376_407

Embed Size (px)

Citation preview

  • 8/6/2019 376_407

    1/32

    376376Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407

    EUROPSKA ISKUSTVA U SVEZIPRIHVATA PROIZVODNJE ELEKTRINE

    ENERGIJE VJETROELEKTRANA U

    ELEKTROENERGETSKI SUSTAVEUROPEAN EXPERIENCE INCONNECTION WITH THE INTEGRATIONOF ELECTRICITY GENERATED BY WIND

    POWER PLANTS INTO ELECTRICAL

    POWER SYSTEMSVladimir Dokmanovi, Zagreb, HrvatskaU lanku su izloena europska iskustva u svezi koritenja energije vjetra u proizvodnji elektrine energije.

    Istaknut je znaaj optimizacije postojee elektrine mree, njeno pojaanje i proirenje, kao i izgradnja suvremeneelektrine mree za bri i uinkovitiji prihvat obnovljivih izvora energije.

    Cilj lanka je da se na temelju mnogih studijsko istraivakih radova na temu prihvata elektrine energijevjetroelektrana u elektroenergetske sustave pojedinih zemalja ukae na vanost i sloenost ove problematike.

    The article presents European experiences regarding the use of wind power in electricity production.Emphasis is placed upon the significance of optimizing, strengthening and expanding an existing electrical grid, as

    well as the construction of modern grids for the rapid and efficient integration of renewable energy sources.

    The goal of the article is to draw attention to the importance and complexity of this topic by utilizing the findingsof numerous research studies on the integration of electricity from wind power plants into the electrical power

    systems of individual countries.

    Kljune rijei: elektroenergetski sustav; mrena pravila; obnovljivi izvori energije; operatervjetroelektrane; operator sustava; vjetroelektrane

    Key words: electrical power system; grid codes; renewable energy sources; systemoperator; wind power plant operator; wind power plants

  • 8/6/2019 376_407

    2/32

  • 8/6/2019 376_407

    3/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 378378

    1 UVOD

    U lanku je izloena budua uloga obnov-ljivih izvora energije u pokrivanju rastuepotronje elektrine energije u Europskojuniji i u svijetu. Navode se odluke Europ-ske Komisije o daljnjem razvoju obnovljivih

    izvora energije i koritenju energije vjetra uproizvodnji elektrine energije, te se istievanost prijenosne mree u prihvatu proi-zvodnje vjetroelektrana (VE) u elektroener-getski sustav.

    Uz to, navode se ciljevi tehnikih kriterija i za-htjeva na VE, koji se reguliraju mrenim pravi-lima. Njima se eli ostvariti sigurnost pogonaelektroenergetskog sustava i zadrati dosti-gnuta kvaliteta isporuke elektrine energije po-troaima, ali i poticanje razvoja onih osobinaVE, koje pridonose stabilnosti pogona elektroe-

    nergetskog sustava (EES-a) i to boljoj kompa-tibilnosti VE i sustava.

    Cilj mrenih pravila trebao bi biti i omoguava-nje to veeg prihvata VE u sustav i poboljanjeintegracijskih svojstava VE, odnosno izgradnjaVE koje imaju istovjetne osobine poput konven-cionalnih elektrana.

    U lanku su takoer izloena i najnovija isku-stva europskih zemalja u koritenju energijevjetra u proizvodnji elektrine energije, a na-vedena su i najnovija istraivanja usmjerena na

    daljnje mogunosti prihvata proizvodnje VE usustave pojedinih zemalja.

    Osnovno je pitanje kako omoguiti prihvat pro-izvodnje elektrine energije VE, kojom e sepokrivati vie od etvrtine bruto potronje uEuropskoj uniji 2030. godine, a da se ne ugrozi

    1 INTRODUCTION

    The article discusses the future role that renewableenergy sources will play in covering growing elec-tricity consumption in the European Union and theworld. Decisions by the European Commission arecited on the further development of renewable ener-

    gy sources, the use of wind power in the generationof electricity and the importance of the transmissiongrid in the integration of the power generated bywind power plants (WPPs) into the electrical powersystem.

    Moreover, the goals of the technical criteria and re-quirements for WPPs, which are regulated by gridcodes, are presented. The aim is to achieve secureoperation of an electrical power system and maintainquality delivery of electricity to consumers, as well asto promote the development of those characteristicsof WPPs that contribute to the stability of the opera-

    tion of an electrical power system and optimal com-patibility between the WPPs and the system.

    The goal of grid codes should also be to facilitate themaximum integration of WPPs into a system and im-prove the integrational properties of WPPs, i.e. theconstruction of WPPs with the same characteristicsas conventional power plants.

    The article also presents the most recent experienc-es of European countries in the use of wind powerfor the generation of electrical power, including themost recent investigations into further possibilities

    for the integration of WPPs within the systems of in-dividual countries.

    A basic question is how to facilitate the integration ofthe electrical power produced by WPPs, which couldcover over a quarter of the total consumption in theEuropean Union in the year 2030, without endanger-

    Slika 1 Uvozna ovisnost Europske unije (EU25) od 1990. do 2030. godine [1]Figure 1 Import dependence of energy sources in the European Union (EU25) from 1990 to 2030 [1]

  • 8/6/2019 376_407

    4/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407379379

    ing the security of system operation, i.e. the securityof the electricity supply.

    2 ELECTRICITY SUPPLY INGENERAL

    We live in a world in which energy consumption isrising rapidly. Europe is expecting a 30 % increasein electricity consumption by the year 2030. If Eu-ropean energy strategy does not change, in thatyear European dependence on energy importswould amount to approximately 67 % (Figure 1).

    The time of a secure energy supply has passed.The days of cheap and sufficiently available energyare behind us. This century will witness compe-tition by the world economic powers for the re-maining available energy resources and there will

    be periodical energy shortages and rising energyprices [2].

    European dependence on imported fossil fuelshas become a threat to economic stability. There-fore, it is very important for Europe to developits own resources based on renewable energysources and the maximum promotion of energyefficiency.

    3 ELECTRICITY GENERATION

    FROM RENEWABLE ENERGYSOURCES

    Already in the year 2000, the European Com-mission cautioned that the European Union hasstructural weaknesses regarding energy supplyand must assume responsibility for its energydestiny in a document known as the Green Paper(COM 2000 769 final), [3].

    Directive 2001/77EC on Promoting ElectricityProduced from Renewable Energy Sources on the

    Internal Electricity Market requires the simplifi-cation of national administrative procedures forthe authorization of the construction of facilitiesfor the generation of electricity from renewablesources [4].

    In a document known as the Green Paper, A Eu-ropean Strategy for Sustainable, Competitive andSecure Energy (COM 2006 105 final), the futureroles of renewable energy sources and energy ef-ficiency are specified [5].

    Energy efficiency was particularly discussed in

    a document entitled Action Plan for Energy Effi-ciency (COM 2006 545) [6], in which the feasibil-

    sigurnost pogona sustava, odnosno sigurnostopskrbe elektrinom energijom.

    2 OPENITO O OPSKRBIELEKTRINOM ENERGIJOM

    ivimo u svijetu u kojem brzo rastepotronja energije. Europa oekujepoveanje potronje elektrine energijeza 50 % do 2030. godine. Kada se ne bimijenjala europska energetska strategija,te bi godine europska uvozna ovisnost oenergiji iznosila oko 67 % (slika 1).

    Prolo je vrijeme sigurne opskrbe energijom.Dani jeftine i dovoljno raspoloive energije suiza nas. Ovo stoljee bit e ispunjeno borbomsvjetskih ekonomskih blokova za preostale ras-

    poloive energetske resurse te e dolaziti dopovremenih nestaica energije, ija e cijenarasti [2].

    Europska ovisnost o uvoznim fosilnim gorivimapostaje prijetnja gospodarskoj stabilnosti. Zbogtoga je vrlo vano da Europa razvija vlastite re-surse na bazi obnovljivih izvora energije i mak-simalno promovira energetsku uinkovitost.

    3 PROIZVODNJA

    ELEKTRINE ENERGIJEIZ OBNOVLJIVIH IZVORAENERGIJE

    Europska komisija je ve 2000. godine u doku-mentu pod nazivom Zelena knjiga o sigurno-sti opskrbe energijom (COM 2000 769 final),upozorila da Europska unija ima strukturalneslabosti glede energetske opskrbe i da morapreuzeti odgovornost za svoju energetsku sud-binu [3].

    Smjernicom 2001/77EC o promidbi uporabeelektrine energije proizvedene iz obnovljivihizvora energije na unutarnjem tritu elek-trine energije daje se naglasak na promocijuelektrine energije iz obnovljivih izvora energi-

    je. Zahtijeva se pojednostavljenje nacionalnihadministrativnih procedura za ishoenje sugla-snosti i dozvola za izgradnju objekata na baziobnovljivih izvora energije [4].

    U dokumentu nazvanom Zelena knjiga o eu-ropskoj strategiji odrive, konkurentne i sigur-ne opskrbe energijom (COM 2006 105 final),

    utvrena je budua uloga obnovljivih izvoraenergije i energetske uinkovitosti [5].

  • 8/6/2019 376_407

    5/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 380380

    ity of reducing consumption and supply by 20 % isassessed. Key elements are cited regarding thefuture of European energy, which are revolution-ary in the areas of energy efficiency and the use ofrenewable energy sources.

    In January 2007, the European Commission pub-lished a document for the Member States of theEU entitled Renewable Energy Road Map, Renew-able Energies in the 21st Century: Building a Moresustainable Future (COM 2006 848 final), [7] inwhich the share of renewable energy sources in

    the energy mix is specified. The target is for elec-tricity generated from renewable energy sourcesto cover 20 % of total electricity consumption bythe EU in the year 2020. In this way, the securityof the electricity supply would be increased andthe emission of greenhouse gasses would be de-creased.

    An estimate of the share of renewable energysources in electricity production in the year 2020is presented in Figure 2.

    In March 2007, the EU heads of state unanimously

    agreed to a binding renewables target of 20 % by2020.

    Within the framework of a project implementedby the European Wind Energy Association (EWEA)entitled European Technology Platform for Wind(TP Wind) [8], which was published in the year2005, a vision of the use of wind energy in the Eu-ropean Union was presented, according to whichit should cover over a quarter of the total energyconsumption in the year 2030.

