmmmm

    Temp.Temp.Temp.Temp.

    tttt,,,,

    InnerInnerInnerInner

    press.press.press.press..,.,.,.,

    ,,,, MPaMPaMPaMPa

    Add.Add.Add.Add.stressstressstressstress

    [[[[],],],],

    MPaMPaMPaMPa

    Calc.Calc.Calc.Calc.

    thicknthicknthicknthickn.,.,.,.,

    ssssRRRR,,,, mmmmmmmm

    LLLLctctctct,=,=,=,=

    0.250.250.250.25DDDDaaaa

    mmmmmmmm

    RRRRaaaassssRRRR,,,,mmmmmmmm

    LLLLcacacaca====

    8888RRRRaaaassssRRRR,,,,

    mmmmmmmm

    20202020 530530530530 28282828 230230230230 12,012,012,012,0 130,67130,67130,67130,67 23,323,323,323,3 416,26416,26416,26416,26 76,476,476,476,4 611.4611.4611.4611.4

    Circumferential defect dimension, mm

    Axial defect dimension, mm

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    14/27

    14

    Distribution scanning of

    06- elbow wall thickness

    (1996 and 2002, top andbottom correspondingly)

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    15/27

    15

    Influence of Corrosion Products Deposits on

    Reliability of Wall Thickness Measurements

    During Operating Inspections

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    16/27

    16

    1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 2 0 21 22 2 3 24 25 26 2 7 2 8

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    -2 ,00 --1, 75 -1 ,75 --1, 50 -1, 50--1 ,25 -1, 25--1 ,00 -1 ,00 --0, 75 -0 ,75--0, 50 -0, 50--0 ,2 5

    -0,25-0,00 0,00-0,25 0,25-0,50 0,50-0,75 0,75-1,00 1,00-1,25 1,25-1,50

    19961996 20002000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

    1

    6

    11

    1,75-2,00

    1,50-1,75

    1,25-1,50

    1,00-1,25

    0,75-1,00

    0,50-0,75

    0,25-0,50

    0,00-0,25

    -0,25-0,00

    -0,50--0,25

    -0,75--0,50

    -1,00--0,75

    -1,25--1,00

    -1,50--1,25

    -1,75--1,50

    -2,00--1,75

    VNIIAES

    Distribution of thickness change between 1996 and 2000 measurements

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    17/27

    17

    VNIIAES

    Elbow

    NDate of

    meas.

    Number Values, mm Thicknessdifference range.

    In different

    hours, mm

    Sectio

    n Meas.

    S,

    mm

    S

    ,

    mm S, mm

    Elbow

    1996 31 372 12,96 20,86 7,90 1,8 3,6

    Elbow

    2002 30 360 13,50 18,72 5,23 1,6 2,3

    Elbow

    1995 33 394 13,84 19,94 6,10 1,9 2,1

    Elbow

    1996 29 342 13,95 20,13 6,18 2,1 2,2

    Elbow

    2000 29 348 13,76 20,12 6,37 2,2 2,6

    Total, average

    value231 2964 13,40 19,83 6,43 1,9 2,6

    Date and Number of Measurements, Minimum and Maximum Values for Each

    Thickness Elbow, Thickness Difference, Range of Elbow Wall Thickness Change in

    Different Sections of Feedwater Pipeline with 46516 mm diameter

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    18/27

    18

    VNIIAES

    Wall Thickness Behavior of 46516 mm Pipeline Elbow

    within the Period from 1996 to 2002 in 12th hour

    Section number

    Wallthickness

    change,mm

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    19/27

    19

    VNIIAES

    Wall Thickness Behavior of 46516 mm Pipeline Elbowwithin the Period from 1996 to 2002 in 6th hour

    Section number

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    20/27

    20

    VNIIAESDevelopment of norms for permissible thinning of NPP pipelines subjected to E/C wear

    Wall Thickness Behavior of 46516 mm Pipeline Elbowwithin the Period from 1996 to 2002 in 3rdhour

    Section number

    Wallthickness

    change,mm

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    21/27

    21

    VNIIAESAnalysis of Wall Thickness Behavior of 46516 mm Pipeline

    Elbow within the Period from 1996 to 2002 in 9th hour

    Wallthickness

    change,mm

    Section number

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    22/27

    22

    Development of Normative Documentation on Secondary Circuit

    Components and Pipelines Resource Management at NPPs with VVER

    Thickness Distribution Graphs in 30 Sections of Pipeline Elbow. Measurement

    of 11.09.2002, 46516 mm

    VNIIAES

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    23/27

    23

    Thickness Distribution Graphs in 29 Sections of Pipeline Elbow. Measurement

    of 11.09.96, 46516 mm

    VNIIAES

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    24/27

    24

    VNIIAESDevelopment of norms for permissible thinning of NPP pipelines subjected to E/C wear

    Generation of relatively strong turbulence Unstable position of flow axis Faster circumferential flow velocity than B-train

    A-trainB-train

    Unstable

    (Generation oflarge turbulence)

    Stable

    Generation of relatively weak turbulence Stable position of flow axis Slower circumferential flow velocity than A-train

    Analytical result also shows that turbulence appeared in A-train is larger than that in B-train.