    This vision outlines research priorities as well as

    the required financial and human resources for

    Energetska uinkovitost je posebno razrae-na u dokumentu pod nazivom Akcijski plan zaenergetsku uinkovitost (COM 2006 545) [6],kojim se procjenjuje izvodljivost smanjenja po-tronje elektrine energije na strani potronje iopskrbe za 20 %. Navedeni su kljuni elementieuropske energetske budunosti, koja se svodina revoluciju u podruju energetske uinkovi-tosti i koritenje obnovljivih izvora energije.

    Europska komisija je u sijenju 2007. godineobjavila obvezujui dokument za zemlje lanice

    EU, pod nazivom Plan razvoja obnovljivih izvoraenergije (COM 2006 848 final), [7] u kojem seutvruje udio obnovljivih izvora energije u ener-getskom miksu. Cilj je da elektrina energijaproizvedena iz obnovljivih izvora energije po-kriva 20 % bruto potronje elektrine energijeEU u 2020. godini. Na taj nain bi se povea-la sigurnost opskrbe elektrinom energijom ismanjila emisija staklenikih plinova.

    Procjena udjela obnovljivih izvora energije uproizvodnji elektrine energije u 2020. godinipredoena je na slici 2.

    U oujku 2007. godine vlade i parlamenti ze-malja lanica Europske unije su jednoglasnoprihvatile 20 postotno uee obnovljivih izvo-ra energije u pokrivanju potronje elektrineenergije do 2020. godine

    U okviru projekta EWEA udruge pod nazivom:Europska tehnoloka platforma (TP Wind) [8]- koja je objavljena 2005. godine predoena jevizija koritenja energije vjetra u Europskoj uni-

    ji, po kojoj bi ona trebala pokrivati vie od etvr-tine potronje elektrine energije 2030. godine.Navode se prioritetna istraivanja i potrebni fi-

    Slika 2 Prognozirani rast proizvodnje elektrine energije iz obnovljivih izvora energije do 2020. godine [7]Figure 2 Projections of the growth in electricity production from renewable energy sources up to the year 2020 [7]

  • 8/6/2019 376_407

    6/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407381381

    achieving it. The platform predicts that in the year2020 wind energy will cover 12 % to 14 % of the totalelectricity consumption of the European Union, withan installed wind power capacity totaling 180 GW.

    It is anticipated that WPPs will generate between22 % and 28 % of the electricity consumed in 2030,

    with an installed capacity of 300 GW.A project entitled Decision Support for Large-Scale Integration of Wind Power (SUPWIND)launched in late 2006 is devoted to the determina-tion and evaluation of regional and transnationaltransmission line investments and tools for sys-tem control under conditions of the large-scaleintegration of WPPs into the systems of individualcountries.

    The European Wind Integration Study (EWIS),which was launched by the European Transmis-

    sion System Operators (ETSO) in early 2007, of-fered a solution for specific challenges that haveoccurred in Europe due to the large-scale integra-tion of WPPs in several European Member States,and refer to system stability and the security ofthe electricity supply in Europe [9].

    The project Tradewind within the Intelligent En-ergy-Europe program will offer measures for im-proving the internal electricity market, under con-ditions where there is a large share of electricityfrom WPPs on the market.

    There are currently obstacles to the rapid inte-gration of WPPs in the systems of the majority ofthe Member States of the European Union. Theresults of the Tradewind project, anticipated in fi-nal form by October 2008, will be used for findingefficient ways to remove these obstacles. Recom-mendations are anticipated for the modernizingof infrastructure networks and improving thetrade mechanisms [10].

    Renewable energy sources and energy efficiencyhave key roles in the Strategic Energy Review ofthe European Commission, published in the year

    2007 [11].

    In January 2007, the European Commission pub-lished its new energy strategy, entitled An EnergyPolicy for Europe (COM 2007 1 final) [12], knownas an energy package for the internal gas andelectricity markets according to which the Mem-ber States undertake the following commitments:

    a 20 % share of renewable energy sources tocover electricity consumption,

    unbundling of transmission and generationactivities on the electricity and gas markets,

    a priority plan for the construction of intercon-

    nancijski i ljudski resursi za ostvarenje te vizije.Platformom se predvia da e energija vjetra2020. godine pokrivati 12 % do 14 % bruto po-tronje elektrine energije Europske unije, sukupnim proizvodnim kapacitetima u VE od180 GW.

    Oekuje se da e se proizvodnjom VE u 2030.godini pokrivati izmeu 22 % i 28 % potronjeelektrine energije, s izgraenim proizvodnimkapacitetima u VE od 300 GW.

    Projekt nazvan SUPWIND koji je pokrenutkrajem 2006. godine posveen je utvrivanju ivrednovanju investicija u regionalne i transna-cionalne prijenosne vodove i alate za upravlja-nje sustavom u uvjetima velikog opsega prihva-ta VE u sustave pojedinih zemalja.

    Projekt Prihvat vjetroenergije u europski elek-

    troenergetski sustav (EWIS) koju je pokrenulaEuropska udruga operatora sustava (ETSO)poetkom 2007. godine ponudio je rjeenja zaspecifine izazove koji su se pojavili u Europikao posljedica velikog opsega ukljuenosti VEu nekoliko europskih zemalja lanica, a odno-se se na stabilnost sustava i sigurnost opskrbeelektrinom energijom u Europi [9].

    Projekt Tradewind u okviru programa Inteli-gentna energija za Europu ponudit e mjere zapoboljanje internog trita elektrine energije,u uvjetima veeg opsega zastupljenosti elek-

    trine energije iz VE na tritu.

    Trenutano postoje prepreke brem prihvatuVE u sustave veine zemalja lanica Europ-ske unije. Rezultati Tradewind projekta, ijase zavrna obrada oekuje do listopada 2008.godine, koristit e se za pronalaenje uinkovi-tih naina za otklanjanje tih prepreka. Oekujese izrada preporuka za osuvremenjivanje in-frastrukture mree i poboljanje mehanizamatrgovanja elektrinom energijom [10].

    Obnovljivi izvori energije i energetska uinkovi-

    tost imaju kljunu ulogu u dokumentu Europ-ske komisije Izvjee o energetskoj strategijiEuropske unije, objavljenom 2007. godine [11].

    Europska komisija je objavila u sijenju 2007.godine svoju novu energetsku strategiju, podnazivom Europska energetska politika (COM2007 1 final) [12] poznatu kao energetski paketo internom tritu plina i elektrine energijeprema kojoj se zemlje lanice obvezuju na:

    20 % udjela obnovljivih izvora energije u po-krivanju potronje elektrine energije,

    vlasniko razdvajanje prijenosnih i proi-

  • 8/6/2019 376_407

    7/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 382382

    nection lines between the systems of individu-al Member States,

    a 20 % reduction in greenhouse gasses by theyear 2020.

    4 TECHNOLOGICALDEVELOPMENT OF OFFSHOREWWPs

    In the early 1970s following the first oil crisis, it be-

    came clear that wind energy could reduce depend-ence upon fossil fuels.

    Owing to intensive research and development ac-tivities, the first commercial wind power plants ap-peared in the year 1980. Further commercial andtechnological development was concentrated on in-creasing the unit capacity of wind power plants andreducing electricity generating costs. The height ofthe wind turbine tower was increased from the initial10 meters to 126 meters, and the unit capacity was

    increased from 50 kW to 5 000 kW [13].

    Following intensive construction of onshore WPPscomes a period of intense construction of offshoreWPPs, which will increasingly differ technicallyfrom onshore WPPs. Lower turbulence, less ma-terial fatigue, longer operating lifetime, less rigor-ous noise requirements and simpler control areonly some of the prerequisites that will affect theinstallation of offshore wind power plants. It is ex-pected that the unit capacities and dimensions of

    offshore power plants will increase, as shown inFigure 3 [10].

    zvodnih djelatnosti na tritu elektrineenergije i plina,

    prioritetni plan izgradnje interkonekcijskihvodova izmeu sustava pojedinih zemaljalanica,

    20 %-tno smanjenje staklenikih plinova do2020. godine.

    4 TEHNOLOKI RAZVOJ VELOCIRANIH NA MORU

    Poetkom 70-tih godina, nakon prve naftnekrize, postalo je jasno da energija vjetra moesmanjiti ovisnost o fosilnim gorivima.

    Zahvaljujui intenzivnim istraivakim i razvoj-nim aktivnostima, prvi komercijalni vjetroagre-gati su se pojavili 1980. godine. Daljnji komer-cijalni i tehnoloki razvoj bio je koncentriran napoveanje jedinine snage vjetroagregata i nasmanjenje proizvodne cijene elektrine energi-

    je. Visina stupa vjetroagregata je poveana odpoetnih desetak na 126 metara, a jedinina

    snaga je poveana od 50 kW na 5 000 kW [13].

    Nakon intenzivne izgradnje VE na kopnu dolazivrijeme intenzivnije izgradnje VE na moru, kojee se tehniki sve vie razlikovati od VE na ko-pnu. Manja turbulencija, manje zamaranje ma-terijala, dui pogonski vijek, manji zahtjevi narazinu buke i jednostavnije upravljanje, samosu neki od preduvjeta koji e utjecati na izved-bu vjetroagregata, koji e se graditi na moru.Oekuje se da e se rast jedininih snaga i di-

    menzija vjetroagregata na moru kretati premaslici 3 [10].

    Slika 3 Oekivani rast jedinine snage vjetroagregata na moru [10]Figure 3 Increases expected in the unit capacities of offshore wind power plants [10]

  • 8/6/2019 376_407

    8/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407383383

    5 PREREQUISITES FOR THE

    INTEGRATION OF LARGEQUANTITIES OF ELECTRICITYFROM WPPs INTO ANELECTRICAL POWER SYSTEM

    In the year 2005, WPPs generated over 80 TWh ofelectricity or 2,6 % of the annual energy consump-tion of the European Union. This was the equivalentof the annual consumption of Denmark and Portu-gal combined [13].

    In the year 2007, the generating capacity of WPPs in-creased to 18 % and reached a figure of 56 535 MW.This generating capacity will produce 119 TWh ofelectricity in a year with average wind, which is3,7 % of the total electricity consumption in Eu-rope.

    Europe currently has 60 % of the available totalgenerating capacity of WPPs, which in the worldhas reached the level of 94 GW, of which 20 GW wasinstalled in the year 2007 [14].

    Owing to this success, a new target has been es-

    tablished by the European Commission for theyear 2010, the generation of 188 TWh by WPPs, i.e.covering 5,5 % of the total electricity consumptionof the European Union. Wind power generation ac-cording to this scenario would have to cover 13,4 %in the year 2020 and approximately 22,6 % of thetotal electricity consumption in the year 2030 (Fig-ure 4) [15].

    In March 2008, the European Wind Energy Associa-tion (EWEA) issued a document entitled Pure Power Wind Energy Scenarios up to 2030 [16]. The docu-ment presents three development scenarios for

    WPPs for the years 2010, 2020 and 2030. The effects

    5 PREDUVJETI ZA

    PRIHVAT VELIKE KOLIINEELEKTRINE ENERGIJE IZVE U ELEKTROENERGETSKISUSTAV

    U 2005. godini VE su proizvele vie od 80 TWhelektrine energije ili 2,6 % godinje potronjeelektrine energije Europske unije. To je bioekvivalent godinje potronje Danske i Portu-gala zajedno [13].

    U 2007. godini je proizvodni kapacitet VE pove-an za 18 % i dosegao brojku od 56 535 MW.Taj proizvodni kapacitet e proizvoditi 119 TWhelektrine energije u prosjeno vjetrovitoj godi-ni, to je 3,7 % bruto potronje elektrine ener-gije u Europi.

    Trenutano Europa raspolae sa 60 % svjetskihproizvodnih kapaciteta u VE, koji su u svijetudostigli razinu od 94 GW, od kojih je 20 GW in-stalirano u 2007. godini [14].

    Zahvaljujui tom uspjehu, postavljen je novi cilj

    Europske komisije za 2010. godinu, proizvodnjuVE od 188 TWh, odnosno pokrivanje 5,5 % bru-to potronje elektrine energije Europske uni-

    je. Proizvodnja VE bi po ovom scenariju 2020.godine trebala pokrivati 13,4 %, a 2030. godineoko 22,6 % bruto potronje elektrine energije(slika 4) [15].

    Europska udruga proizvoaa opreme za vje-troelektrane (EWEA) je u oujku 2008. godineobjavila dokument pod nazivom ista ener-gija scenariji koritenja energije vjetra do2030. godine [16]. U dokumentu su obraena

    tri razvojna scenarija VE za 2010., 2020. i 2030.

    Slika 4 Doprinos vjetroenergije [TWh] pokrivanju potronje elektrine energije EU.Rast instalirane snage VE od 2005. do 2030. godine [15]

    Figure 4 Contribution of wind power [TWh] to covering the electricity consumption of the EU.Growth in the installed capacities of WPPs from 2005 to 2030 [15]

  • 8/6/2019 376_407

    9/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 384384

    of the construction of WPPs on the production ofelectricity, greenhouse gas emissions and the econ-omies of the Member States of the European Unionare analyzed in detail.

    In Figure 5, a forecast of electricity generated byWPPs up to the year 2030 is presented [16].

    EWEA, which represents the wind energy industry,very actively promotes the development of the utiliza-tion of wind energy in Europe and the world. EWEAhas 500 members from 45 countries around theworld. These are manufacturers of equipment forWPPs, suppliers of individual components, researchinstitutions, national associations for wind power andrenewable energy sources, developers, electricitysuppliers, financial and insurance companies, andconsultants.

    EWEA has issued a report entitled Large-Scale Inte-gration of Wind Energy in the European Power Sup-ply (December 2005), including detailed analyses oftechnical, economic and legal questions, based upon180 sources, published data, reports, research inves-tigations and studies for the purpose of more exten-sive and rapid integration by WPPs into the energysystem [2].

    A conference organized by EWEA was held in Brus-sels in late 2006, entitled the European Wind EnergyConference (EWEC) 2006, on the theme of the large-scale integration of electricity produced by WPPs

    within the European electricity system, with two keytopics:

    godinu. Detaljno su analizirani uinci izgradnjeVE na proizvodnju elektrine energije, emisijustaklenikih plinova i gospodarstvo zemaljalanica Europske unije.

    Na slici 5 predoeno je predvianje proizvodnjeelektrine energije VE u 2030. godini [16].

    EWEA, koja predstavlja industriju opreme zaVE, vrlo aktivno promovira razvoj koritenjaenergije vjetra u Europi i svijetu. EWEA udru-ga ima 500 lanova iz 45 zemalja svijeta. To suproizvoai opreme za VE, dobavljai pojedinihkomponenti, istraivaki instituti, nacional-ne udruge za vjetroenergiju i obnovljive izvoreenergije, developeri, opskrbljivai elektrinomenergijom, financijska i osiguravajua drutvate konzultanti.

    EWEA je objavila elaborat pod naslovom Prihvatvelike koliine vjetroenergije u sustav opskrbeelektrinom energijom (prosinac 2005.), u ko-

    jem su predoene detaljne analize tehnikihekonomskih i pravnih pitanja, utemeljenih na180 izvora, objavljenih podataka, izvjea, istra-ivakih radova i studija radi opsenijeg i breguklapanja VE u elektroenergetski sustav [2].

    U Bruxellesu je u organizaciji udruge EWEAodrana krajem 2006. godine konferencija podnazivom Europska konferencija o vjetroenergiji(EWEC 2006), na temu prihvata velikih koliina

    elektrine energije proizvedene u VE u europskielektroenergetski sustav, s dvije kljune teme:

    Slika 5 Predvianje proizvodnje elektrine energije VE u EU u 2030. [16]Figure 5 Forecast of electricity generated by WPPs in the EU up to the year 2030 [16]

  • 8/6/2019 376_407

    10/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407385385

    the technical and economic integration of elec-tricity from WPPs into the electrical power grid,i.e. on the electricity market,

    the political prerequisites for the further devel-opment of WPPs at onshore and offshore loca-tions.

    From the technical and economic aspects, a signifi-cant contribution by wind power to electricity pro-duction in Europe is feasible. This contribution canbe achieved with the maintenance of an acceptablelevel of system security at moderate additional cost.It is necessary to make changes in the system andmanner of system control.

    The integration of wind power into the system in theamount of 15 % to 20 % of the power currently gen-erated by conventional power plants should neitherrequire major financial investments in strengthen-

    ing and extending the existing grid nor pose a risk tothe stability of the system or the safety of the elec-tricity supply [2].

    A prerequisite for the efficient integration of theproduction of WPPs is to increase the transmissioncapacities. The larger the grid, the easier it is to bal-ance changes in electricity production by WPPs.

    A transmission grid could become the solution forthe rapid integration of renewable energy sourcesinto a system, contrary to ingrained opinion that itis the main problem and technical barrier to the

    development of renewable energy sources. The ap-plication of suitable modern technologies for gridextension will facilitate the following:

    the construction of power plants based on renew-able energy sources in the optimal locations,

    integration into the system of distant energysources,

    facilitated compliance with the requirements ofgrid codes for the following: WPP control, support for the voltage regulation system, compliance with requirements regarding

    frequency variation, the ability of a wind power plant to remain in

    operation during grid disturbances.

    In an article presented at EWEC 2006 entitled Trans-mission Technologies to Support Integration of WindPower Technology, the role of the transmission gridis presented, which should be to provide support forthe strong and rapid development of renewable en-ergy sources [17].

    In the article, reasons are explained for the un-derground transmission of electricity. This con-

    cerns a newly available HVDC light alternative

    tehnika i ekonomska integracija elektri-ne energije VE u elektrinu mreu, odnosnona trite elektrine energije,

    politiki preduvjeti za daljnji razvoj VE nakontinentalnim i morskim lokacijama.

    S tehnikog i ekonomskog aspekta, mogu jeznaajan doprinos energije vjetra proizvodnjielektrine energije u Europi. Taj se doprinosmoe ostvariti zadravanjem prihvatljive razinesigurnosti sustava uz umjerene dodatne tro-kove. Potrebno je provesti promjene u sustavu inain upravljanja sustavom.

    Prihvat VE ukupne snage od 15 % do 20 % sna-ge postojeeg konvencionalnog proizvodnogparka u sustavu ne bi trebao iziskivati velika fi-nancijska ulaganja u pojaanje i proirenje po-stojee mree, niti predstavljati rizik za stabil-

    nost sustava i sigurnost opskrbe elektrinomenergijom [2].

    Preduvjet za uinkovit prihvat proizvodnje VE jepoveanje prijenosnih kapaciteta. to je veamrea, to je lake uravnoteiti promjene proi-zvodnje elektrine energije VE.

    Prijenosna mrea mogla bi postati rjeenje zabri prihvat obnovljivih izvora energije u sustav,umjesto uvrijeenog stajalita da je ona glavniproblem i tehnika prepreka razvoju obnovljivihizvora energije. Primjena pogodnih suvremenih

    tehnologija za proirenje mree omoguit e:

    izgradnju elektrana na bazi obnovljivih izvo-ra energije na najboljim lokacijama,

    ukljuivanje u sustav udaljenih izvora ener-gije,

    lake zadovoljenje zahtjeva mrenih pravilaza: upravljanje VE, pomo sustavu regulacijom napona, zadovoljenje zahtjeva u svezi s

    promjenom frekvencije, sposobnost da vjetroagregat ostane

    u pogonu tijekom poremeaja umrei.

    U prezentiranom lanku na konferencijiEWEC 2006. pod nazivom Tehnologijeprijenosa elektrine energije u funkciji veegprihvata energije VE u sustav predoena

    je uloga prijenosne mree koja trebabiti podrka snanom i brem razvojuobnovljivih izvora energije [17].

    U lanku se obrazlau razlozi za primjenupodzemnog prijenosa elektrine energije.

    Rije je o raspoloivoj novoj HVDC Light

  • 8/6/2019 376_407

    11/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 386386

    for transmitting electricity over 500 km, drasticreduction in costs and a reduction in the time re-quired for locating a fault site and cable repair[17].

    It particularly emphasizes decreasing public ap-proval for the construction of overhead lines, thelong-term issue of permits and authorizations, andincreased ecological requirements for overheadlines (Figure 6).

    The grid infrastructure should be improved on thenational, regional and European levels. Improv-ing the grid can be achieved on a short-term andlong-term basis. In the short-term, it is possibleto optimize the grid, install flexible alternative cur-

    alternativi, za udaljenosti prijenosa energijepreko 500 km, drastinom smanjenjutrokova i skraenju vremena potrebnog zalociranje mjesta kvara i popravka kabela [17].

    Posebno se istie sve manja naklonostjavnosti izgradnji nadzemnih vodova,dugotrajno ishoenje dozvola i suglasnostite poveani ekoloki zahtjevi za nadzemnevodove (slika 6).