    Turbulent Flow Downstream of Orifice (Mihama)

    D l t f f i ibl thi i f NPP i li bj t d t E/C

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    25/27

    25

    VNIIAESDevelopment of norms for permissible thinning of NPP pipelines subjected to E/C wear

    Degree of pressure fluctuation: A-train>B-train>Straight pipe

    Characteristics of A-train: Pressure fluctuations at 0is larger than 180

    Characteristics of B-train and straight pipe: No difference between 0and 180

    Distribution of Pressure Fluctuation (Mihama)

    Distribution of Circumferential Pressure Fluctuation

    Non-dimensional pressure fluctuation= RMS of pressure fluctuation/Averaged dynamic

    pressure in a pipe

    Comparison of non-dimensional pressure fluctuations between A-train

    and B-train (circumferential distribution at L/D = 0.8)

    A-train

    B-train

    Straight pipe

    Distribution of Axial Pressure Fluctuation

    A-train

    B-train

    Non-dimensional axial distance (I/D)

    Distribution of Non-dimensional pressurefluctuation (Comparison between A-train and B-

    train)

    Non-d

    imensionalpressurefluctuation

    Viewed from upstream

    A-train pressure fluctuation at 0

    A-train pressure fluctuation at 180

    B-train pressure fluctuation at 0

    B-train pressure fluctuation at 180

    Straight pipe pressure fluctuation at 0

    Straight pipe pressure fluctuation at 180

    D l t f f i ibl thi i f NPP i li bj t d t E/C

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    26/27

    26

    VNIIAES

    1.001.001.001.00

    0.950.950.950.95

    0.960.960.960.96

    0.850.850.850.85

    0.890.890.890.89

    0.900.900.900.90

    0.870.870.870.87

    0.960.960.960.96

    LLLL////DDDD ====1111....74747474))))LLLL////DDDD ====1111....75757575

    A-train B-train

    Welding line

    0.820.820.820.82

    0.810.810.810.81

    0.940.940.940.94

    0.820.820.820.82

    0.840.840.840.84

    0.820.820.820.82

    0.880.880.880.88

    0.920.920.920.92

    LLLL ////DDDD ====1111....74747474 LLLL ////DDDD ====1111....75757575

    0.00.00.00.00.20.20.20.20.40.40.40.40.60.60.60.60.80.80.80.81.01.01.01.0

    -1-1-1-1 0000 1111 2222 3333 4444 5555

    LLLL////DDDD

    0000

    0000

    0.00.00.00.00.20.20.20.20.40.40.40.40.60.60.60.60.80.80.80.81.01.01.01.0

    -1-1-1-1 0000 1111 2222 3333 4444 5555

    LLLL ////DDDD

    0000

    0000

    Axial direction Axial direction

    Axial wall thinning: wall thinning trends at the actual plant corresponds to pressure

    fluctuation trends in visualization test.

    Circumferential wall thinning: wall thinning trends at the actual unit (A>B) corresponds to

    pressure fluctuation trends in visualization test (A>B).

    Actual wall thinning (0side)

    Pressure fluctuation in test(0side)

    Welding line

    Comparison Between Actual Wall Thinning and

    Visualization Test (Mihama)

    Actual wall thinning (L/D 1.74)

    Pressure fluctuation in test L/D=1.75)

    Circumferential directionActual wall thinning (L/D 1.74)

    Pressure fluctuation in test L/D=1.75)

    Circumferential direction

    Actual wall thinning (0side)

    Pressure fluctuation in test 0side

    Non-dimensional

    pressure

    fluctuation

    Non-dimensiona

    l

    wallthinning

    Non-dimensionalpressurefluctuation

    Development of norms for permissible thinning of NPP pipelines subjected to E/C wear

    Development of norms for permissible thinning of NPP pipelines subjected to E/C wear

  • 8/9/2019 22 Baranenko Vniiaes Ntd En

    27/27

    27

    Conclusions

    1. The set of normative documents on calculation of erosion-corrosion

    wear has been developed including software tools, guidelines on calculations

    of permissible thickness for pipeline elements, guidelines on establishingchemical composition of pipeline metal

    2. Application of normative documents provides for optimization of

    operating inspection scope and frequency, evaluation of technicalstate and definition of residual life.

    3. It was found that availability of corrosion products deposits

    influences significantly on UT measurements reliability of pipeline wallthickness.

    VNIIAES

    Development of norms for permissible thinning of NPP pipelines subjected to E/C wear