    Infrastrukturu mree treba poboljavatina nacionalnoj, regionalnoj i europskojrazini. Poboljanje mree moe se ostvaritina kratkoronoj i dugoronoj vremenskojosnovi. Kratkorono je mogue provesti

    Slika 6 Relativni trokovi prijenosa elektrine energije [17]Figure 6 Relative costs of electricity transmission [17]

    Slika 7 Shematski prikaz potencijalnih trasa interkontinentalnog prijenosnog sustava [17]Figure 7 Potential routes of the intercontinental transmission system [17]

  • 8/6/2019 376_407

    12/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407387387

    rent transmission systems (FACTS) and implementmoderate measures.

    On the long-term basis, hopes are riding on the con-struction of the European intercontinental supergrid(Figure 7) [17].

    With the construction of the European supergridfor the transmission of electricity from offshoreWPPs (Figure 8), the impact of the variability ofthe WPP production throughout Europe would belessened, it would be possible to forecast short-term WPP production more accurately, and thefunction of the internal electricity market andtransborder energy exchanges would be improved[17].

    6 THE IMPACT OF THE

    INTEGRATION OF VARIABLEPRODUCTION OF WINDPOWER PLANTS ON THECHARACTERISTICS AND COSTSOF AN ELECTRICAL POWERSYSTEM

    Europe is a world leader in the development and useof renewable energy sources, of which wind energyis the most promising. Since the year 2000, the gen-

    erating capacities of WPPs have increased by morethan 150 % [13].

    optimizaciju mree, ugraditi FACTS ureaje iprovesti tzv. blage mjere.

    Na dugoronoj osnovi rauna se sizgradnjom europske interkontinentalnesuper mree (slika 7) [17].

    Izgradnjom europske super mree zaprijenos elektrine energije VE lociranih namoru (slika 8), znatno bi se ublaio uinakpromjenljivosti proizvodnje VE na irokomeuropskom prostoru, bilo bi mogue tonijeprognozirati kratkoronu proizvodnju VE,poboljalo bi se funkcioniranje internogtrita elektrine energije i prekograninarazmjena energije [17].

    6 UTJECAJ PRIHVATA

    PROMJENLJIVEPROIZVODNJE VE NAKARAKTERISTIKEI TROKOVEELEKTROENERGETSKOGSUSTAVA

    Europa je svjetski predvodnik u razvoju i korite-nju obnovljivih izvora energije, od kojih energijavjetra najvie obeava. Od 2000. godine proi-

    zvodni kapaciteti u VE su poveani za vie od150 % [13].

    Slika 8 Vizija visokonaponske super mree za prijenos energije VE na moru u Europu [17]Figure 8 Vision of a high voltage supergrid for the transmission of energy generated by offshore WPPs [17]

  • 8/6/2019 376_407

    13/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 388388

    Wind power generation achieves diversification ofthe production mix and increases the share of pro-duction from domestic resources, without all therisks that accompany the fossil fuel supplied fromthe world market.

    With the construction of WPPs, part of the produc-

    tion from conventional power plants is replaced.The capacity credit of WPPs that the system opera-tor can count on in a system ranges between 35 %and 10 % of the installed wind power capacity (Fig-ure 9) [14].

    If several GW are installed in a system, the capac-ity credit of wind power that a system operator cancount on in the system is approximately 30 %. At alevel of integration of 20 GW, the capacity credit ofwind power that the system operator can count onin the system ranges from 10 % to 15 % of the totalinstalled wind power capacity [14].

    The impact of WPPs on a system depends on thelevel of the integration of wind power into the sys-tem and its characteristics. Large systems haveflexible mechanisms that can more easily supportthe integration of the variable production of WPPs.

    The adaptation of a system to an increasing rangeof the integration of WPPs will affect its character-istics.

    A key question is how to coordinate and balanceproduction and energy consumption in a systemwith large-scale integration of WPPs. The solutions

    Proizvodnjom VE ostvaruje se diversifikacijaproizvodnog miksa i poveava udio proizvodnjeiz domaih resursa osloboenih od svih rizikakoji prate opskrbu fosilnim gorivima sa svjet-skog trita.

    Izgradnjom VE zamjenjuje se dio proizvodnje

    konvencionalnih elektrana. Snaga VE, s kojomoperator sustava moe raunati u sustavu sekree izmeu 35 % i 10 % instaliranog kapaci-teta VE (slika 9) [14].

    Ako je u sustavu instalirano nekoliko GW, sna-ga VE s kojom operator sustava moe raunatiu sustavu iznosi oko 30 %. Pri razini ukljueno-sti od 20 GW, snaga VE s kojom operator susta-va moe raunati u sustavu se kree od 10 % do15 % ukupno instalirane snage VE [14].

    Utjecaj VE na sustav ovisi o razini ukljueno-sti VE u sustavu i njegovim obiljejima. Velikisustavi raspolau fleksibilnim mehanizmima,koji lake podravaju prihvat promjenljive pro-izvodnje VE.

    Prilagodba sustava na sve vei opseg ukljue-nosti VE e utjecati na njegove karakteristike.

    Kljuno je pitanje kako uskladiti i uravnotei-ti proizvodnju i potronju energije u sustavu sveim opsegom ukljuenosti VE. Rjeenja suosiguranje rezervne snage u konvencionalnimelektranama, to uinkovitije predvianje proi-zvodnje VE, to bolje interkonekcije sa susjed-

    Slika 9 Ovisnost snaga VE s kojom operator sustava moe raunati u sustavu o instaliranim kapacitetima VE 14]Figure 9 - The capacity credit of WPPs that a system operator can count on in a system depending on the installed wind power capacities 14]

  • 8/6/2019 376_407

    14/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407389389

    are to secure reserve power in conventional powerplants, efficient forecasting of WPP generation, op-timal interconnections with neighboring systems,consumption control and energy storage [2].

    Existing models of system control and available re-serve power intended for the balancing of daily vari-

    ations in supply and demand are sufficient for bal-ancing additional variations in the electricity gener-ated by WPPs at a level of integration of up to 20 %of total system consumption [2].

    In the year 2004, WPPs already covered 21 % of thetotal electricity consumption in Denmark. In thewestern Danish transmission system, which wasnot connected to the eastern part of the country, aquarter of the consumption of that part of Denmarkis covered by wind power generation in a year withaverage wind intensity. In some cases, wind could

    cover 100 % of electricity consumption. Greaterintegration of WPPs into a system is frequentlyconsidered to be impossible and many system op-erators have opposed changes in long-establishedprocedures due to the integration of wind powergeneration into a system.

    In the initial phase, the operators of the Danish sys-tem were skeptical regarding the amount of powerfrom WPPs which could be integrated into the sys-tem. During three years, starting in 1999, the capac-ity of the wind power plant in the Jutland Fyn sys-

    tem increased from 1 100 MW to 2 400 MW. Seven oreight years earlier, the operators had believed thatthe system would not function if the wind powerfrom WPPs were to increase to over 500 MW.

    nim sustavima, upravljanje potronjom i skla-ditenje energije [2].

    Postojei modeli upravljanja sustavom i raspo-loiva priuvna snaga u sustavu, namijenjenaza uravnoteenje svakodnevnih promjena po-tronje i opskrbe je dostatna za uravnoteenje

    dodatne promjenljive elektrine energije proi-zvedene u VE, pri njihovoj razini ukljuenosti do20 % bruto potronje sustava [2].

    U Danskoj su VE ve 2004. godine pokriva-le 21 % bruto potronje elektrine energije. Udanskom zapadnom prijenosnom sustavu, kojinije bio prikljuen na istoni dio zemlje, etvr-tina potronje tog dijela Danske pokrivana jeproizvodnjom VE u godini s prosjenim inten-zitetom vjetra. U nekim sluajevima je vjetarmogao pokrivati 100 % potronju elektrine

    energije.

    Vei opseg prihvata VE u sustav je esto pori-can kao nemogu i mnogi su operatori sustavabili neskloni promjenama davno uspostavljenihprocedura zbog ukljuivanja proizvodnje VE usustav.

    Operatori danskog sustava su u poetnoj fazibili skeptini glede veliine snage VE koja bi semogla ukljuiti u sustav. U tijeku tri godine od1999. kapacitet VE u Jutland Fyn sustavu se

    poveao sa 1 100 MW na 2 400 MW. Sedam iliosam godina ranije operatori su smatrali dasustav nee funkcionirati ako se snaga VE po-vea iznad 500 MW.

    Slika 10 Dodatni trokovi proirenja mree u ovisnosti o razini ukljuenosti VE u sustav [2]Figure 10 Additional costs of grid extension as a function of the level of the integration of WPPs into a system. [2]

  • 8/6/2019 376_407

    15/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 390390

    6.1Costs of integrating WPPs into a system [15]

    Additional costs of grid extension depend upon thelevel of the integration of WPPs into a system. Theserange from 0,1 EUR/MWh to 4,7 EUR/MWh of elec-tricity produced by WPPs (Figure 10).

    The dependence of the reserve power of a system onwind power penetration in the Nordic region is pre-sented in Figure 11.

    6.1Trokovi prihvata VE u sustav [15]

    Dodatni trokovi proirenja mree ovise o ra-zini ukljuenosti VE u sustav. Oni iznose od 0,1EUR/MWh do 4,7 EUR/MWh proizvedene elek-trine energije VE (slika 10).

    Ovisnost priuvne snage sustava o opseguukljuenosti VE na nordijskom podruju predo-ena je na slici 11.

    Slika 11 Ovisnost priuvne snage sustava o opsegu ukljuenosti VE [2]Figure 11 The dependence of the reserve power of a system on wind power penetration [2]

    Slika 12 Priuvna snaga sustava u ovisnosti o opsegu ukljuenosti VE u sustavu i procjenama proizvodnje VE unaprijed [18]

    Figure12 The dependence of the reserve power of a system on the wind power penetration in the system and the estimated fore-casts of wind power generation [18]

  • 8/6/2019 376_407

    16/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407391391

    The dependence of the reserve power of a system onwind power penetration in the system and estimatedforecasts of wind power generation are presented inFigure 12.

    Additional costs of system balancing at the level ofwind power integration of up to 10 % of the installedsystem capacity are from 1 EUR/MWh to 3 EUR/MWh

    for the electricity generated by wind power in thesystem, and at the level of wind power integration ofup to 20 % of the installed system capacity are from2 EUR/MWh to 4 EUR/MWh for the electricity gener-ated by wind power in the system.

    An estimate of additional balancing costs based uponsix studies is presented in Figure 13.

    The costs of the connection of WPPs to a transmis-sion grid are from 0 EUR/MWh to 4 EUR/MWh for theelectricity generated by wind power.

    The price of electricity for the final consumer is in-creased by less than 5 %.

    7 GRID CODES FOR WPPs

    Grid codes for WPPs should reflect the actual tech-nical requirements of system operation. Grid codesshould be developed through the direct cooperationof the system operator, wind power sector, energyregulators and state institutions.

    Current grid codes frequently contain expensive andchallenging requirements, which lack technical justi-

    Ovisnost priuvne snage sustava o opseguukljuenosti VE u sustavu i procjenama proi-zvodnje VE unaprijed predoena je na slici 12.

    Dodatni trokovi uravnoteenja sustava, za razinuukljuenosti VE do 10 % instalirane snage susta-va iznose od 1 EUR/MWh do 3 EUR/MWh proizve-dene elektrine energije VE u sustavu, a za razinu

    ukljuenosti VE do 20 % instalirane snage susta-va iznose od 2 EUR/MWh do 4 EUR/MWh proizve-dene elektrine energije VE u sustavu.

    Procjena dodatnih trokova uravnoteenja natemelju est obraenih studija predoena je naslici 13.

    Trokovi prikljuenja VE na prijenosnu mreuiznose od 0 EUR/MWh do 4 EUR/MWh proizve-dene elektrine energije VE.

    Cijena elektrine energije kod krajnjeg potro-

    aa poveava se za manje od 5 %.

    7 MRENA PRAVILA ZA VE

    Mrena pravila za VE trebaju odraavati stvarnetehnike potrebe pogona sustava. Koncipiranjemrenih pravila trebalo bi se ostvarivati u ne-posrednoj suradnji operatora sustava, sektoravjetroenergije, energetskih regulatora i nadle-nih dravnih institucija.

    Sadanja mrena pravila esto sadre skupe iizazovne zahtjeve tamo gdje za to nema tehni-

    Slika 13 Procjena dodatnih trokova uravnoteenja na temelju est obraenih studija [2]Figure 13 Estimate of additional balancing costs based upon six studies [2]

  • 8/6/2019 376_407

    17/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 392392

    fication due to the low level of the integration of WPPsinto a system, as is the case in the majority of Euro-pean countries [2].

    The goals of the technical criteria and requirementsregulated by grid codes are as follows:

    preservation of the essential characteristics ofthe electricity system, such as operation securityand electricity quality,

    the use of some properties of WPPs in thefunction of the operation security of the sys-tem,

    facilitate the maximum integration of WPPs intoan electrical power system, improvement in theintegrative properties of WPPs,

    construction of large WPPs with characteris-tics equivalent to those of conventional powerplants.

    The wind power equipment industry is attempting tomeet these requirements as soon as possible, pri-marily in reference to the following:

    electricity quality, according to IEC standards, application of the SCADA system, development of full-power converters for variable

    speed wind turbines with DFIG generators, the capability of WPPs to operate during grid dis-

    turbances, reliable control and protective functions of wind

    turbines, i.e. WPPs, the capability of controlling the power of WPPs

    during grid disturbances, reactive power capability at the connection point

    of the WPP to the grid, recording of the response by a WPP to a system

    disturbance, the response time of a WPP to a system distur-

    bance.

    kog opravdanja, zbog niske razine ukljuenostiVE u sustavu, to je sluaj u veini europskihzemalja [2].

    Ciljevi tehnikih kriterija i zahtjeva reguliranihmrenim pravilima su sljedei:

    ouvanje bitnih karakteristika elektroener-getskog sustava, kao to su sigurnost po-gona i kvaliteta elektrine energije,

    koritenje nekih svojstava VE koje su ufunkciji sigurnosti pogona sustava,

    poticanje razvoja onih osobina VE koje pri-donose kompatibilnosti VE i EES-a,

    omoguavanje to veeg prihvata VE u EES,poboljanjem integracijskih svojstava VE,

    izgradnja velikih VE koje imaju istovjetnekarakteristike poput konvencionalnih elek-trana.

    Industrija opreme za VE nastoji to prije ispunititraene zahtjeve. To se prvenstveno odnosi na:

    kvalitetu elektrine energije, prema IECstandardima,

    primjenu SCADA sustava, razvoj konvertora pune snage za promjen-

    ljivu brzinu vrtnje turbine s DFIG generato-rom,

    sposobnost zadravanja VE u pogonu tije-kom poremeaja u mrei,

    pouzdano upravljanje i zatitne funkcije vje-troagregata, odnosno VE,

    sposobnost upravljanja snagom VE tijekomporemeaja u mrei, sposobnost razmjene jalove energije na

    mjestu prikljuka VE na mreu, registraciju odziva VE na poremeaje u su-

    stavu, brzinu odziva VE na poremeaje u mrei.

    Slika 14 Razliiti zahtjevi navedeni u pet mrenih pravila za isti poremeaj u mrei [19]Figure 14 Various requirements specified by five grid codes for the same grid disturbance [19]

  • 8/6/2019 376_407

    18/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407393393

    Clear regulations are needed that guarantee se-cure system operation. However, these regulationschange frequently, without any participation by equip-ment manufacturers and other interested parties.

    System operators and other interested parties shoulddevelop realistic grid codes, based upon modern and

    physically feasible technology.Grid regulations and technical requirements alwaysdiffer from country to country (Figure 14). This is pri-marily justified by the various levels of WPP integra-tion, size, system characteristics and traditional localpractices [19].

    There are also common requirements for nearly allsystem operators, as follows:

    exchange of operational data between the systemoperator and a WPP,

    continuous operation of a WPP within a relativelybroad range of voltage and frequency variations, regulation of active power and frequency, regulation of reactive power and voltage.

    To a certain extent, the coordination of various re-quirements in grid codes is justified. Thus, for exam-ple, the coordination of the methodology of the timelyassessment of the suitability of a locality would fa-cilitate the procedure for the connection of a WPP tothe grid.

    Grid codes should actually facilitate a high level of in-

    tegration of WPPs into a system. They should reducethe risks connected with grid stability and are impor-tant for the development of WPPs, which should con-tribute to stable system operation.

    7.1The grid codes of individual countries [20]

    SpainIn Spain there are general grid codes for all newgenerating facilities and separate grid codes for theintegration of WPPs into the electrical power sys-tem.

    The goal of the grid codes for WPPs is to resolve thedifficulties that occur in a system with the integra-tion of large-scale WPPs (15 145 MW, late 2007).According to the grid codes, WPPs must meet the fol-lowing requirements:

    continuously meet the given prerequisites re-garding the maintenance of the voltage and fre-quency levels,

    meet the given requirements in connection withelectricity quality,

    remain on the grid during reductions in voltagedue to grid disturbances.

    Potrebna su jasna pravila koja jame siguranpogon sustava. No, ta se pravila esto mije-njaju, bez bilo kakve ukljuenosti proizvoaaopreme i drugih zainteresiranih subjekata.

    Operatori sustava i ostali zainteresirani par-tneri trebaju razvijati realistina mrena pravila

    utemeljena na suvremenoj i fiziki ostvarivojtehnologiji.

    Mrena pravila i tehniki zahtjevi se uvelike ra-zlikuju od zemlje do zemlje (slika 14). To se pr-venstveno opravdava razliitom razinom uklju-enosti VE, veliinom i karakteristikama susta-va i lokalnom tradicionalnom praksom [19].

    Postoje i zajedniki zahtjevi gotovo svih opera-tora sustava, a to su:

    razmjena pogonskih podataka izmeu ope-

    ratora sustava i VE, neprekidan pogon VE u relativno irokomrasponu promjena napona i frekvencije,

    regulacija djelatne snage i frekvencije, regulacija jalove snage i napona.

    Do neke mjere je opravdano usklaivanje razli-itih zahtjeva u mrenim pravilima.Tako bi npr.usklaivanje metodologije pravodobne procje-ne podobnosti lokacije olakalo proceduru pri-kljuivanja VE na mreu.

    Mrena pravila bi zapravo trebala omoguiti

    veliku razinu ukljuenosti VE u sustav. Ona mo-raju smanjiti rizike vezane uz stabilnost mreete su vana za razvoj VE, koje moraju pridonijetistabilnom pogonu sustava.

    7.1 Mrena pravila pojedinih zemalja [20]

    panjolskaU panjolskoj postoje opa mrena pravila zasve nove proizvodne objekte i posebna mrenapravila za prihvat VE u elektroenergetski su-stav.

    Cilj mrenih pravila za VE je rjeavanje pote-koa koje se pojavljuju u sustavu ukljuivanjemveeg opsega VE u sustav (15 145 MW, krajem2007. godine).Prema mrenim pravilima VE moraju zadovo-ljiti sljedee zahtjeve:

    trajno zadovoljavati zadane uvjete gledeodravanja razine napona i frekvencije,

    zadovoljavati zadane uvjete vezane uz kvali-tetu elektrine energije,

    ostati na mrei pri snienju napona uzroko-vanog poremeajima u mrei.

  • 8/6/2019 376_407

    19/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 394394

    PortugalThe new grid codes regulate the following:

    the ability to maintain WPPs in operation duringgrid disturbances,

    voltage regulation,

    active power regulation, modeling WPPs.

    France, Italy, Austria and SlovakiaThere are no special requirements.

    The NetherlandsThere are no special requirements. If a WPP cannotmeet the requirements stipulated by the grid codes, itis necessary to seek a permit from the system opera-tor for deviation from the grid codes.

    Belgium

    Currently, there are no special requirements outsidethe standard requirements for all power plants. Dif-ferent regulations apply for small power plants, up to25 MW and for those with a higher power rating. Dueto the population density of Belgium, there are no on-shore WPPs larger than 25 MW. For offshore WPPs,the German grid codes or codes of other countrieswill be applied.

    GermanyThe basic technical requirements for the connectionof power plants are specified in the grid codes of theGerman operator VDN. Due to strong growth in power

    plants using renewable energy sources, the require-ments are specified in a manual issued in August2004. Each operator of a transmission system hasissued a grid code for connection to the grid, whichmore or less follows the basic adopted requirements.

    GreeceThe Greek grid codes include ( 1n ) criterion, short-circuit ratio, limits of voltage variation in the connec-tion node of a WPP to a transmission grid and stand-ards for electricity quality.

    Poland

    The technical requirements for a WPP contain regu-lation of the active power, operation under variablelevels of voltage and frequency, connection and dis-connection from the grid, control of voltage and reac-tive power, operating conditions during grid distur-bances, standards for electricity quality, protection,monitoring, telecommunications connections andequipment testing.

    The Czech RepublicSpecial requirements in the grid codes refer to theminimum ranges of frequency and voltage for the op-eration of WPPs, the possibilities for reducing power,

    the maximum permitted power increase and regula-

    PortugalNova mrena pravila reguliraju:

    sposobnost zadravanja VE u pogonu tije-kom poremeaja u mrei,

    regulaciju frekvencije,

    regulaciju napona, regulaciju djelatne snage, modeliranje VE.

    Francuska, Italija, Austrija, SlovakaNema posebnih zahtjeva.

    NizozemskaNema posebnih zahtjeva. Ako VE ne moe is-puniti zahtjeve regulirane mrenim pravilima,mora se zatraiti dozvola od operatora sustavaza odstupanje od mrenih pravila.

    BelgijaTrenutano nema posebnih zahtjeva izvanstandardnih zahtjeva za sve elektrane. Ra-zliita pravila vrijede za manje elektrane, do25 MW i za one vee snage. S obzirom na gu-stou naseljenosti u Belgiji na kopnu nema VEveih od 25 MW. Za VE na moru primjenjivat ese njemaka mrena pravila ili pravila ostalihzemalja.

    NjemakaOsnovni tehniki zahtjevi za prikljuak elektra-na su utvreni u Mrenim pravilima njemakog

    operatora VDN. Zbog snanog rasta elektrana nabazi obnovljivih izvora energije, zahtjevi su utvr-eni u Priruniku iz kolovoza 2004. godine. Svakioperator prijenosnog sustava je objavio vlastitamrena pravila za prikljuenje na mreu koja vieili manje slijede usvojene temeljne zahtjeve.

    GrkaU grkim mrenim pravilima ukljuen je( 1n ) kriterij, kratkospojni omjer, granicepromjene napona u prikljunom voritu VE naprijenosnu mreu i standardi kvalitete elektri-ne energije.

    PoljskaTehniki zahtjevi za VE sadre: regulaciju dje-latne snage, pogon pri raznim razinama na-pona i frekvencije, ukljuivanje i iskljuivanjeiz mree, upravljanje naponom i jalovom sna-gom, uvjete pogona pri poremeajima u mrei,standarde kvalitete elektrine energije, zatitu,monitoring, telekomunikacijske veze i testira-nje postrojenja.

    eka republikaPosebni zahtjevi u mrenim pravilima se odno-

    se na: minimalni raspon frekvencije i napona

  • 8/6/2019 376_407

    20/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407395395

    tions for generator behavior under various situationsin the system (short circuit, regulation of voltage andreactive power, frequency variations, protection andstandards for electricity quality).

    SwedenThere are different requirements for various sizes of

    WPPs: large, over 100 MW; average, from 25 MW to100 MW; and small, from 1,5 MW to 25 MW. Further-more, there are also requirements for the capabilityof maintaining WPPs in operation during grid dis-turbances, voltage control, active power control andcommunication.

    FinlandIn Finland, there are still no national grid codes.Joint grid codes are being prepared at the level ofthe NORDEL Transmission System Operators As-sociation.

    DenmarkGrid codes are in force for wind turbines connected togrids with voltage levels below 100 kV and for WPPsconnected to grids with voltage levels above 100 kV.

    Great BritainThe grid codes of Great Britain were revised onJune 1, 2005, with additional requirements for newgeneration facilities and facilities based on renewa-ble energy sources, WPPs and HVDC converters. Thefollowing requirements are stipulated in the codes:

    the range of the regulation of reactive power:power factor from 0,95 ind. to 0,95 cap. at the siteof the WPP connection to the transmission grid,

    capability of frequency regulation at the WPP lev-el (providing services to the system is the subjectof a commercial contract),

    capability of voltage regulation at the connectionpoint of a WPP to the transmission grid,

    capability of maintaining a WPP in operation dur-ing grid disturbances. The WPP must remain onthe grid during a three-pole short circuit in a400 kV or 275 kV grid for a duration of up to 140 ms,

    for disturbances lasting longer than 140 ms, aWPP must meet the requirements according tothe specified voltage variation curve.

    CroatiaIn the Republic of Croatia, grid codes for convention-al power plants are in force, to which will be addedtechnical requirements, i.e. grid codes for the con-nection and operation of WPPs in the transmissiongrid, which the authorized state bodies and institu-tions are currently discussing.

    Grid codes for WPPs also regulate technical require-ments:

    za pogon vjetrogeneratora, mogunosti sma-njenja snage, maksimalno dozvoljeno pove-anje snage, pravila za ponaanje generatorau razliitim situacijama u sustavu (kratki spoj,regulacija napona i jalove snage, promjene fre-kvencije, zatite i standardi kvalitete elektrineenergije).

    vedskaPostoje razliiti zahtjevi za razne veliine VE;velike, preko 100 MW, srednje, od 25 MW do100 MW i male, od 1,5 MW do 25 MW. Takoer,postoje i zahtjevi za sposobnost zadravanja VEu pogonu tijekom poremeaja u mrei, uprav-ljanje naponom, upravljanje djelatnom snagomi komunikacije.

    FinskaU Finskoj jo ne postoje nacionalna mrenapravila. Pripremaju se zajednika mrena pra-vila na razini Udruge operatora prijenosnih su-stava NORDEL-a.

    DanskaNa snazi su mrena pravila za vjetroagregateprikljuene na mreu napona ispod 100 kV i zaVE prikljuene na naponsku razinu iznad 100 kV.

    Velika BritanijaMrena pravila Velike Britanije su novelirana1. lipnja 2005. s dodanim zahtjevima za noveproizvodne objekte i objekte na bazi obnovlji-

    vih izvora energije, za VE i HVDC konvertore. Upravilima su navedeni sljedei zahtjevi:

    raspon regulacije jalove energije: faktorsnage od 0,95 ind. do 0,95 kap. na mjestuprikljuka VE na prijenosnu mreu,

    sposobnost regulacije frekvencije na raziniVE (pruanje usluga sustavu je predmet ko-mercijalnog ugovora),

    sposobnost regulacije napona na mjestuprikljuka VE na prijenosnu mreu,

    sposobnost zadravanja VE u pogonu tije-kom poremeaja u mrei: VE mora ostatina mrei tijekom tropolnog kratkog spoja u400 kV ili 275 kV mrei u trajanju do 140 ms,

    za due trajanje poremeaja od 140 ms, VEmora zadovoljiti zahtjeve prema zadanojkrivulji promjene napona.

    HrvatskaU Republici Hrvatskoj su na snazi Mrena pra-vila za konvencionalne elektrane, kojima e sedodati tehniki zahtjevi, odnosno mrena pravi-la za prikljuak i pogon VE na prijenosnoj mrei,

    o kojim se trenutano raspravlja na strunim inadlenim dravnim tijelima i institucijama.

  • 8/6/2019 376_407

    21/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 396396

    the regulation of frequency and active power, the regulation of voltage reactive power, the capability of WPPs to remain in operation dur-

    ing grid disturbances.

    Codes specify the characteristics of a 110 kV sub-station for the connection of a WPP to the transmis-

    sion grid, data required on the WPP for the regis-tration of the connection, trial period and regularoperation of the WPP.

    It may be said in conclusion that in every country gridcodes for WPPs must express the specific problemsof the integration of WPPs into the system, depend-ing on the level of WPP integration, structure and sizeof the system, and the number of interconnectionlines with the systems of neighboring countries.

    8 EXPERIENCES OF INDIVIDUALEUROPEAN COUNTRIES INTHE USE OF WIND ENERGYFOR THE PRODUCTION OFELECTRICITY

    8.1The Spanish example [19]

    In the Spanish electrical power system, 1 100 MWof wind power was connected to the electrical pow-er system in late 2006, i.e. 20 % of the total annual

    electricity consumption. Occasionally and for shortperiods, WPPs covered 30 % of consumption without

    Mrenim pravilima za VE se izmeu ostalog re-guliraju i tehniki zahtjevi:

    s obzirom na regulaciju frekvencije i djelat-ne snage,

    s obzirom na regulaciju napona i jalovesnage,

    na sposobnost VE u svezi s prolaskom krozstanje kvara u mrei.

    Pravilima se propisuju karakteristike 110 kVpostrojenja za prikljuak VE na prijenosnumreu, te potrebni podaci o VE u postupku pri-

    jave za prikljuak, probni i redovni pogon VE.

    8 ISKUSTVA POJEDINIHEUROPSKIH ZEMALJA UKORITENJU ENERGIJEVJETRA ZA PROIZVODNJUELEKTRINE ENERGIJE

    8.1panjolski primjer [19]

    U panjolskom elektroenergetskom sustavu jedo kraja 2006. godine bilo prikljueno11 000 MW VE, odnosno 20 % godinje brutopotronje elektrine energije. Povremeno i ukratkim razdobljima su VE pokrivale i 30 % po-tronje bez veih problema u sustavu.

    U panjolskoj je u 2007. godini izgraeno i pri-kljueno na mreu 3 522 MW novih VE, najvie

    Slika 15 Tokovi energije bez VE i s VE u sustavu [19]Figure 15 Energy flows with and without WPPs in the system [19]

  • 8/6/2019 376_407

    22/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407397397

    major problems in the system.In the year 2007, WPPs generating 3 522 MW wereconstructed and connected to the grid, the most ofall the Member States of the EU27 (41,2 % of the totalincrease in the installed capacity of WPPs of the EUin the year 2007).

    In late 2007, the total installed wind parks in Spaingenerated 15 145 MW.

    Previously, the electricity produced by WPPs re-quired changes in consumption management andhad a slight effect on system operation. With time,the situation changed significantly, particularly withlarge-scale wind power integration into the system.An increasing number of WPPs are also connected tothe 380/220 kV transmission system. Voltage, energyflows and power are becoming increasingly impor-tant and must be under constant supervision by thesystem operator (Figure 15).

    Failure of a large number of WPPs caused by distur-bances and faults in the transmission network affectthe stability of the grid. WPPs are ordinarily locatedfar from the consumption centers, a factor which hasgreatly affected the extension of electricity grids.

    The requirements for the engagement of additionalenergy reserves due to the variable production ofWPPs are less than anticipated. The results of theapplied forecasting models have been increasinglyfavorable and the generation by WPPs in the gen-eral geographical area is reducing deviation from the

    plan.

    Act 54/97 established the unbundling of the opera-tions of electrical power companies, while retainingownership over the means of production. Electricalpower companies play an important role in the Span-

    od svih zemalja lanica EU27 (41,2 % ukupnogporasta instalirane snage VE EU u 2007. go-dini).

    Krajem 2007. godine ukupno instalirani proi-zvodni park VE u panjolskoj iznosio je15 145 MW.

    Ranije je proizvodnja elektrine energije u VEutjecala na upravljanje potronjom i neznatnona pogon sustava. S vremenom su se stvariznatno promijenile, naroito s veim opsegomukljuenosti VE u sustav. Sve se vie VE priklju-uje i na 380/220 kV prijenosni sustav. Napon itokovi energije i snage postaju sve znaajniji ioni moraju biti pod stalnim nadzorom operato-ra sustava (slika 15).

    Ispad velikog broja VE izazvan smetnjama ikvarovima u prijenosnoj mrei utjee na sta-

    bilnost mree. VE su obino daleko od centarapotronje, a to je uvelike utjecalo na proirenjeelektrine mree.

    Zahtjevi za angairanjem dodatne priuvneenergije zbog promjenjive proizvodnje VE sumanji od oekivanih. Rezultati primjene mode-la prognoziranja su sve povoljniji i proizvodnjaVE na irem geografskom prostoru smanjujeodstupanje od plana.

    Zakon 54/97 utvruje razdvajanje poslovanjaelektroprivrednih poduzea, uz zadrava-

    nje vlasnitva nad sredstvima proizvodnje.Elektroprivredna poduzea igraju vanuulogu u panjolskom sektoru vjetroenergi-

    je. Elektroprivredna poduzea su operatorielektrana i vlasnici 60 % panjolskog proi-zvodnog parka.

    Slika 16 Odnos izmeu snage VE u sustavu i pool cijene na spot tritu [19]Figure 16 The relationship between wind power in the system and pool prices on the spot market [19]

  • 8/6/2019 376_407

    23/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 398398

    ish wind energy sector. Electrical power companiesare the power plant operators and owners of 60 %of the Spanish production facilities.

    Nearly all the producers of electricity and the ma- jority of WPP operators offer their production onthe electricity market. WPP operators pay the sys-tem operator a service fee.

    With the increased integration of WPPs, the priceof electricity on the spot market has fallen (Fig-ure 16). There has been a greater price reductionfor electricity on the market than the increase in

    balancing costs. Balancing costs of the systemamount to approximately 3,5 EURc/kWh.

    WPPs have a very important role in the extend-ing and strengthening of grids. Cooperation be-tween the wind power sector and system operatoris fundamental. This is the basis of mutual un-derstanding and the search for optimal technicalsolutions.

    A joint study of the wind energy sector and sys-tem operator was coordinated by the main Span-ish system operator, REE. Various scenarios have

    been investigated for the integration of WPPs ac-cording to the level of electricity consumption fore-cast by the firm Iberian Electrical System, with therequirement that the characteristics of new windpower plants should be completely coordinatedwith the requirements of the grid codes [19].

    The system operator affects grid security throughthe coordination of WPP operation (Figure 17).

    Overloads occur in specific network nodes. Thereare risks of the failure of individual parts of thegrid due to specific problems of dynamic stability.During a period of low load, a surplus of electrical

    Gotovo svi proizvoai elektrine energije iveina operatora VE nude svoju proizvodnjuna tritu elektrine energije. Operatori VEplaaju operatoru sustava naknadu za uslu-ge.Ukljuivanjem sve veeg opsega VE smanju-

    je se cijena elektrine energije na spot tritu(slika 16). Vee je smanjenje cijene elektrineenergije na tritu od rasta trokova uravnote-enja. Trokovi uravnoteenja sustava iznoseoko 3,5 EURc/kWh.

    VE imaju vrlo vanu ulogu u proirenju i pojaa-nju mree. Fundamentalna je suradnja izmeusektora VE i operatora sustava. Ona je temeljuzajamnog razumijevanja i pronalaenja opti-malnih tehnikih rjeenja.

    Obraena je zajednika studija sektora vjetro-energije i operatora sustava koju je koordiniraoglavni panjolski operator sustava REE. Istra-eni su razni scenariji ukljuivanja VE premapredvianju razine potronje elektrine energijetvrtke Iberian Electrical System i uz zahtjev daobiljeja novih vjetroagregata budu u potpunosti

    usklaena sa zahtjevima mrenih pravila [19].Operator sustava utjee na sigurnost mreekoordinacijom pogona VE (slika 17).

    U specifinim vorovima mree pojavljuju sepreoptereenja. Postoje rizici ispada pojedinihdijelova mree zbog specifinih problema di-namike stabilnosti. U razdoblju niskih opte-reenja pojavljuje se viak elektrine energijeu sustavu.

    Na EU razini treba provjeriti statiku i dina-

    miku sposobnost interkonekcijskih vodovaizmeu zemalja lanica.

    Slika 17 Komunikacijske veze izmeu VE i operatora sustava [19]Figure 17 Communication between wind farms and the system operator [19]

  • 8/6/2019 376_407

    24/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407399399

    power occurs in a system.At the level of the EU, it is necessary to verify thestatic and dynamic capabilities of the interconnectionlines among Member States.

    It is important to strengthen the interconnection linesamong the Member States and introduce European

    dispatching for the management of energy flows atthe European level among Member States.

    Furthermore, it is necessary to improve globalweather forecasting (wind).

    To a specific extent, it is necessary to make grid codesuniform at the European level. Wind power plants mustmeet grid codes in order be connected to the grid.

    8.2The German example [21]

    The Federal Government of Germany has adopteda plan for the construction of offshore WPPs witha total capacity of 20 000 MW to 25 000 MW by theyear 2030. At the potential German locations for theconstruction of offshore WPPs, there are seriouschallenges that in general refer to the great distancebetween the WPPs and consumer centers, as well asthe sea depth at potential locations.

    At the planned offshore locations, wind turbines withunit capacities of 5,0 MW will be installed, with thegoal of reducing specific construction costs. Twelvewind turbines with unit capacities of 5,0 MW were

    scheduled to be built at a selected test location andin operation by the summer of 2008.

    The three key enterprises that will participate in theconstruction and operation of the offshore WPPs atthe test location are EWE, E.ON and Vattenfall. Thewind turbines will be manufactured by REpower andMultibrid. It is anticipated that the successful con-struction of wind turbines at the test location willrepresent a great leap in the further use of energyfrom offshore WPPs.

    The enterprise E.ON Netz in Schleswig-Holstein has

    demonstrated what can be achieved through the ap-plication of innovative technologies. Since Septem-ber 2006, a system has been in place to monitor theconductor temperature on a 110 kV power line. E.ONNetz is convinced that this will increase grid capacityby 50 %. A study commissioned by the German Fed-eral Ministry for the Environment predicted the pos-sibility of a 100 % increase in transmission capaci-ties. Conductor temperature measurement can alsobe installed for power lines of higher voltage levels.

    The German Federal Parliament has adopted the In-frastructure Planning Acceleration Act, pursuant to

    which the German system operators will be required

    Vano je pojaanje interkonekcijskih vezameu zemljama lanicama i uvoenje eu-ropskog dispeinga za upravljanje tokovimaenergije na europskoj razini i izmeu zemaljalanica.

    Takoer, nuno je poboljanje globalne pro-

    gnoze vremena (vjetra).U odreenoj mjeri potrebno je i ujednaitimrena pravila na europskoj razini. Vjetroa-gregati moraju zadovoljavati mrena pravilada bi se ostvarilo njihovo prikljuivanje namreu.

    8.2Njemaki primjer [21]

    Njemaka savezna vlada je usvojila planizgradnje VE na moru ukupne snage

    20 000 MW do 25 000 MW do 2030. godine.Na njemakim potencijalnim lokacijama zaizgradnju VE na moru postoje ozbiljni izazovikoji se uglavnom svode na veliku udaljenostVE od potroakih centara i na dubinu morana potencijalnim lokacijama za izgradnju VE.

    Na planiranim morskim lokacijama e seinstalirati vjetroagregati jedinine snage5,0 MW s ciljem smanjenja specifinih tro-kova graenja. Odlueno je da se na odabra-noj test lokaciji izgradi 12 vjetroagregata, je-dinine snage 5,0 MW koje je trebalo pustiti u

    pogon do ljeta 2008. godine.

    Tri su kljuna poduzea koja e sudjelovati uizgradnji i pogonu VE na moru na test loka-ciji, EWE, E.ON i Vattenfall. Vjetroagregate eproizvesti proizvoai REpower i Multibrid.Oekuje se da e uspjeno izgraena VE natest lokaciji predstavljati veliki skok u dalj-njem koritenju energije iz VE na moru.

    Poduzee E.ON Netz u Schleswig-Holsteinu je pokazalo to se moe postii primjenominovativnih tehnologija. Od rujna 2006. go-

    dine sustav je u stanju pratiti temperaturuvodia 110 kV vodova. E.ON Netz je uvjerenda e to poveati kapacitet mree za 50 %.Studija koju je ugovorilo njemako saveznoministarstvo za okoli, predoilo je rezultateo mogunosti 100 postotnog poveanja prije-nosnih kapaciteta. Monitoring mjerenja tem-perature mogu se ugraditi i na vodove vienaponske razine.

    Njemaki savezni parlament je prihvatio Za-kon o broj izradi plana razvoja infrastruktu-re po kojem se njemaki operatori sustava

    obvezuju izgraditi i odravati prikljuak VE

  • 8/6/2019 376_407

    25/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 400400

    to build and maintain connections to offshore WPPsat their own expense, as is the case in Denmark.This new legislation opens a completely new chap-ter in the area of energy supply in Germany. Throughlegislation, it is desired to reduce costs significantlyand eliminate the main obstacles to the construc-tion of offshore WPPs. However, these are not the

    only benefits that the new law brings. It will facilitateimproved bundling of the transmission lines of manyWPPs, which is also positive from the aspect of envi-ronmental protection.

    This law is a step toward an idea that is being fol-lowed by the Irish company Airtricity, which plansto construct a European supergrid of WPPs onthe North Sea and thereby connect WPPs of up to10 000 MW to the German, Dutch and British grids bythe year 2015.

    In Germany, it has been noted that greater coopera-

    tion among system operators and the wind powersector is needed. It is necessary to point out the verypositive example of cooperation by the German regu-latory agency on a study to determine the possibil-ity of integrating WPPs into the German system (thedena-grid study) [5]. In this example, it was shownthat only studies with the joint participation of systemoperators, energy regulators, the wind power indus-try and WPP operators can accelerate the decision-making process on sound foundations. Conductingparallel studies would not produce the same results.

    German system operators are cooperating with the

    German WPP industry on the second phase of thedena-grid study. The study has the goal of determin-ing the feasibility and manner of integrating a 25 %to 30 % share of renewable energy sources, mainlyWPP production, into the system by the year 2020 or2025.

    8.3 The French example [22]

    At the end of the year 2007, WPPs were built in Francewith a total capacity of 2 454 MW. In July 2005, the En-ergy Act was adopted, in which, among other things,

    the geographic region in which new WPPs would bebuilt was stipulated.

    Feasibility studies on the integration of WPPs in theFrench electrical power system have shown that thetransmission grid could accommodate WPPs withgrid capacities of 6 000 MW to 7 000 MW without sig-nificant reinforcement.

    During the previous period, a lack of coordinationwas noted between the anticipated development ofthe use of wind energy and the development plan ofthe grid. It is necessary to coordinate cooperation on

    the construction of WPPs and the planning of under-

    na moru na svoj vlastiti troak, kao to je tosluaj u Danskoj.

    Taj novi zakonski akt otvara potpuno novo po-glavlje na podruju opskrbe energijom u Nje-makoj. Zakonom se ele znatno smanjiti tro-kovi i otkloniti glavne prepreke u izgradnji VE

    na moru. Meutim, to nisu jedine koristi kojedonosi novi zakon. On e omoguiti bolje po-vezivanje prijenosnih vodova mnogih VE, to jepozitivno i s aspekta zatite okoline.

    Taj zakon je korak prema ideji koju slijedi irskatvrtka Airtricity, a koja planira izgraditi europ-sku super mreu VE na Sjevernom moru, ko-

    jom e se povezati VE snage 10 000 MW s nje-makom, nizozemskom i britanskom mreom,do 2015. godine.

    U Njemakoj je uoeno da je nuna intenzivni-

    ja suradnja operatora sustava i sektora vjetro-energije. Treba istaknuti vrlo pozitivan primjersuradnje njemake regulatorne agencije naobradi studije mogunosti prihvata VE u nje-maki sustav (dena studija) [5]. Na tom primjeruse pokazalo da samo studije koje zajedno obra-uju operatori sustava, energetski regulatori,vjetroindustrija i operatori VE mogu ubrzati pro-ces odluivanja na stvarnim osnovama. Obradaparalelnih studija nee dati istovjetne rezultate.

    Njemaki operatori sustava surauju s nje-makom industrijom VE na obradi druge faze

    dena studije. Studija ima za cilj da se utvrdimogunost i nain ukljuivanja 25 % do 30 %obnovljivih izvora energije, uglavnom proizvod-nje VE u elektroenergetski sustav do 2020. ili2025. godine.

    8.3 Francuski primjer [22]

    Krajem 2007. godine u Francuskoj je bilo iz-graeno VE ukupne snage 2 454 MW. U srp-nju 2005. godine usvojen je Zakon o energiji ukojem su pored ostalih odredbi, utvrena ge-

    ografska podruja na kojim e se graditi noveVE.

    Studije mogunosti ukljuivanja VE u francuskielektroenergetski sustav su pokazale da prije-nosna mrea moe prihvatiti VE ukupne snageod 6 000 MW do 7 000 MW bez znaajnijih po-

    jaavanja mree.

    U prethodnom razdoblju je uoen nesklad iz-meu predvianja razvoja koritenja energijevjetra i plana razvoja mree te je nuna koor-dinirana suradnja na izgradnji VE i planiranju

    zahvata u prijenosnoj mrei.

  • 8/6/2019 376_407

    26/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407401401

    takings on the transmission grid.The high variability in the generation of electricity atthe local level and the significantly reduced variabilityat the national level were noted.

    The capacity credit at the level of the integration ofWPPs into a system of a few GW is approximately

    30 % of the installed capacity of the WPPs, and forWPPs with an installed capacity of 20 GW it is ap-proximately 15 % [5].

    8.4The Italian example [23]

    By late 2007, WPPs had been constructed in Italy witha total capacity of 2 726 MW. At the proposal of TER-NA, a plan was adopted for the development of theelectricity grid, according to which coverage for in-creasing electricity consumption, connection of newgenerating facilities, elimination of grid congestion,

    increased grid efficiency, the construction of new in-terconnected power lines toward neighboring coun-tries and meeting all the ecological requirements areanticipated. During the period from 2006 to 2010, aninvestment of 1,6 billion euros in the transmissiongrid is anticipated, as well as an additional 1,5 billioneuros after the year 2010.

    Growth is expected in the consumption of electricalpower from 330,4 TWh in the year 2005 to 369,3 TWhin the year 2010 and 420 TWh in the year 2020. Theinstalled capacity of WPPs is expected to be 3 875 MWin the year 2008.

    With the goal of the large-scale integration of WPPsinto the system, specific requirements have been es-tablished for new WPPs that will be included in thesystem:

    operational capability during grid disturbances, participation by WPPs in resolving technical re-

    strictions, especially in critical grid situations, participation in voltage regulation, participation in frequency regulation, forecasting WPP production.

    8.5Great Britain [24]

    The goals and aspirations of Great Britain are as fol-lows:

    for renewable energy sources to cover: 10 % of total electricity consumption in the

    year 2010, 20 % of total electricity consumption in the

    year 2020, WPPs will make the greatest contribution to

    achieving this goal, There are no specific goals connected with the

    Uoena je visoka promjenljivost proizvodnjeelektrine energije na lokalnoj razini i bitnosmanjena promjenljivost na nacionalnoj razini.

    Snaga VE s kojom operator sustava moe rau-nati u sustavu za razinu ukljuenosti VE u su-stav od nekoliko GW je oko 30 % od instaliranog

    kapaciteta VE, a za instalirani kapacitet VE od20 GW je oko 15 % [5].

    8.4Talijanski primjer [23]

    U Italiji je do kraja 2007. godine izgraeno VEukupne snage 2 726 MW. Na prijedlog TER-NE usvojen je plan razvoja elektrine mree,kojim se predvia pokrivanje rastue potro-nje elektrine energije, prikljuivanje novihproizvodnih objekata, uklanjanje zaguenjau mrei, poveanje uinkovitosti mree te iz-

    gradnja novih interkonekcijskih vodova premasusjednim dravama, uz ispunjavanje svihekolokih zahtjeva.U razdoblju od 2006. do 2010. godine pred-viaju se investicijska ulaganja u prijenosnumreu od 1,6 milijardi eura, a nakon 2010. go-dine daljnjih 1,5 milijardi eura.

    Predvia se porast potronje elektrine ener-gije od 330,4 TWh ostvarene 2005. godine na369,3 TWh u 2010. godini i 420 TWh u 2020.godini. Predvia se da e instalirana snaga VEiznositi 3 875 MW, 2008. godine.

    S ciljem ukljuivanja veeg opsega VE u sustav,postavljaju se posebni zahtjevi na nove VE kojee se ukljuivati u sustav:

    sposobnost pogona tijekom poremeaja umrei,

    udio VE u rjeavanju tehnikih ogranienjau kritinim situacijama u mrei,

    udio u regulaciji napona, udio u regulaciji frekvencije, prognoziranje proizvodnje VE.

    8.5Velika Britanija [24]

    Ciljevi i tenje Velike Britanije su sljedei:

    da obnovljivi izvori energije pokrivaju: 10 % bruto potronje elektrine ener-

    gije u 2010. godini, 20 % bruto potronje elektrine ener-

    gije u 2020. godini, VE e dati najvei doprinos ostvarenju toga

    cilja, nema posebnih ciljeva vezanih uz strukture

    VE na kopnu i VE na moru,

  • 8/6/2019 376_407

    27/32

    Dokmanovi, V., Europska iskustva u svezi prihvata..., Energija, god. 57(2008), br. 4., str. 376-407Dokmanovi, V., European Experience in Connection..., Energija, Vol. 57(2008), No. 4, pp. 376-407 402402

    structure of onshore and offshore WPPs, There should be a 60 % reduction in CO2 emis-

    sions by the year 2050.

    At the end of the year 2007, wind power generationwas 2 389 MW.

    8.6Croatia

    According to professional analyses conducted withina study on the feasibility of the integration and tech-nical requirements of wind power plants, performedfor the system operator HEP OPS by the Energy In-stitute Hrvoje Poar (EIHP), in the Republic of Croatiait is possible to construct WPPs with a total capacityof approximately 3 400 MW. Owing to incentives thatare anticipated for the production of electrical energyfrom renewable energy sources, domestic and foreigninvestors have developed and prepared projects for the

    construction of WPPs with a total capacity of 1 578 MW.

    The study determined that the absorptive capacity ofthe existing grid is 923 MW. The secondaryP/fcontrolcapabilities of the electrical power system addition-ally limit the possibility of the integration WPPs intothe transmission grid to a total wind power capacityof 300 MW to 400 MW.

    The study also proposes measures for increasing theintegration of WPPs into the system:

    the introduction of wind power generation fore-

    casts 48 hours in advance, the introduction of compensation for providing

    system services, the procurement of trans-border system serv-

    ices, the integration of a large number of power plants

    into secondaryP/fcontrol, the modernization of the control system, and the strengthening, extension and construction of

    the transmission grid.

    9 INVESTIGATION OFTHE FEASIBILITY OF THEINTEGRATION OF WPPs INTO AEUROPEAN SYSTEM [25]

    9.1 European Wind Integration Study (EWIS)

    Until now, discussion has focused upon feasibilitystudies on the integration of WPPs into the systemsof individual countries, which were written solelyfrom national perspectives, i.e. they were not jointstudies at the European level.

    Supporting renewable energy sources is a crucial

    smanjenje CO2 emisije za 60 % do 2050.godine.

    Krajem 2007. godine je u Velikoj Britaniji bilo upogonu 2 389 MW VE.

    8.6Hrvatska

    Prema provedenim strunim analizama u stu-diji Mogunost prihvata i tehniki zahtjevi zavjetroelektrane, koju je za operatora sustavaHEP OPS obradio Energetski institut Hrvojepoar (EIHP), u Republici Hrvatskoj je mogueizgraditi VE ukupne snage oko 3 400 MW. Za-hvaljujui poticajima koji su predvieni za proi-zvodnju elektrine energije iz obnovljivih izvoraenergije, domai i strani investitori su razvilii pripremili projekte za izgradnju VE ukupnesnage 1 578 MW.

    Studijom je utvreno da su apsorpcijske mo-gunosti postojee mree 923 MW. Regulacij-ske sposobnosti elektroenergetskog sustavadodatno ograniavaju mogunost prikljuka VEna prijenosnu mreu na ukupnu snagu VE od300 MW do 400 MW.

    Studijom se predlau i mjere za poveanje pri-hvata VE u sustav: