94
ACTUALIZACIÓN FORTALECIMIENTO CURRICULAR Área de Matemáticas 8. º , 9. º y 10. º años EDUCACIÓN BÁSICA

40131752 Libro Matematicas

Embed Size (px)

Citation preview

Page 1: 40131752 Libro Matematicas

ACTUALIZACIÓNFORTALECIMIENTO

CURRICULAR

Área de Matemáticas

8.º, 9.º y 10.º años

EDUCACIÓNBÁSICA

Page 2: 40131752 Libro Matematicas

El uso de lenguaje que discrimine y reproduzca esquemas discriminatorios entre mujeres y hombres, es una de las preocupaciones del Ministerio de Educación del Ecuador, sin embargo, no hay acuerdo entre los lingüistas acerca de la manera de hacerlo en español.Por esta razón, y para evitar la sobrecarga gráfica que supondría el uso de “o/a”, “los/las” y otras formas relacionadas con el género, a fin de marcar la presencia de ambos sexos, hemos optado por usar términos genéricos, en la medida de las posibilidades del lenguaje, y la forma masculina en su tradicional acepción.

IMpORTANTE

Page 3: 40131752 Libro Matematicas

2009

presidente de la RepúblicaRafael Correa Delgado

Ministro de EducaciónRaúl Vallejo Corral

Subsecretaria General de EducaciónGloria Vidal Illingworth

Subsecretario de Calidad EducativaPablo Cevallos Estarellas

Directora Nacional de Educación Básica Isabel Ramos Castañeda

Directora Nacional de Currículo (E)Susana Araujo Fiallos

Área de Matemática

ACTUALIZACIÓN Y FORTALECIMIENTO CURRICULAR DE LA EDUCACIÓN BÁSICA 2010

8.º, 9.º y 10.º años

Page 4: 40131752 Libro Matematicas

Equipo Técnico:René Cortijo Jacomino

María Cristina Espinosa SalasAngelina Gajardo Valdés

Martha Alicia Guitarra SantacruzLuis Hernández BasanteIvanna López AmpueroFreddy Peñafiel Larrea

Mariana Pérez FloresMiguel Pérez Teca

Juan Diego Reyes VillalvaNancy Romero Aguilar

Pilar Tamayo ArocaAlba Toledo Delgado

Coordinación editorial:Martha Alicia Guitarra Santacruz

Diseño y diagramación:Susana Zurita BecerraJosé Hidalgo Cevallos

Francisco Veintimilla Romo

Corrección de estiloLigia Sarmiento De León

Impresión:

© Ministerio de Educación del EcuadorNoviembre de 2009

Quito – Ecuador

Page 5: 40131752 Libro Matematicas

Introducción 91. Antecedentes 10

La nueva Constitución de la República 10

El Plan Decenal del Ministerio de Educación 10

La Reforma Curricular vigente y su evaluación 11

La elevación de los estándares de calidad de la Educación Básica 11

2. Bases pedagógicas del diseño curricular 12El desarrollo de la condición humana y la preparación para la comprensión 12

Proceso epistemológico: Un pensamiento y modo de actuar lógico, crítico y creativo 13

Una visión crítica de la Pedagogía: Un aprendizaje productivo y significativo 14

3. La estructura curricular: Sistema de conceptos empleados 17Perfil de salida 17

Objetivos educativos del área 17

Mapa de conocimientos 17

Objetivos educativos del año 18

Eje curricular integrador del área 18

Ejes del aprendizaje 18

Bloques curriculares 18

Destrezas con criterios de desempeño 18

Precisiones para la enseñanza y el aprendizaje 19

Indicadores esenciales de evaluación 19

4. El perfil de salida de los estudiantes de la Educación Básica 205. Los ejes transversales dentro del proceso educativo 22

Formación ciudadana y para la democracia 22

Protección del medioambiente 22

El correcto desarrollo de la salud y la recreación de los estudiantes 23

La educación sexual en la niñez y la adolescencia 23

Área de MatemáticaLa importancia de enseñar y aprender Matemática 27

Perfil de salida del área 31

Objetivos educativos del área 32

pROYECCIÓN CURRICULAR DE OCTAVO AÑO

1. Objetivos educativos 362. planificación por bloques curriculares 373. precisiones para la enseñanza y el aprendizaje 39

Bloque: Relaciones y funciones 40

Bloque: Numérico 40

Bloque: Geométrico 42

Bloque: Medida 45

Bloque: Estadística y probabilidad 45

4. Indicadores esenciales de evaluación 47

pROYECCIÓN CURRICULAR DE NOVENO AÑO

1. Objetivos educativos 502. planificación por bloques curriculares 51

CONTENIDO

Page 6: 40131752 Libro Matematicas

3. precisiones para la enseñanza y el aprendizaje 53Bloque: Relaciones y funciones 56

Bloque: Numérico 59

Bloque: Geométrico 60

Bloque: Medida 62

Bloque: Estadística y probabilidad 62

4. Indicadores esenciales de evaluación 65

pROYECCIÓN CURRICULAR DE DÉCIMO AÑO

1. Objetivos educativos 682. planificación por bloques curriculares 693. precisiones para la enseñanza y el aprendizaje 71

Bloque: Relaciones y funciones 73

Bloque: Numérico 77

Bloque: Geométrico 77

Bloque: Medida 78

Bloque: Estadística y probabilidad 79

4. Indicadores esenciales de evaluación 80

Bibliografía 81

Mapa de conocimientos 83

Page 7: 40131752 Libro Matematicas
Page 8: 40131752 Libro Matematicas
Page 9: 40131752 Libro Matematicas

Actualización y Fortalecim

iento Curricular de la Educación Básica 2010

9

Introducción

El Ministerio de Educación tiene entre sus objetivos centrales el incremento progresivo de la calidad en todo el sistema educativo; para ello, emprende diversas acciones estratégicas derivadas de las directrices de la Constitu-ción de la República y del Plan Decenal de Educación.

Una tarea de alta significación es la realización del proceso de Actualización y Fortalecimiento Curricular de la Educación Básica, con el fin de lograr los siguientes objetivos:

• Potenciar, desde la proyección curricular, un proceso educativo inclusivo de equidad con el propósito de fortalecer la formación ciudadana para la democracia, en el contexto de una sociedad intercultural y plurinacio-nal.

• Ampliar y profundizar el sistema de destrezas y conocimientos a concre-tar en el aula.

• Ofrecer orientaciones metodológicas proactivas y viables para la ense-ñanza - aprendizaje, a fin de contribuir al perfeccionamiento profesional docente.

• Precisar indicadores de evaluación que permitan delimitar el nivel de calidad del aprendizaje en cada año de Educación Básica.

El proceso de Actualización y Fortalecimiento Curricular se ha realizado a partir de la evaluación y las experiencias logradas con el currículo vigente, el estudio de modelos curriculares de otros países y, sobre todo, recogien-do el criterio de especialistas y de docentes ecuatorianas y ecuatorianos del primer año y de las cuatro áreas fundamentales del conocimiento en la Educación Básica: Lengua y Literatura, Matemática, Estudios Sociales y Ciencias Naturales.

A continuación se presenta el resultado de la Actualización y Fortaleci-miento Curricular/2010, el que será el referente principal para conducir la EDUCACIÓN GENERAL BÁSICA ECUATORIANA.

Page 10: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

10

En la actual Constitución de la República aprobada por consulta popular en 2008, en el artículo No. 343 de la sección primera de educación, se expresa: “El sistema nacional de Educación tendrá como finalidad el desarrollo de capacidades y potencialidades individuales y colectivas de la población, que posibiliten el aprendizaje, la generación y la utilización de conocimien-tos, técnicas, saberes, artes y culturas. El sistema tendrá como centro al su-jeto que aprende, y funcionará de manera flexible y dinámica, incluyente, eficaz y eficiente”.

En el artículo No. 347, numeral 1, de la misma sección, se establece lo si-guiente: “Será responsabilidad del Estado fortalecer la educación pública y la coeducación; asegurar el mejoramiento permanente de la calidad, la ampliación de la cobertura, la infraestructura física y el equipamiento nece-sario de las instituciones educativas públicas”.

Estos principios constituyen mandatos orientados a la calidad de la educa-ción nacional, para convertirla en el eje central del desarrollo de la sociedad ecuatoriana.

La nueva Constitución de la República

El Ministerio de Educación, en noviembre de 2006, mediante Consulta Po-pular, aprobó el Plan Decenal de Educación 2006 - 2015, definiendo, entre una de sus políticas, el mejoramiento de la calidad de la educación. En este plan se precisa, entre otras directrices:

• Universalización de la Educación General Básica de primero a décimo.

• Mejoramiento de la calidad y equidad de la educación e implementa-ción de un sistema nacional de evaluación y rendición social de cuentas del sector.

• Revalorización de la profesión docente y mejoramiento de la formación inicial, desarrollo profesional, condiciones de trabajo y calidad de vida.

El plan Decenal de Educación

Antecedentes1

Page 11: 40131752 Libro Matematicas

Actualización y Fortalecim

iento Curricular de la Educación Básica 2010

11

En el año de 1996 se oficializó la aplicación de un nuevo diseño curricular llamado “Reforma Curricular de la Educación Básica”, fundamentada en el desarrollo de destrezas y el tratamiento de ejes transversales. Durante los trece años transcurridos hasta la fecha, diferentes programas y proyectos educativos fueron implementados con el objetivo de mejorar la educación y optimizar la capacidad instalada en el sistema educativo.

Para valorar el grado de aplicación de la Reforma Curricular y su impacto, la Dirección Nacional de Currículo realizó un estudio a nivel nacional que permi-tió comprender el proceso de aplicación de la Reforma de la Educación Básica y su grado de presencia en las aulas, las escuelas y los niveles de supervisión, determinando los logros y dificultades, tanto técnicas como didácticas.

Esta evaluación intentó comprender algunas de las razones que argumentan los docentes en relación con el cumplimiento o incumplimiento de los obje-tivos de la Reforma: la desarticulación entre los niveles, la insuficiente pre-cisión de los conocimientos a tratar en cada año de estudio, las limitaciones en las expresiones de las destrezas a desarrollar y la carencia de criterios e indicadores de evaluación.

La Reforma Curricular vigente y su evaluación

Considerando las directrices emanadas de la Carta Magna de la República y del Plan Decenal de Desarrollo de la Educación, así como de las experiencias logradas en la Reforma Curricular de 1996, se realiza la Actualización y Forta-lecimiento Curricular de la Educación General Básica como una contribución al mejoramiento de la calidad, con orientaciones más concretas sobre las des-trezas y conocimientos a desarrollar; propuestas metodológicas de cómo lle-var a cabo la enseñanza y el aprendizaje; del mismo modo que la precisión de los indicadores de evaluación en cada uno de los años de Educación Básica.

El diseño que se presenta de la Actualización y Fortalecimiento Curricular va acompañado de una sólida preparación de los docentes, tanto en la proyec-ción científica - cultural como pedagógica. Además, se apoyará en un segui-miento continuo por parte de las autoridades de las diferentes instituciones educativas y supervisores provinciales de educación.

El Ministerio de Educación, de igual forma, realizará procesos de monitoreo y evaluación periódica para garantizar que las concepciones educativas se concreten en el cumplimiento del perfil de salida del estudiantado al con-cluir la Educación General Básica, consolidando un sistema que desarrolle ciudadanas y ciudadanos con alta formación humana, científica y cultural.

La elevación de los estándares de calidad de la Educación Básica

A partir de este documento, se han diseñado diversas estrategias dirigidas al mejoramiento de la calidad educativa; una de las estrategias se refiere a la actualización y fortalecimiento de los currículos de la Educación Básica y de Bachillerato y a la construcción del currículo de Educación Inicial, así como a la elaboración de textos escolares y guías para docentes que permi-tan una correcta implementación del currículo.

Page 12: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

12

La Actualización y Fortalecimiento Curricular de la Educación Básica - 2010 se sustenta en diversas concepciones teóricas y metodológicas del que-hacer educativo; en especial, se han considerado los fundamentos de la Pedagogía Crítica que ubica al estudiantado como protagonista principal en busca de los nuevos conocimientos, del saber hacer y el desarrollo hu-mano, dentro de variadas estructuras metodológicas del aprendizaje, con el predominio de las vías cognitivistas y constructivistas. Estos referentes de orden teórico se integran de la siguiente forma:

El proceso de Actualización y Fortalecimiento Curricular de la Educación Básica se ha proyectado sobre la base de promover ante todo la condición humana y la preparación para la comprensión, para lo cual el accionar

El desarrollo de la condición humana y la preparación para la comprensión

Bases pedagógicas del diseño curricular

2

La comprensión entre los seres humanos

Respeto, solidaridad y honestidad

Interculturalidad plurinacionalidad Inclusión

El desarrollo de la condición humana y la preparación para la comprensión

Jerarquización de la formación humana en articulación con la preparación

científica y cultural

Page 13: 40131752 Libro Matematicas

Actualización y Fortalecim

iento Curricular de la Educación Básica 2010

13

La dimensión epistemológica del diseño curricular, es decir, el proceso de construcción del conocimiento se orienta al desarrollo de un pensamiento y modo de actuar lógico, crítico y creativo, en la concreción de los objetivos educativos con su sistema de destrezas y conocimientos, a través del en-frentamiento ante situaciones y problemas reales de la vida y de métodos participativos de aprendizaje, para conducir al estudiantado a alcanzar los logros de desempeño que demanda el perfil de salida de la Educación Bá-sica. Esto implica:

• Observar, analizar, comparar, ordenar, entramar y graficar las ideas esen-ciales y secundarias interrelacionadas entre sí, buscando aspectos comunes, relaciones lógicas y generalizaciones de las ideas;

• Reflexionar, valorar, criticar y argumentar sobre conceptos, hechos y pro-cesos de estudio;

• Indagar, elaborar, generar, producir soluciones novedosas, nuevas alter-nativas desde variadas lógicas de pensamiento y formas de actuar.

La proyección epistemológica se refleja en el gráfico siguiente:

proceso epistemológico: un pensamiento y modo de actuar lógico, crítico y creativo

educativo se orienta a la formación de ciudadanas y ciudadanos con un sis-tema de valores que les permiten interactuar con la sociedad demostrando respeto, responsabilidad, honestidad y solidaridad, dentro de los principios del buen vivir.

El desarrollo de la condición humana se concreta de diversas formas, en-tre ellas: en la comprensión entre todos y con la naturaleza. En general, la condición humana se expresa a través de las destrezas y los conocimientos a desarrollar en las diferentes áreas y años de estudio, los cuales se precisan en las clases y procesos de aulas e incluso en el sistema de tareas de apren-dizaje, con diversas estrategias metodológicas y de evaluación.

Resultados del aprendizaje con proyección integradora en la formación humana y cognitiva

La sociedad - la naturaleza - la comunicación e interacción entre los seres humanos

Los objetivos educativos

Destrezas y conocimientos a desarrollar

Lectura - comprensión Situaciones - casos - problemas a resolver - producciones

Page 14: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

14

Esta proyección epistemológica tiene el sustento teórico en las diferentes visiones de la Pedagogía Crítica, que se fundamenta, en lo esencial, en el incremento del protagonismo de las alumnas y los alumnos en el proce-so educativo, con la interpretación y solución de problemas en contextos reales e hipotéticos, participando activamente en la transformación de la sociedad. En esta perspectiva pedagógica, la actividad de aprendizaje debe desarrollarse esencialmente por vías productivas y significativas que dina-micen la actividad de estudio, para llegar a la “meta cognición” por proce-sos tales como:

Una visión crítica de la pedagogía: un aprendizaje productivo y significativo

La destreza es la expresión del saber hacer en los estudiantes. Caracteriza el “dominio de la acción”; y en el concepto curricular realizado se le ha añadido criterios de desempeño, los que orientan y precisan el nivel de complejidad sobre la acción: pueden ser condicionantes de rigor científico - cultural, espaciales, temporales, de motricidad y otros.

Las destrezas con criterios de desempeño constituyen el referente princi-pal para que el profesorado elabore la planificación microcurricular con el sistema de clases y tareas de aprendizaje. De acuerdo con su desarrollo y sistematización, se graduarán de forma progresiva y secuenciada los cono-cimientos conceptuales e ideas teóricas, con diversos niveles de integra-ción y complejidad.

El desarrollo de destrezas con criterios de desempeño

Experimentar

Conceptualizar

Resolver

Argumentar

Debatir

Comprender textos

Ordenar ideas

Comparar

Resumir

Elaborar mapas de la información interpretada

pROCESOS pRODUCTIVOS Y SIGNIFICATIVOS

Investigar y resolver problemas

proponer nuevas alternativas

Page 15: 40131752 Libro Matematicas

Actualización y Fortalecim

iento Curricular de la Educación Básica 2010

15

La evaluación integradorade los resultados del aprendizaje

La evaluación del aprendizaje constituye el componente de mayor comple-jidad dentro del proceso educativo, ya que es necesario valorar el desa-rrollo y cumplimiento de los objetivos a través de la sistematización de las destrezas con criterios de desempeño. Se requiere de una evaluación diag-nóstica y continua que detecte a tiempo las insuficiencias y limitaciones de las alumnas y los alumnos, a fin de adoptar las medidas correctivas que requieran la enseñanza y el aprendizaje.

Los docentes deben evaluar de forma sistemática el desempeño (resulta-dos concretos del aprendizaje) del estudiantado mediante las diferentes técnicas que permitan determinar en qué medida hay avances en el domi-nio de la destreza; para hacerlo, es muy importante ir planteando, de forma progresiva, situaciones que incrementen el nivel de complejidad y la inte-gración de los conocimientos que se van logrando.

Es de alta trascendencia, al seleccionar las técnicas evaluativas, combinar la producción escrita de los estudiantes articulada con la argumentación, para ver cómo piensan, cómo expresan sus ideas, cómo interpretan lo estudiado, cómo son capaces de ir generalizando en la diversidad de situaciones de aprendizaje, que deben proyectarse a partir de los indicadores esenciales de evaluación planteados para cada año de estudio.

Como parte esencial de los criterios de desempeño de las destrezas están las expresiones de desarrollo humano integral, que deben alcanzarse en

Otro referente de alta significación de la proyección curricular es el empleo de las TIC (Tecnologías de la Información y la Comunicación), dentro del proceso educativo, es decir, de videos, televisión, computadoras, Internet, aulas virtuales, simuladores y otras alternativas que apoyan la enseñanza y el aprendizaje en procesos como:

• Búsqueda de información con inmediatez;

• Visualización de lugares, hechos y procesos para darle mayor objetivi-dad al contenido de estudio;

• Simulación de procesos o situaciones de la realidad;

• Participación en juegos didácticos que contribuyan de forma lúdica a profundizar en el aprendizaje;

• Evaluación de los resultados del aprendizaje.

En las precisiones de la enseñanza y el aprendizaje, dentro de la estructura curricular desarrollada, se hacen sugerencias sobre los momentos y las con-dicionantes para el empleo de las TIC, pero los docentes las aplicarán en los momentos que consideren necesario y siempre y cuando dispongan de lo indispensable para hacerlo.

El empleo de las Tecnologías de la Información y la Comunicación

Page 16: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

16

el estudiantado, y que tienen que ser evaluadas en el quehacer práctico cotidiano y en el comportamiento crítico-reflexivo de los estudiantes ante diversas situaciones del aprendizaje.

Para evaluar el desarrollo integral debe considerarse en forma prioritaria aspectos como:

• La observación directa del desempeño de los educandos para valorar el desarrollo de las destrezas con criterios de desempeño, a través de la realización de las tareas curriculares del aprendizaje; así como en el deporte, la cultura y actividades comunitarias;

• La defensa de ideas, con el planteamiento de diferentes puntos de vis-ta al argumentar sobre conceptos, ideas teóricas y procesos realizados; y además para emitir juicios de valor;

• La solución de problemas con diversos niveles de complejidad, hacien-do énfasis en la integración de conocimientos y la formación humana;

• La producción escrita que refleje ideas propias de los estudiantes;

• El planteamiento y aplicación de nuevas alternativas, nuevas ideas en la reconstrucción y solución de problemas;

• La realización de pruebas sobre el desarrollo de procesos y al cierre de etapas o parciales académicos.

Se concibe que en todo momento se aplique una evaluación integradora de la formación cognitiva (destrezas y conocimientos asociados) con la formación de valores humanos, lo cual debe expresarse en las “calificacio-nes o resultados” que se registran oficialmente y que se dan a conocer a los estudiantes.

Page 17: 40131752 Libro Matematicas

Actualización y Fortalecim

iento Curricular de la Educación Básica 2010

17

La estructura curricular: sistema de conceptos empleados

3

Desempeños que debe demostrar el estudiantado al concluir el dé-cimo año de estudio, con un grado de generalización de las destrezas y conocimientos especificados en el currículo de Educación Básica. Este desempeño debe reflejarse a través de las destrezas de mayor generalización (saber hacer), de los conocimientos (saber) y de los valores humanos (ser).

perfil de salida

El nuevo referente curricular de la Educación Básica se ha estructurado sobre la base del sistema conceptual siguiente:

Orientan el alcance del desempeño integral que deben lograr los estudian-tes en el área de estudio durante todo el proceso de la Educación Básica. Los objetivos responden a las interrogantes siguientes:

Objetivos educativos del área

• ¿QUÉ ACCIÓN o ACCIONES de alta generalización deberán reali-zar los estudiantes?

• ¿QUÉ DEBE SABER? Conocimientos asociados y cuáles son los logros de desempeño esperados.

• ¿pARA QUÉ? Contextualización con la vida social y personal.

Esquema general que distribuye, por años de estudio, con una lógica ascendente en nivel científico y complejidad, los conocimientos esenciales (nucleares) que deben saber las alumnas y los alumnos, desde 1ero. hasta 10mo. año, conformando un sistema coherente.

Mapa de conocimientos

Page 18: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

18

Expresan las máximas aspiraciones a lograr en el proceso educativo dentro de cada año de estudio. Tienen la misma estructura que los objetivos del área.

Objetivos educativos del año

Idea de mayor grado de generalización del conocimiento de estudio que articula todo el diseño curricular en cada área. A partir de él se generan las destrezas, los conocimientos y las expresiones de desarrollo humano inte-gral, constituyendo la guía principal del proceso educativo.

Los ejes curriculares integradores correspondientes a cada área son los siguientes:

Eje curricular integrador del área

Expresan el “saber hacer”, con una o más acciones que deben desarrollar los es-tudiantes, asociadas a un determinado conocimiento teórico y dimensionadas por niveles de complejidad que caracterizan los criterios de desempeño. Las destrezas con criterios de desempeño se expresan respondiendo a las siguien-tes interrogantes:

Destrezas con criterios de desempeño

• Lengua y Literatura: escuchar, hablar, leer y escribir para la inte-racción social.

• Matemática: desarrollar el pensamiento lógico y crítico para inter-pretar y solucionar problemas de la vida.

• Estudios Sociales: comprender el mundo donde vivo y la identidad ecuatoriana.

• Ciencias Naturales: comprender las interrelaciones del mundo natural y sus cambios.

Se derivan del eje curricular integrador en cada área de estudio; sirven de base para articular los bloques curriculares.

Ejes del aprendizaje

Articulan e integran un conjunto de destrezas con criterios de desempeño alre-dedor de un tema central, siguiendo una determinada lógica de ciencia.

Bloques curriculares

MacrodestrezasNivel máximo de pensamiento que integra e interrelaciona diferentes destrezas de comprensión, producción y práctica de valores.

Page 19: 40131752 Libro Matematicas

Actualización y Fortalecim

iento Curricular de la Educación Básica 2010

19

• ¿Qué tiene que saber hacer? Destreza

• ¿Qué debe saber? Conocimiento

• ¿Con qué grado de complejidad? Precisiones de profundización

Constituyen orientaciones metodológicas y didácticas para ampliar la infor-mación que expresan las destrezas con los conocimientos asociados a éstas; a la vez, se ofrecen sugerencias para desarrollar diversos métodos y técnicas para conducir su desarrollo dentro del sistema de clases y fuera de él.

precisiones para la enseñanza y el aprendizaje

Son evidencias concretas de los resultados del aprendizaje, precisan el desempeño esencial que debe demostrar el estudiantado. Se estructuran a partir de las preguntas siguientes:

Indicadores esenciales de evaluación

• ¿QUÉ ACCIÓN o ACCIONES SE EVALÚAN?

• ¿QUÉ CONOCIMIENTOS SON LOS ESENCIALES EN EL AÑO?

• ¿QUÉ RESULTADOS CONCRETOS EVIDENCIA EL APRENDIZAJE?

Evidencias concretas del aprendizaje al concluir el año de estudio

Page 20: 40131752 Libro Matematicas

20

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

La Educación Básica en Ecuador abarca 10 niveles de estudio, desde la formación inicial, conocida como prebásica o primero de básica, con niñas y niños de cinco años de edad hasta completar el décimo año con jóvenes preparados para continuar los estudios de bachillerato y listos para partici-par en la vida política - social, conscientes de su rol histórico como ciudada-nas y ciudadanos ecuatorianos. Este subsistema educativo ofrece los fun-damentos científicos y culturales que permiten al estudiantado interpretar, producir y resolver problemas de la comunicación, la vida natural y social.

Los jóvenes que concluyen los estudios de la Educación Básica serán ciuda-danos y ciudadanas capaces de:

• Expresarse libremente como individuos orgullosos de ser ecuatorianas y ecuatorianos, de convivir y participar activamente en una sociedad diversa, intercultural y plurinacional.

• Reconocerse como un ciudadano universal con capacidades de com-prensión y acción sobre problemas mundiales.

• Valorar la identidad cultural nacional, los símbolos y valores que carac-terizan a la sociedad ecuatoriana.

• Demostrar un pensamiento lógico, crítico y creativo en el análisis y reso-lución eficaz de problemas de la realidad cotidiana.

• Valorar y proteger la salud humana en los componentes físicos, psicoló-gicos y sexuales.

• Hacer buen uso del tiempo libre con actividades culturales, deportivas, artísticas y recreativas que los lleven a relacionarse con los demás y su entorno, como seres humanos responsables, solidarios y proactivos.

• Disfrutar y comprender la lectura, desde una perspectiva crítica y creativa.

El perfil de salida de los estudiantes de la Educación Básica

4

Page 21: 40131752 Libro Matematicas

Actualización y Fortalecim

iento Curricular de la Educación Básica 2010

21

• Valorar, solucionar problemas y producir textos que reflejan la realidad sobre la base de fundamentos científicos y prácticos en las dimensiones lingüísticas, literarias y lógica - matemática; además la integración y evo-lución del mundo natural y social.

• Aplicar las tecnologías de la información y la comunicación en la solu-ción de problemas prácticos.

• Interpretar y aplicar a un nivel básico un idioma extranjero en situacio-nes comunes de comunicación.

• Demostrar sensibilidad y comprensión acerca de obras artísticas de dife-rentes estilos y técnicas, potenciando el gusto estético.

Page 22: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

22

Los ejes transversales dentro del proceso educativo

5

El desarrollo de valores humanos universales; la identidad ecuatoriana; los deberes y derechos de todo ciudadano; la convivencia dentro de una sociedad intercultural y plurinacional; el respeto a los símbolos patrios, a las ideas de los demás y a las decisiones de la mayoría; la significación de vivir en paz por un proyecto común.

Formación ciudadana y para la democracia

Interpretación de los problemas ambientales y sus implicaciones en la su-pervivencia de las especies, la interrelación del ser humano con la natura-leza, estrategias de conservación y protección.

protección del medioambiente

Los ejes transversales constituyen grandes temáticas que deben ser atendi-dos en toda la proyección curricular, con actividades concretas integradas al desarrollo de las destrezas y conocimientos de cada área de estudio. En una perspectiva integradora, entre los ejes transversales de Educación General Básica estarán:

Estos ejes, en sentido general, abarcan temáticas como:

1. La formación ciudadana y para la democracia

2. La protección del medioambiente

3. El correcto desarrollo de la salud y la recreación de los estudiantes

4. La educación sexual en la niñez y la adolescencia

Page 23: 40131752 Libro Matematicas

Actualización y Fortalecim

iento Curricular de la Educación Básica 2010

23

El conocimiento y respeto de su propio cuerpo; el desarrollo y estructura-ción de la identidad y madurez sexual; los impactos psicológicos y sociales; la responsabilidad de la paternidad y maternidad.

La educación sexual en la niñez y la adolescencia

El desarrollo biológico y psicológico acorde con las edades y el entorno socioecológico; los hábitos alimenticios y de higiene; el uso indebido de sustancias tóxicas; el empleo del tiempo libre.

El correcto desarrollo de la salud y la recreación de los estudiantes

_________________________________________

La atención a estas temáticas será planificada y ejecutada por las profeso-ras y los profesores al desarrollar el sistema de clases y las diversas tareas de aprendizaje, con el apoyo de actividades extraescolares de proyección institucional.

Page 24: 40131752 Libro Matematicas
Page 25: 40131752 Libro Matematicas

ÁREA DE MATEMÁTICA

Page 26: 40131752 Libro Matematicas
Page 27: 40131752 Libro Matematicas

Área de M

atemática

27

La importancia de enseñar y aprender Matemática

La sociedad del tercer milenio en la cual vivimos es de cambios acelerados en el campo de la ciencia y la tecnología: los conocimientos, las herramien-tas y las maneras de hacer y comunicar la matemática evolucionan constan-temente. Por esta razón, tanto el aprendizaje como la enseñanza de la Mate-mática deben estar enfocados en el desarrollo de las destrezas necesarias para que el estudiantado sea capaz de resolver problemas cotidianos, a la vez que se fortalece el pensamiento lógico y crítico.

El saber Matemática, además de ser satisfactorio, es extremadamente nece-sario para poder interactuar con fluidez y eficacia en un mundo “matema-tizado”. La mayoría de las actividades cotidianas requieren de decisiones basadas en esta ciencia, a través de establecer concatenaciones lógicas de razonamiento, como por ejemplo, escoger la mejor alternativa de compra de un producto, entender los gráficos estadísticos e informativos de los perió-dicos, o decidir sobre las mejores opciones de inversión, al igual que inter-pretar el entorno, los objetos cotidianos, obras de arte, entre otras.

La necesidad del conocimiento matemático crece día a día al igual que su aplicación en las más variadas profesiones. El tener afianzadas las destrezas con criterio de desempeño matemático, facilitan el acceso a una gran varie-dad de carreras profesionales y diferentes ocupaciones que pueden resultar muy especializadas.

El aprender cabalmente Matemática y el saber transferir estos conocimien-tos a los diferentes ámbitos de la vida del estudiantado, y más tarde de los profesionales, además de aportar resultados positivos en el plano personal, genera cambios importantes en la sociedad. Siendo la educación el motor del desarrollo de un país, dentro de ésta, el aprendizaje de la Matemática es uno de los pilares más importantes ya que además de enfocarse en lo cog-nitivo, desarrolla destrezas esenciales que se aplican día a día en todos los entornos, tales como el razonamiento, el pensamiento lógico, el pensamien-to crítico, la argumentación fundamentada y la resolución de problemas.

Nuestros estudiantes merecen y necesitan la mejor educación posible en Matemática, lo cual les permitirá cumplir sus ambiciones personales y sus objetivos profesionales en la actual sociedad del conocimiento; por con-

Page 28: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

28

siguiente, es necesario que todas las partes interesadas en la educación como autoridades, padres de familia, estudiantes y docentes trabajen con-juntamente creando los espacios apropiados para la enseñanza y el apren-dizaje de la Matemática. En estos espacios, todos los estudiantes con dife-rentes habilidades podrán trabajar con profesores y profesoras calificados en la materia, comprender y aprender importantes conceptos matemáticos, siendo necesario que el par enseñanza y aprendizaje de Matemática re-presente un desafío tanto para docentes como para estudiantes y que se base en un principio de equidad. En este caso, equidad no significa que todos los estudiantes deben recibir la misma instrucción, sino que requiere que se les provea de las mismas oportunidades y facilidades para aprender conceptos matemáticos significativos y lograr los objetivos propuestos en esta materia.

Se recomienda el uso de la tecnología para la enseñanza de Matemática, ya que resulta una herramienta útil, tanto para el que enseña el área como para el que aprende. Existen diversos entornos virtuales de aprendizaje que posibilitan mejorar los procesos de abstracción, transformación y demos-tración de algunos conceptos matemáticos.

La evaluación es un elemento clave del proceso de enseñanza-aprendizaje centrado en el estudiante, en lo que debe saber y en lo que debe ser capaz de hacer, respondiendo a un proceso coherente y sistemático en el que sus resultados proporcionen una retroalimentación para el docente y para el estudiante. Así, la evaluación se convierte en una herramienta remedial del proceso educativo.

Recordemos que un factor fundamental en el aprendizaje y la enseñanza de la Matemática, es un currículo coherente, enfocado en los principios mate-máticos más relevantes, consistente en cada año de básica, bien alineado y concatenado entre año y año, y entre ciclos.

Es por esto que el eje integrador del área de Matemática es “DESARROLLAR EL PENSAMIENTO LÓGICO Y CRÍTICO PARA INTERPRETAR Y RESOLVER PRO-BLEMAS DE LA VIDA”, es decir, cada año de la educación general básica debe promover en los estudiantes la habilidad de plantear y resolver pro-blemas con una variedad de estrategias, metodologías activas y recursos que constituyen la base del enfoque general a trabajar. Lo importante es evitar que la resolución de problemas se convierta en un simple proceso a seguir, sin un análisis que permita generar otros conocimientos.

El eje integrador del área se apoya en los siguientes ejes del aprendizaje: razonamiento, demostración, comunicación, conexiones y representa-ción. Se puede usar uno de estos ejes o la combinación de varios de ellos en la resolución de problemas.

El razonamiento matemático es un hábito mental y, como tal, debe ser de-sarrollado mediante un uso coherente de la capacidad de razonar y pensar analíticamente, es decir, debe buscar conjeturas, patrones, regularidades, en diversos contextos ya sean reales o hipotéticos. A medida que los es-tudiantes presentan diferentes tipos de argumentos van incrementando su razonamiento.

La demostración matemática es la manera “formal” de expresar tipos par-ticulares de razonamiento, argumentos y justificaciones propios para cada

Page 29: 40131752 Libro Matematicas

Área de M

atemática

29

año de Básica. El seleccionar el método adecuado de demostración de un argumento matemático ayuda a comprender de una mejor forma los hechos matemáticos. Este proceso debe ser empleado tanto por estudiantes como por docentes.

La comunicación se debe trabajar en todos los años, es la capacidad de realizar conjeturas, aplicar la información, descubrir y comunicar ideas. Es esencial que los estudiantes desarrollen la capacidad de argumentar y ex-plicar los procesos utilizados en la resolución de un problema, de demostrar su pensamiento lógico-matemático, y de interpretar fenómenos y situacio-nes cotidianas, es decir, un verdadero aprender a aprender.

El eje de comunicación no solo se centra en los estudiantes sino también en los docentes. Es indispensable que los docentes trabajen conjuntamente, ya que de esta manera se promoverá un mismo lineamiento que permita al estudiante crecer en su saber hacer matemática. En consecuencia, se reco-mienda crear un espacio permanente de diálogo entre docentes de año a año de básica, así como docentes del mismo año.

Las conexiones deben tomarse desde dos puntos de vista, el primero es que el estudiante debe conectar ideas matemáticas. Esta conexión o interacción debe analizársela desde los temas matemáticos en contextos que relacio-nen el área con otras disciplinas, entre los propios intereses y experiencias del estudiantado, y dentro de los conocimientos planteados en los bloques curriculares. Todo esto genera una comprensión más profunda y duradera.

En Matemática, la construcción de conceptos se consolida a lo largo de los diferentes años de estudio; por lo cual es necesario que exista una estrecha relación y concatenación entre los conocimientos de año a año respetando la secuencia. Dentro de este ámbito, se requiere que los que imparten Ma-temática, de los diferentes años de Básica contiguos, determinen dentro de su planificación los temas y las destrezas a trabajar, para que los estudiantes apliquen los conocimientos previos en la construcción de nuevos aprendi-zajes.

La representación se efectúa a través de la selección, organización, regis-tro, o comunicación de situaciones e ideas matemáticas, mediante el uso de material concreto, semiconcreto, virtual o de modelos matemáticos.

El currículo de Matemática de Educación Básica está enfocado al desarrollo de las destrezas necesarias para la resolución de problemas, comprensión de reglas, teoremas y/o fórmulas, con el propósito de construir un pensa-miento lógico-crítico en los estudiantes. En consecuencia se han reorgani-zado los contenidos tomando en cuenta el grado de complejidad en cada año de estudio.

El docente debe comprobar que sus estudiantes hayan comprendido los conceptos, teoremas, algoritmos y sus aplicaciones, con la finalidad de lo-grar una sólida base de conocimientos matemáticos que les permitan trans-polar situaciones cotidianas a lenguaje matemático y viceversa, y al mismo tiempo interactuar con flexibilidad y seguridad en un mundo extremada-mente competitivo y cambiante.

El documento de Actualización y Fortalecimiento Curricular de la Educación General Básica plantea tres macrodestrezas:

Page 30: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

30

• Comprensión de Conceptos: conocimiento de hechos y/o conceptos, apelación memorística pero consiente de elementos, leyes, propieda-des o códigos matemáticos en la aplicación de cálculos rutinarios y ope-raciones simples aunque no elementales. (C)

• Conocimiento de procesos: uso combinado de información y de conoci-mientos interiorizados para comprender, interpretar, emplear modelos matemáticos y resolver problemas que involucren situaciones reales o hipotéticas. ( P)

• Aplicación en la práctica: proceso lógico de reflexión que lleva a la ar-gumentación y demostración de diferentes estrategias de solución, a la deducción de fórmulas y al empleo de teoremas. (A)

Cada macrodestreza abarca un conjunto de destrezas con criterio de des-empeño agrupadas en bloques curriculares.

El área de Matemática se estructura en cinco bloques curriculares que son:

• Bloque de relaciones y funciones. Este bloque se inicia en los prime-ros años de Básica con la reproducción, descripción, construcción de patrones de objetos y figuras. Posteriormente se trabaja con la identi-ficación de regularidades, el reconocimiento de un mismo patrón bajo diferentes formas y el uso de patrones para predecir valores, cada año con diferente nivel de complejidad hasta que los estudiantes sean capa-ces de construir patrones de crecimiento exponencial. Este trabajo con patrones, desde los primeros años, permite fundamentar los conceptos posteriores de funciones, ecuaciones y sucesiones, contribuyendo a un desarrollo del razonamiento lógico y comunicabilidad matemática.

• Bloque numérico. En este bloque se analizan los números, las formas de representarlos, las relaciones entre los números y los sistemas numéri-cos, comprender el significado de las operaciones y cómo se relacionan entre sí, además de calcular con fluidez y hacer estimaciones razonables.

• Bloque geométrico. Se analizan las características y propiedades de formas y figuras de dos y tres dimensiones, además de desarrollar argu-mentos matemáticos sobre relaciones geométricas, especificar localiza-ciones, describir relaciones espaciales, aplicar transformaciones y utili-zar simetrías para analizar situaciones matemáticas, potenciando así un desarrollo de la visualización, el razonamiento espacial y el modelado geométrico en la resolución de problemas.

• Bloque de medida. El bloque de medida busca comprender los atributos medibles de los objetos tales como longitud, capacidad y peso desde los primeros años de Básica, para posteriormente comprender las uni-dades, sistemas y procesos de medición y la aplicación de técnicas, he-rramientas y fórmulas para determinar medidas y resolver problemas de su entorno.

• Bloque de estadística y probabilidad. En este bloque se busca que los estudiantes sean capaces de formular preguntas que pueden abordarse con datos, recopilar, organizar en diferentes diagramas y mostrar los da-tos pertinentes para responder a las interrogantes planteadas, además de desarrollar y evaluar inferencias y predicciones basadas en datos; entender y aplicar conceptos básicos de probabilidades, convirtiéndose

Page 31: 40131752 Libro Matematicas

Área de M

atemática

31

en una herramienta clave para la mejor comprensión de otras disciplinas y de su vida cotidiana.

Finalmente, recordemos que a través del estudio de la Matemática, los edu-candos aprenderán valores muy necesarios para su desempeño en las aulas y, más adelante, como profesionales y ciudadanos. Estos valores son riguro-sidad —los estudiantes deben acostumbrarse a aplicar las reglas y teoremas correctamente, a explicar los procesos utilizados y a justificarlos—; organiza-ción —tanto en los lugares de trabajo como en sus procesos deben tener una organización tal que facilite su comprensión en lugar de complicarla–; lim-pieza —los estudiantes deben aprender a mantener sus pertenencias, traba-jos y espacios físicos limpios— respeto —tanto a los docentes, autoridades, como a sus compañeros, compañeras y a los espacios físicos—; y conciencia social –los estudiantes deben entender que son parte de una comunidad y que todo aquello que ellos hagan afectará de alguna manera a los demás miembros de la comunidad; por lo tanto, deberán aprender a ser buenos ciudadanos en este nuevo milenio—.

perfil de salida del área

Durante los diez años de Educación General Básica, el área de Matemática busca formar ciudadanos que sean capaces de argumentar y explicar los procesos utilizados en la resolución de problemas de los más variados ám-bitos y, sobre todo, con relación a la vida cotidiana. Teniendo como base el pensamiento lógico y crítico, se espera que el estudiantado desarrolle la capacidad de comprender una sociedad en constante cambio, es decir, que-remos que los estudiantes sean comunicadores matemáticos, y que puedan usar y aplicar de forma flexible las reglas y modelos matemáticos.

Después de los diez años de Educación General Básica, los educandos po-seerán el siguiente perfil de salida en el área de Matemática y que ha sido resumido en los siguientes puntos:

• Resolver, argumentar y aplicar la solución de problemas a partir de la sistematización de los campos numéricos, las operaciones arit-méticas, los modelos algebraicos, geométricos y de medidas sobre la base de un pensamiento crítico, creativo, reflexivo y lógico en vínculo con la vida cotidiana, con las otras disciplinas científicas y con los bloques específicos del campo matemático.

• Aplicar las tecnologías de la información y la comunicación en la so-lución de problemas matemáticos en relación con la vida cotidiana, con las otras disciplinas científicas y con los bloques específicos del campo matemático.

Page 32: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

32

Los objetivos generales del área de Matemática son:

• Demostrar eficacia, eficiencia, contextualización, respeto y capaci-dad de transferencia al aplicar el conocimiento científico en la so-lución y argumentación de problemas por medio del uso flexible de las reglas y modelos matemáticos para comprender los aspectos, conceptos y dimensiones matemáticas del mundo social, cultural y natural.

• Crear modelos matemáticos, con el uso de todos los datos disponi-bles, para la resolución de problemas de la vida cotidiana.

• Valorar actitudes de orden, perseverancia, capacidades de investi-gación para desarrollar el gusto por la Matemática y contribuir al desarrollo del entorno social y natural.

Objetivos educativos del área

Page 33: 40131752 Libro Matematicas

Área de M

atemática

33

Page 34: 40131752 Libro Matematicas
Page 35: 40131752 Libro Matematicas

pROYECCIÓN CURRICULAR DE OCTAVO AÑO

Page 36: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

36

Objetivos educativos1

• Reconocer las variables como elementos necesarios de la Matemá-tica, mediante la generalización de situaciones para expresar enun-ciados simples en lenguaje matemático.

• Operar con números enteros, a través de la aplicación de las reglas y propiedades de las operaciones en el conjunto Z y aplicarlos en la resolución de problemas.

• Aplicar conceptos de proporcionalidad a través del cálculo de perí-metros, áreas y volúmenes de figuras y de cuerpos (prismas y cilin-dros) semejantes para resolver problemas.

• Reconocer las diferentes líneas particulares de un triángulo, me-diante representaciones gráficas y la aplicación de sus propiedades en la resolución de problemas.

• Analizar, comprender, representar y expresar informaciones nacio-nales en diversos diagramas mediante el cálculo de frecuencias absolutas y acumuladas, para fomentar y fortalecer la apropiación de los bienes del país.

Page 37: 40131752 Libro Matematicas

Área de M

atemática

37

planificación por bloques curriculares

2

Bloquescurriculares Destrezas con criterios de desempeños

1. Relaciones y funciones

• Generar sucesiones con números enteros. (A)• Reconocer pares ordenados con enteros y ubicarlos en el plano

cartesiano. (C, P)• Reconocer y agrupar monomios homogéneos. (C).• Expresar un enunciado simple en lenguaje matemático. (A)

2. Numérico

• Leer y escribir números enteros. (C, P, A)• Ordenar y comparar números enteros. (C, P)• Ubicar números enteros en la recta numérica. (C)• Simplificar expresiones con números enteros con la aplicación de

las operaciones básicas. (P, A)• Resolver las cuatro operaciones de forma independiente con

números enteros. (C, P)• Resolver operaciones combinadas de adición, sustracción,

multiplicación y división exacta con números enteros. (P, A)• Simplificar expresiones de números enteros con la aplicación de

las reglas de potenciación y de radicación. (P, A)

3. Geométrico

• Construir figuras geométricas con el uso de la regla y el compás siguiendo pautas específicas. (A)

• Reconocer la congruencia y la semejanza de triángulos en la resolución de problemas. (C)

• Determinar el factor de escala entre dos triángulos semejantes. (C)• Definir y representar medianas, mediatrices, alturas y bisectrices

de un triángulo en gráficos. (C, P)• Determinar el baricentro, ortocentro, incentro y circuncentro de un

triángulo en gráficos. (C, P)• Deducir y aplicar las fórmulas para el cálculo del volumen de

prismas y de cilindros. (C, P, A)• Aplicar el teorema de Thales en la resolución de figuras

geométricas similares. (A)

Page 38: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

38

4. Medida• Determinar la escala entre figuras semejantes con la aplicación de

Thales. (P, A)

5. Estadística y probabilidad

• Calcular y contrastar frecuencias absolutas y acumuladas de una serie de datos gráficos. (P, A)

Page 39: 40131752 Libro Matematicas

Área de M

atemática

39

precisiones para la enseñanza y el aprendizaje

3

En este año de Educación Básica, un tema trascendental del área de Mate-mática es el trabajo con los números enteros, en especial con los enteros ne-gativos. Estos números tienen un gran componente abstracto y requieren de parte del estudiantado un entendimiento de reglas, procesos y metodología para operar adecuadamente con los mismos. Una buena fluidez en las ope-raciones básicas ayuda a que se desenvuelvan en el estudio de la Matemáti-ca y, a pesar de que los números negativos pueden resultar muy abstractos, es posible trabajarlos de forma concreta, lo cual facilita que sus estudiantes afiancen sus conocimientos y entiendan mejor los procesos. Recuerde que es necesario tener una base de actividades y conceptos desarrollados de manera concreta antes de pasar a actividades y conceptos abstractos. Más adelante, en las precisiones por bloque, se explicará en detalle algunos mé-todos que se pueden utilizar para iniciar el trabajo en el aula.

Acuérdese que es esencial continuar con una estrecha conexión entre las actividades de clase y los problemas planteados en el aula, con el entorno y los intereses del estudiantado. Esta relación con su vida y con sus intereses los ayudará a visualizar aplicaciones inmediatas de los conceptos estudia-dos en el aula y conseguirán entender con mayor rapidez los conceptos es-tudiados. En este año es muy importante que se enfatice en la utilización de reglas para justificar los procesos utilizados, ya que al hacerlo ayudaremos a desarrollar un pensamiento lógico, formal y crítico; por lo tanto, en la reso-lución de los problemas propuestos en el aula o en los problemas enviados a casa como tarea, es necesario que el estudiantado utilice reglas, teoremas y propiedades de los números para argumentar y justificar sus procesos.

Apoye su labor docente con el empleo de diversos tipos de materiales, sean textos de consulta, videos, televisión; además, actualmente existe una va-riedad de programas educativos para computadora que también pueden ser empleados, en caso de disponer de ellos.

Tome en cuenta que al momento de planificar las unidades didácticas, no es conveniente hacerlo por bloques, es decir, no empiece por el bloque nu-mérico para luego pasar al bloque de relaciones y funciones, y si le queda tiempo al final trabajar en la geometría. Al contrario, trabaje con los bloques

Page 40: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

40

Para un mejor aprovechamiento de los contenidos de este bloque, se reco-mienda trabajar previamente en el bloque numérico, en especial en lo relativo a los números enteros, así se podrá aplicarlos a los pares ordenados, amplian-do de este modo el sistema de ejes coordenados a todos los cuadrantes. En el séptimo año de Básica, el estudiantado trabajó en el aula con pares ordenados con números naturales, decimales y fracciones; todos los anteriores se ubican en el primer cuadrante y al utilizar valores negativos tanto para las abscisas como para las ordenadas, ampliamos el sistema coordenado a todo el plano. Antes de iniciar con la ubicación de pares ordenados con enteros en el siste-ma de ejes coordenados, analice con sus estudiantes los signos de las absci-sas y de las ordenadas en función del cuadrante en el cual se los quiere ubicar. Por ejemplo, un par ordenado que se ubique en el segundo cuadrante deberá tener una abscisa negativa y una ordenada positiva. El establecer la relación entre los signos de las coordenadas y el cuadrante en el cual se ubican, es una destreza muy necesaria e importante que se aplicará posteriormente al traba-jar en funciones y en las razones trigonométricas. Una vez que el estudiantado entienda esta relación, la ubicación en el plano cartesiano de pares ordenados con números enteros y más adelante con números reales, no presentará ma-yores dificultades, al contrario, será una etapa fundamental en el aprendizaje de funciones y de sus variaciones.

Bloque: Relaciones y funciones

intercalados, ya que con ello se incrementa la posibilidad de que sus estu-diantes establezcan conexiones entre los mismos y fluyan cómodamente entre ellos.

A continuación, se presentan las recomendaciones metodológicas para tra-bajar en algunos de los temas relevantes de este año de estudio. Tenga pre-sente que las reglas y los conceptos que se estudian en el bloque numérico tienen aplicaciones inmediatas en el bloque de relaciones y funciones, so-bre todo al momento de trabajar con polinomios. Por esta razón, se sugiere considerar los preconceptos cuando se planifique.

La mayor dificultad que el estudiantado enfrentará este año de estudio es con los números enteros y, específicamente, con los enteros negativos. En este nivel se introducen los números enteros y se aprenden las reglas para operar con dichos números, por tal motivo es necesario estudiar un nuevo grupo de reglas, adicionales a las ya estudiadas en años anteriores, enten-derlas y aplicarlas correctamente en las más variadas situaciones. Todas las reglas que se aprenden en este año son aplicadas en los años siguientes, sobre todo, en el área de álgebra, por lo cual es imprescindible que estas reglas estén bien comprendidas.

Hasta este momento, en el aula se ha trabajado con los números naturales (que son los enteros positivos), fracciones y decimales todos positivos. Re-cuerde que los números enteros, conocidos como el conjunto Z, compren-den todos los enteros, tanto positivos como negativos y el 0; por lo tanto,

Bloque: Numérico

Page 41: 40131752 Libro Matematicas

Área de M

atemática

41

con la introducción de este conjunto, se extiende la semirrecta numérica a todos los valores negativos. A continuación, consta una representación del conjunto de los enteros en la recta numérica.

0 2 41– 1– 6 – 2– 3– 7 – 4– 8 – 5– 9– 10 3 5 86 97 10

Es importante que los estudiantes reconozcan el uso de los números ente-ros negativos en situaciones cotidianas. Por la interacción con su entorno, posiblemente ya poseen cierto conocimiento sobre los enteros negativos a través de hechos concretos como, por ejemplo, en medidas de temperatura (a través de la televisión); en un ascensor para representar los pisos de los diferentes subsuelos o en tablas de los goles diferencia de los equipos de fútbol, entre otros. Si este es el caso, aproveche estas experiencias para intro-ducir el tema directamente conectado con el entorno y con estas vivencias.

Una manera de presentar los números negativos es utilizar cualquiera de los ejemplos anteriores. En este caso, se considera el ejemplo del ascensor para preguntar a sus estudiantes qué entienden por el piso -1. Es posible que la mayoría le responda que es el primer subsuelo, es decir, un piso más abajo de la planta baja. Una vez que se haya entendido qué representa el piso -1, preguntar qué representa el piso -2. A partir de estos dos pisos, empezar a establecer una relación de orden entre estos dos números negativos, es decir, determinar cuál de los dos números es inferior, el -1 o el -2. El concep-to de orden en los negativos es muchas veces confuso para el estudiantado, ya que el orden de los números negativos es inverso al de los números po-sitivos, pues -2 < -1, pero al relacionarlo con los pisos del ascensor es más fácil entenderlo.

Una regla muy simple que es importante recalcar es que el orden de los nú-meros puede ser establecido por su posición relativa en la recta numérica y funciona tanto para los positivos como para los negativos. Esta regla es la siguiente: Si un número a se encuentra en la recta numérica a la izquierda de otro número b, entonces el número a es inferior al número b o el número b es mayor que el número a; en consecuencia, mientras más a la izquierda esté un número, menor será. De esta regla se pueden deducir muchas otras que se aplican al conjunto de los enteros y, más adelante, al conjunto de los racionales y de los números reales, como por ejemplo, entre otras, que:

• El número cero es menor que cualquier número positivo.

• El número cero es mayor que cualquier número negativo.

• Cualquier número negativo es menor que cualquier número positivo.

Como un ejercicio de evaluación de esta regla, se les puede pedir que ubi-quen un grupo de números enteros en la recta numérica. Este ejercicio le permitirá al docente observar el desempeño de cada uno y detectar las difi-cultades que experimentan en la aplicación de esta regla de ordenamiento de los enteros. Puede solicitar que señalen o escriban el anterior y el suce-sor de un número entero negativo, como recurso de apoyo evaluativo.

Page 42: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

42

Una vez que el estudiantado entienda el concepto de números enteros ne-gativos, se puede empezar a trabajar con el concepto de valor absoluto, que no es más que la distancia de un número al cero. Al ser el valor absoluto equivalente a una distancia, no puede ser negativo, ya que en la medición de distancia la posición relativa entre los límites a medir no modifica el re-sultado final.

El siguiente paso en el estudio del conjunto de los números enteros es ini-ciar con las operaciones de suma y resta. En este punto es posible trabajar con material concreto, lo cual ayuda a que los estudiantes visualicen los pro-cesos y luego puedan generalizar las reglas de las operaciones con enteros. Un material concreto muy simple de usar para introducir las operaciones de suma y resta con los números enteros es tener fichas u objetos iguales pero de dos colores diferentes. Por ejemplo, las fichas verdes representan núme-ros positivos y las fichas rojas, números negativos. Para comenzar con las sumas y las restas es importante que los educandos sepan una regla básica: un número positivo sumado a su opuesto (el mismo número pero de signo contrario) se cancelan, es decir (+2) + (–2) = 0. Si los estudiantes tienen di-ficultad en entender esta regla, nuevamente referirse a los ascensores: un número positivo significa subir esa cantidad de pisos y un número negativo significa bajar ese número de pisos; por lo tanto, si estoy en el piso 2 y bajo dos pisos, llego al piso 0 o planta baja.

Una vez que el estudiantado entienda que la suma de un número y su opues-to es igual a cero, la representación de las sumas con las fichas se simplifica, ya que si se quiere representar la suma de (+5) + (–6), se lo hará con 5 fichas verdes y 6 rojas. Al cancelar las 5 fichas verdes con 5 fichas rojas, nos queda una ficha roja, equivalente a –1; por ende, la suma de (+5) + (–6) = –1.

Para la resta se puede operar de la misma manera, simplemente a partir de la regla: restar un número entero equivale a sumar su opuesto, es decir, la operación (+4) – (–3) es equivalente a la operación (+4) + (+3), con lo cual se convierten las restas de enteros en sumas y se puede operar con las re-glas deducidas para la suma. A través de la práctica con material concreto, se establecen las reglas para sumar y restar enteros y, poco a poco, se lo irá eliminando hasta llegar a realizar las operaciones solamente de forma sim-bólica. Más adelante, la multiplicación y la división de enteros se pueden enfocar de la misma manera.

Cuando los estudiantes comprendan las reglas para cada una de las opera-ciones básicas, trabaje con ellos en la simplificación de expresiones de nú-meros enteros con la aplicación de las operaciones básicas. Además, tome en consideración que estas son algunas recomendaciones de trabajo para los números enteros, ya que en este año, usted deberá trabajar también con los números racionales.

Uno de los temas críticos en este bloque es el cálculo de volúmenes de prismas y de cilindros. De nuevo es necesario pasar por el proceso de la determinación de las fórmulas para el cálculo de estos volúmenes, en lugar de simplemente dar la fórmula a los estudiantes y esperar que la apliquen correctamente en la resolución de problemas. La diferencia entre tener la

Bloque: Geométrico

Page 43: 40131752 Libro Matematicas

Área de M

atemática

43

fórmula y deducirla está en que en el primer caso realizarán un uso mecá-nico de la misma, mientras que al deducirla entenderán el proceso que se utiliza para generar estas fórmulas y al aplicarlas sabrán exactamente lo que cada una de las variables de la fórmula representa.

Una manera de deducir la fórmula del volumen de un prisma es utilizando cajas de mercancías comunes como de pastas de dientes, de cereal o cual-quier otro producto de fácil acceso en la zona y que tenga la forma de un prisma rectangular. Después se hace con prismas cuyas bases sean figuras diferentes a rectángulos. Cada estudiante debe tener una caja, y si son di-ferentes mejor, ya que con ello lograremos que la generalización provenga de una diversidad de tamaños. Primero, se le solicita a cada educando que mida las dimensiones de su caja con el uso de una regla; aquí hay que pro-ponerles cuáles son las medidas que ellos creen que se necesita obtener. Luego de realizar algunas mediciones, posiblemente se convendrá en que solo tres medidas son necesarias, el ancho y el largo de la base y la altura de la caja. Con las medidas de la base, pídales que calculen el área de la misma. Esta tarea no debería presentar ninguna dificultad puesto que este es un concepto tratado en años anteriores, pero de todas maneras es una buena oportunidad para revisarlo.

Una vez que tenga la medida del área de la base, en cm2, se solicita a los estudiantes que calculen cuántos cubos de 1 cm3 de volumen entrarían en el primer piso de su caja. Recuerden que si las medidas de las cajas no son enteros, para este ejercicio es necesario redondearlas al entero inmediato inferior. Una vez que hayan determinado la cantidad de cubos que cubran el primer piso, preguntar cuántos cubrirían el segundo piso y luego, cuántos pisos iguales a los dos anteriores se requieren para completar la caja. El área de la base determina el número de cubos que caben por piso, y la altura de la caja establece el número de pisos que entran en la caja; por lo tanto, el volumen de un prisma rectangular se obtiene de multiplicar el área de la base por la altura, con lo cual la fórmula generalizadora para este cálculo es la siguiente:

V = B x h (B = área de la base y h = altura)

Pregunte a sus estudiantes si esta generalización funciona para su prisma. El siguiente paso es utilizar otra de las caras del prisma como base y repetir el proceso. Verificar si la fórmula deducida anteriormente funciona. Si es el caso, podemos pasar a la generalización de la fórmula para cualquier prisma rectangular.

Posteriormente, cuestione a los estudiantes si creen que esta fórmula fun-ciona para un prisma triangular. Una manera de comprobarlo es pedirles que imaginen que la base de su prisma es la mitad de un rectángulo, cortado en dos por medio de una diagonal. Al hacerlo, obtendremos dos prismas trian-gulares congruentes, cuyos volúmenes serán la mitad del volumen del pris-ma rectangular de origen. Es conveniente pedir que verifiquen que la altura de los nuevos prismas no cambió y que la base fue reducida a su mitad; por lo tanto, la fórmula anterior también funciona para los prismas triangulares. A partir de esta nueva constatación, es posible ya generalizar la fórmula de cálculo del volumen de cualquier prisma a la siguiente: V = B x h con B igual al área de la base y h representando la altura del prisma.

Page 44: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

44

Recuérdeles que la base de un prisma es una de las dos caras iguales y pa-ralelas. Algunos prismas pueden tener más de una base, mientras que otros solamente tendrán un par de bases.

Explique, además, al estudiantado que esta fórmula no solo funciona para los prismas sino que es la misma para los cilindros, la diferencia es que la base de un cilindro no es un polígono sino un círculo. Una manera de com-probar que esta fórmula funciona también para cilindros, es a través de la medición. Para hacerlo, necesitaremos un cilindro y un prisma rectangular un poco mayor al cilindro por cada estudiante. Como cilindro se puede usar aquel en el cual viene enrollado el papel higiénico y podremos utilizar los prismas usados en la primera parte de este ejercicio. Se pide a cada uno que selle uno de los lados de su cilindro. A continuación, cada uno rellenará su cilindro hasta el borde con arena y con cuidado, sin regar nada, pasará esta arena a su prisma rectangular. El prisma rectangular servirá como la medida de referencia, ya que en él calcularemos el volumen que ocupa la arena, aplicando la fórmula del volumen de prismas. Registraremos esta medida para compararla con el volumen calculado del cilindro. El siguiente paso es decirles que midan las dimensiones de su cilindro, tanto la altura como el diámetro de la base. Con este diámetro calcular el área de la base (B = π · r2 ó B = π · d2/4), luego multiplicar este resultado por la altura del cilindro. El valor obtenido debe ser muy similar al valor conseguido an-tes para el volumen de la arena en el prisma. Difícilmente en este ejercicio los dos resultados serán exactamente iguales, ya que al realizar medicio-nes siempre existe un margen de error, pero sí deberán obtener una buena aproximación, con lo cual se verifica que la fórmula V = B x h también fun-ciona para cilindros. Finalmente, aplicar estas fórmulas en la resolución de problemas.

Otro tema importante en este bloque es la aplicación de Thales en el cálculo de longitudes, áreas y volúmenes en figuras semejantes. Nueva-mente podemos trabajar con los prismas originales de los cuales ya co-nocemos las dimensiones de los lados, el área de las bases y el volumen del prisma. Solicite a sus estudiantes que representen de forma gráfica un rectángulo, cuya base tenga dimensiones exactamente iguales al doble de las de la base de su prisma. Motívelos a que estimen la relación del área de este rectángulo con respecto del área de la base del prisma original. Paso seguido, solicitarles que calculen el área y que contrasten esta medida con su estimación, y que reflexionen en dónde cometieron el error en la esti-mación, en caso de existir una diferencia entre el cálculo y la estimación realizada. Si sus cálculos no son erróneos, el resultado que cada estudiante debe tener para el área de este nuevo rectángulo será de cuatro veces el área de la base del prisma original.

A continuación, sugiérales que usando este rectángulo como base, imagi-nen un prisma de doble altura con respecto del prisma original y que otra vez estimen el volumen de este nuevo cuerpo en relación con el volumen del prisma original. Después, calcular el volumen de este nuevo prisma y contrastarlo con su estimación. El resultado será de ocho veces más el vo-lumen original. Pedirles luego que reflexionen un momento sobre estos dos factores: si las dimensiones son el doble, ¿por qué el área es cuatro veces mayor y por qué el volumen es ocho veces mayor? La explicación es muy

Page 45: 40131752 Libro Matematicas

Área de M

atemática

45

simple: supongamos que las dimensiones del prisma original son a x l x h en donde a es el ancho de la base, l es el largo de la base y h es la altura del prisma. Las dimensiones serán para el área de la base B = a x l y para el volumen V = a x l x h.

Para el nuevo prisma, las dimensiones serán 2a x 2l x 2h, ya que cada una de las dimensiones fue duplicada; de modo que las medidas tanto del área de la base y del volumen serán las siguientes: B = 2a x 2l = 4 a x l y V = 4a x l x 2h = 8 a x l x h.

Como conclusión podemos determinar que si el factor de escala entre dos cuerpos es de 1 a 2 en sus dimensiones lineales, la relación de áreas será de 12 a 22 (o de 1 a 4) y de volúmenes será de 13 a 23 (o de 1 a 8). Esta relación de potenciación se mantiene independientemente del factor de escala usado.

Para evaluar los conocimientos adquiridos en este bloque, podemos usar el análisis y resolución de problemas, los cuales deben abarcar el cálcu-lo y comparación de volúmenes y de áreas laterales de diferentes cuerpos geométricos. Acuérdese que estas respuestas deben estar fundamentadas. Algunos indicadores pueden ser:

Recuerde que estos son solo algunos indicadores de evaluación y deben cambiar de acuerdo con el trabajo en el aula y con los estudiantes.

• Reconoce el volumen del cuerpo.

• Busca las distintas posibilidades de valores que pueden tomar la altura y el área de la base.

• Utiliza la fórmula.

• Analiza el proceso empleado.

• Entrega resultados correctos para las dimensiones de los cuerpos.

• Argumenta su resultado de forma razonable.

En este bloque, una gran parte de lo que se estudia en este año de Básica ya ha sido explicado en el bloque geométrico. En medida es importante que los estudiantes puedan establecer el factor de escala entre dos figuras o cuerpos semejantes. Para determinar este factor de escala, es necesario conocer una de las medidas en una de las figuras o sólidos (longitud de un lado, área de una cara o volumen del sólido) y su correspondiente medida en la otra figura o sólido. En función de la medida que se tenga, se aplica la relación entre medidas estudiadas en el bloque anterior y estableceremos el factor de escala. Recuerde que si las medidas son longitudes, el factor de escala sale directamente de la razón de las medidas. Si los valores son de áreas, la razón será el cuadrado del factor de escala y si son volúmenes, la razón de medidas nos dará el cubo del factor de escala entre los sólidos.

Bloque: Medida

Page 46: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

46

El estudio en este año se enfocará en la determinación de frecuencia ab-soluta y frecuencia acumulada de una serie de datos estadísticos, los cua-les pueden estar listados o representados en forma gráfica. Use diagramas de barras con las categorías debidamente identificadas y con las frecuen-cias de cada una muy bien establecidas. Las frecuencias absolutas son las frecuencias de cada una de las categorías representadas, y las frecuencias acumuladas son la combinación de las frecuencias de las categorías solici-tadas conjuntamente.

Nuestros estudiantes, en la medida de lo posible, deben tener contacto con las nuevas tecnologías. Si este es el caso, una forma de reforzar su labor docente es proponerles que el registro y/o análisis de datos se haga en cualquiera de las diversas hojas de cálculo disponibles.

Para la recolección de datos puede ayudarse de datos reales, que se en-cuentran en diferentes revistas, periódicos o medios de comunicación, a la vez que se trabaja en un conocimiento de Matemática y se les acerca, poco a poco, a la realidad nacional.

La evaluación debe consistir en medir si los estudiantes son capaces de leer gráficos de barras, calcular frecuencias absolutas y acumuladas, y calcular probabilidades simples en gráficos con el uso de las fracciones.

Bloque: Estadística y probabilidad

Para la evaluación, el estudiantado debe determinar el factor de escala en-tre dos figuras semejantes; al igual que en otros bloques podremos trabajar a base de la solución de problemas y su fundamentación, además de la respuesta correcta.

Page 47: 40131752 Libro Matematicas

Área de M

atemática

47

Indicadores esenciales de evaluación

4

• Ubica pares ordenados con enteros en el plano cartesiano.

• Utiliza variables para expresar enunciados simples en lenguaje matemático.

• Opera con las cuatro operaciones básicas en el conjunto de los nú-meros enteros.

• Simplifica expresiones de enteros negativos y números fracciona-rios con el uso de las operaciones básicas, y de las reglas de poten-ciación y radicación.

• Calcula el volumen de prismas y cilindros con varios métodos.

• Reconoce, nombra y representa las líneas particulares de un triángulo.

• Aplica las propiedades de congruencia y semejanza de las media-nas, mediatrices, alturas y bisectrices de triángulos en la resolución de problemas.

• Utiliza el teorema de Thales en la resolución de problemas.

• Calcula y contrasta frecuencias absolutas y frecuencias acumuladas de una serie de datos gráficos y numéricos.

Page 48: 40131752 Libro Matematicas
Page 49: 40131752 Libro Matematicas

pROYECCIÓN CURRICULAR DE NOVENO AÑO

Page 50: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

50

Objetivos educativos1

• Reconocer y aplicar las propiedades conmutativa, asociativa y distri-butiva, las cuatro operaciones básicas y la potenciación para la sim-plificación de polinomios a través de la resolución de problemas.

• Factorizar polinomios y desarrollar productos notables para deter-minar sus raíces a través de material concreto, procesos algebraicos o gráficos.

• Aplicar y demostrar procesos algebraicos por medio de la resolución de ecuaciones de primer grado para desarrollar un razonamiento lógico matemático.

• Aplicar las operaciones básicas, la radicación y la potenciación en la resolución de problemas con números enteros, racionales e irracio-nales para desarrollar un pensamiento crítico y lógico.

• Resolver problemas de áreas de polígonos regulares e irregulares, de sectores circulares, áreas laterales y de volúmenes de prismas, pirámides y cilindros, y analizar sus soluciones para profundizar y relacionar conocimientos matemáticos.

• Aplicar el teorema de Pitágoras en la resolución de triángulos rec-tángulos para el cálculo de perímetros y áreas.

• Recolectar, representar y analizar datos estadísticos en diagramas de tallo y hojas, para calcular la media, mediana, moda y rango.

Page 51: 40131752 Libro Matematicas

Área de M

atemática

51

planificación por bloques curriculares

2

Bloquescurriculares Destrezas con criterios de desempeños

1. Relaciones y funciones

• Reconocer patrones de crecimiento lineal en tablas de valores y gráficos. (P, A)

• Graficar patrones de crecimiento lineal a partir de su tabla de valores. (P, A)

• Reconocer si dos rectas son paralelas o perpendiculares según sus gráficos. (C, P)

• Simplificar polinomios con la aplicación de las operaciones y de sus propiedades. (P)

• Representar polinomios de hasta segundo grado con material concreto. (P, A)

• Factorizar polinomios y desarrollar productos notables. (P, A) • Resolver ecuaciones de primer grado con procesos algebraicos. (P, A)• Resolver inecuaciones de primer grado con una incógnita con

procesos algebraicos. (P, A)

2. Numérico

• Leer y escribir números racionales e irracionales de acuerdo con su definición. (C, A)

• Representar números racionales en notación decimal y fraccionaria. (P)

• Representar gráficamente números irracionales con el uso del teorema de Pitágoras. (P, A)

• Ordenar, comparar y ubicar en la recta numérica números irracionales con el uso de la escala adecuada. (P, A)

• Ordenar y comparar números racionales. (C)• Simplificar expresiones de números reales con la aplicación de las

operaciones básicas. (P, A)• Resolver operaciones combinadas de adición, sustracción,

multiplicación y división exacta con números racionales. (P, A)• Resolver operaciones combinadas de adición, sustracción,

multiplicación y división exacta con números irracionales. (P, A)• Simplificar expresiones de números racionales con la aplicación de

las reglas de potenciación y de radicación. (P, A)• Resolver las cuatro operaciones básicas con números reales. (P, A)• Simplificar expresiones de números reales con exponentes

negativos con la aplicación de las reglas de potenciación y de radicación. (P, A)

Page 52: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

52

3. Geométrico

• Construir pirámides y conos a partir de patrones en dos dimensiones. (A)

• Reconocer líneas de simetría en figuras geométricas. (C, A)• Deducir las fórmulas para el cálculo de áreas de polígonos

regulares por la descomposición en triángulos. (P, A)• Aplicar las fórmulas de áreas de polígonos regulares en la

resolución de problemas. (P, A)• Utilizar el teorema de Pitágoras en la resolución de triángulos

rectángulos. (A)• Calcular áreas laterales de prismas y cilindros en la resolución de

problemas. (P, A)• Aplicar criterios de proporcionalidad en el cálculo de áreas de

sectores circulares. (A)

4. Medida• Reconocer medidas en grados de ángulos notables en los cuatro

cuadrantes con el uso de instrumental geométrico. (C, P)

5. Estadística y probabilidad

• Representar datos estadísticos en diagramas de tallo y hojas. (C, P)• Calcular la media, mediana, moda y rango de un conjunto de datos

estadísticos mediante el uso de los problemas correspondientes. (C, P, A)

Page 53: 40131752 Libro Matematicas

Área de M

atemática

53

precisiones para la enseñanza y el aprendizaje

3

La Matemática en este año puede ser aplicada a la resolución de problemas cotidianos y, a partir de ellos, desarrollar en el estudiantado un pensamiento lógico y ordenado. En esta resolución de problemas es muy importante que los estudiantes utilicen las reglas, teoremas y propiedades de los números para justificar sus procesos. Este nivel completa el estudio del conjunto de los números reales con el manejo de los números racionales como de los irracionales. En el bloque de relaciones y funciones, durante este ciclo, se trabaja la totalidad de los polinomios, desde su concepto, pasando por sus operaciones y simplificaciones hasta llegar a sus aplicaciones.

Recuerde que en este año el proceso de construcción y adquisición de ha-bilidades intelectuales, relativas al proceso de abstracción y generalización, todavía continúa. A través del estudio de los polinomios, los educandos lle-garán a desarrollar un pensamiento abstracto. Es necesario tomar en cuenta que aún es importante tener una buena base concreta para luego pasar a lo abstracto, por lo que se sugiere lo siguiente:

• Al realizar las actividades educativas en el salón de clase, es nece-sario que estas estén directamente relacionadas con los intereses de sus estudiantes y su entorno. Mientras mayores conexiones en-cuentren entre las actividades de la clase y su realidad geográfica, climática, social y otras, más motivados estarán para aprender ya que verán plasmado su esfuerzo en realizaciones inmediatas en sus vidas y el aprendizaje se verá sólidamente favorecido.

• Recuerde que es necesario, dentro de un mismo tema, ir de forma ascendente en cuanto a la dificultad de las tareas asignadas. Es siempre necesario y motivador para los jóvenes empezar por pro-blemas que se pueden resolver y, poco a poco, incrementar el grado de dificultad hasta el punto donde los problemas se vuelven un de-safío para ellos y, con un poco de compromiso y dedicación de su parte, los resolverán. Si no se incrementa el grado de dificultad de los problemas en forma progresiva, solamente se logrará frustrarlos y perderán el interés por la asignatura.

Page 54: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

54

• El entorno de su establecimiento le ofrece un sinnúmero de opor-tunidades y de materiales para trabajar en la resolución de proble-mas, y la creatividad de los educadores es fundamental para poder encontrar estas aplicaciones.

• Es importante también acordarse que los problemas propuestos no deben ser solamente aquellos en los que se aplique una regla de manera mecánica. La repetición en el aprendizaje de las matemáti-cas es esencial, pero lo es más aún el acrecentar en el estudiantado un pensamiento crítico y reflexivo, y los problemas que demandan esfuerzo de parte de ellos son una buena fuente para lograr desa-rrollar estas destrezas.

• En este nivel de estudios probablemente el uso de calculadoras sea más frecuente; por lo tanto, es considerable pasar a la aplicación de los resultados obtenidos y no al cálculo en sí de los mismos. El re-sultado es importante, pero el proceso seguido para llegar al mismo y sus justificativos lo son más. Es mejor corregir en sus estudiantes errores de cálculo que errores de razonamiento, por lo que es nece-sario guiarlos para que expliquen de manera suficiente los procesos seguidos. Un método que da buenos resultados es el de verbalizar estos procesos ya que para hacerlo, los estudiantes deben reflexio-nar sobre lo que hicieron y esto les ayudará a construir procesos lógicos de razonamiento. Además, les permitirá entender diferentes estrategias y, de pronto, adoptar aquellas que les resulte más inte-resantes o lógicas.

• Si tiene acceso a Internet o a software especializado, úselo regular-mente con sus alumnas y alumnos. Muchas de las aplicaciones que se encuentran en este medio sirven como refuerzo de los conceptos es-tudiados e incentivan la búsqueda de estrategias para su resolución.

• En las clases, cree espacios para que el trabajo en grupos y la reso-lución de problemas sean en equipo. Las discusiones generadas en estos espacios refuerzan los aprendizajes y ayudan a los estudian-tes con dificultades a procesar de mejor manera la información, y a aquellos que son muy apegados a los procesos memorísticos, a re-flexionar sobre los mismos y entender el porqué de estos procesos. En la resolución de problemas en equipo, cada integrante del grupo debe ser capaz de explicar los pasos seguidos para la resolución del problema y la argumentación de este proceso, de modo que todos trabajen de forma cooperativa, es decir, todos aportan, opinan y se esfuerzan por entender lo que hicieron. Recuerde que las destre-zas que el estudiantado desarrollará a través del trabajo en equipo son: procesar información, aprender a escuchar, tratar de entender diferentes puntos de vista, y debatir con argumentos apegados a las reglas y conceptos matemáticos utilizados para la resolución del problema propuesto.

• En este nivel, la resolución de problemas y ejercitación no debe ser solo abstracta. Hay muchos de los conceptos que pueden ser fácil-mente conectados con el entorno e intereses estudiantiles. El edu-

Page 55: 40131752 Libro Matematicas

Área de M

atemática

55

cando aprende mucho más a través de problemas aplicables a lo que conocen, que repitiendo de foma mecánica procesos y reglas totalmente desconectados de su mundo. La investigación y la lectu-ra son también muy importantes en la Matemática, y al pedirles que realicen exposiciones sobre temas muy concretos, se enfrentan con la materia en un entorno diferente al aula de clase, donde ellos son quienes definen los límites de su indagación. Para que las indagacio-nes y las exposiciones sean eficaces, se sugiere que los instrumentos de evaluación de las mismas sean muy claros y conocidos por los estudiantes; además, es fundamental guiarlos en las fuentes de in-vestigación, las cuales se sugiere sean especializadas y confiables.

• A través de las actividades de clase, es necesario reforzar los valores relacionados con el orden, la limpieza, el respecto a las personas, a los materiales y a las indicaciones impartidas. El uso del lenguaje debe ser adecuado y preciso al momento de relatar presentaciones, de dar explicaciones o de justificar procedimientos. No se olvide de incluir en los problemas la diversidad étnica, cultural, climática, regional y demás, que nuestro país posee, relacionándolas con co-nocimientos matemáticos.

• Al igual que en otros niveles, es imprescindible relacionar siempre todos los contenidos estudiados en este año con aquellos apren-didos en años anteriores, para que el estudiantado vea el progreso de su aprendizaje en la materia y también es necesario relacionar-los con las demás áreas del saber, como aplicaciones directas de lo aprendido. Además, alguno de los contenidos dentro de cualquiera de los cinco bloques puede ser enfocado desde aplicaciones de los otros cuatro. Por ejemplo, la mayoría de las operaciones en el sistema numérico pueden ser enfocadas desde una perspectiva geométrica, la que en muchos casos ayuda a visualizar los procesos y refuerza el aprendizaje. Estas conexiones entre diferentes conocimientos, en-tre bloques y entre asignaturas potencian las conexiones en el ce-rebro y permiten al estudiante incrementar su capacidad de apren-der; pues mientras más sabemos, más podemos aprender ya que el aprendizaje se da al crear relaciones con otros conocimientos, es decir, mientras más información poseemos, mayor es la posibilidad de relacionarla con nueva información.

• Al momento de planificar las unidades, no hacerlo por bloques, es decir, no empezar por el bloque numérico para luego pasar al de rela-ciones y funciones y, si le queda tiempo, finalmente trabajar en geo-metría. Al contrario, se sugiere trabajar con los bloques intercalados, ya que con ello se da la posibilidad a los estudiantes de establecer conexiones entre los mismos y fluir cómodamente entre ellos.

Page 56: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

56

A continuación, se presentan varias recomendaciones metodológicas para trabajar en algunos de los temas relevantes de este año lectivo. Estas reco-mendaciones están presentadas por bloque, sin ningún orden cronológico establecido. Por lo tanto, se propone revisar las destrezas y contenidos es-perados para planificar su concatenación en función de ellos y del nivel de los estudiantes.

En este bloque, los nudos críticos de este año de Educación Básica son la resolución de ecuaciones de primer grado y la simplificación de poli-nomios. Para estos dos casos anteriores, continuaremos con la aplicación de las reglas utilizadas para el cálculo con los números enteros. Recuerde, además, que la introducción de variables, tanto en las ecuaciones como en los polinomios, genera muchas dificultades si trabajamos desde la abs-tracción e ignoramos la parte concreta provocando en sus estudiantes un bloqueo de sus procesos de razonamiento. Por consiguiente, es importante que tanto las ecuaciones como los polinomios se presenten utilizando ma-terial concreto como las fichas algebraicas, caja de polinomios o a través de situaciones que sean familiares para ellos.

Con el fin de evitar que la resolución de ecuaciones se convierta únicamen-te en un proceso mecánico de aplicación de reglas, es necesario conectar las ecuaciones con situaciones reales, como se dijo antes, es decir, acos-tumbrar a los educandos a que traduzcan la ecuación a una situación fami-liar para ellos y que luego piensen en las acciones que pueden tomar para llegar a su resolución. Por ejemplo, si la ecuación a resolver es x + 8 = 5, la mayoría de estudiantes despejará la incógnita “cambiando” de lado al 8 por la aplicación de las propiedades para así obtener la expresión numérica de x, pero muy pocos pensarán en “¿qué valor de x sumado al 8 me da 5?” Al hacerlo de esta manera, no se requiere aplicar ningún proceso memorístico para despejar la incógnita, sino simplemente emplear las reglas de la suma y de la resta con números enteros revisados en el bloque numérico. Se su-giere trabajar con sus estudiantes en la capacidad de buscar mentalmente el valor que resuelve la ecuación, ya que ello les ayuda a entender lo que están haciendo y desarrollar su pensamiento lógico.

Las ecuaciones no son más que igualdades matemáticas en las que apa-rece una variable, la cual es conocida como la incógnita. La resolución de la ecuación significa encontrar el valor numérico de la incógnita que hace que la igualdad propuesta sea verdadera. Los métodos para resolver una ecuación pueden ser muy variados, desde el de prueba y error hasta el de la aplicación de las propiedades de los números para despejar la incógnita. Un número significativo de estudiantes, al momento de resolver ecuaciones, solamente quiere replicar los procesos que utilizan sus profesores y profe-soras en la clase, y al confundir las reglas aprendidas de memoria, realizan procesos erróneos y llegan a resultados equivocados.

Al llegar a la explicación de la resolución de ecuaciones por medio de reglas y propiedades que permiten despejar la incógnita, es importante explicar-les que las ecuaciones pueden ser vistas como una balanza equilibrada por el signo igual, en la cual cada lado de la ecuación representa lo mismo,

Bloque: Relaciones y funciones

Page 57: 40131752 Libro Matematicas

Área de M

atemática

57

y todo aquello que se haga a un lado de la ecuación va a afectar al otro lado; por lo tanto, las acciones deben ser tomadas por igual a los dos lados.

Este es el principio por el cual podemos “mover” términos de un lado al otro de la ecuación, sin alterar su igualdad. Este ejercicio los ayudará a entender el proceso de resolución de ecuaciones y no solo a poder aplicarlo. Uno de los errores más comunes al resolver ecuaciones es aquel de cambiar el signo del valor que se cambia de lado, ya que funciona con los términos que están sumando y restando pero no con los términos que se multiplican o dividen. La regla general no es que se cambia de signo, sino que se hace la operación inversa, es decir, si un término está sumando a la variable, al “cambiarlo” de lado pasará restando, y así con todos los términos y las operaciones.

Al momento de evaluar la resolución de una ecuación, una estrategia es ha-cerlo desde la resolución de problemas y, en tal caso, debemos considerar si los estudiantes:

• Reconocen el término desconocido (la incógnita).

• Plantean el problema presentado como una ecuación.

• Resuelven correctamente la ecuación.

• Explican el procedimiento seleccionado.

Tome en cuenta que un gran número de estudiantes plantea una ecuación, reconoce la incógnita, conoce el proceso y evidencia una lógica en él, pero al momento de realizar la operación inversa no la ejecuta de la forma ade-cuada, por esto debe tener cuidado al momento de evaluar, detectar el error y dar retroalimentación, así se logrará una evaluación para corregir errores y evitar mayores complicaciones a futuro.

Recuerde, además, que tanto la resolución de ecuaciones como la simplifi-cación de polinomios van de la mano, ya que en varias ecuaciones los es-tudiantes deben simplificar los términos con la variable antes de resolverla, como en el ejemplo siguiente, el que no puede ser resuelto si todas las expresiones con la variable no se simplifican primero:

3x – 5 = 2x + 8

Al iniciar con la simplificación de polinomios, es esencial asegurarse que sus estudiantes comprenden la diferencia entre un monomio con la variable x y un monomio con la variable x2 , y no los junten como si se trataran de lo mismo. El material concreto, específicamente las fichas algebraicas, los ayu-dan a visualizar esta diferencia y a entender que si la potencia de la variable cambia, el monomio es de otra naturaleza y solamente podrá simplificarse con otros monomios de la misma potencia. Las fichas algebraicas pueden ser fácilmente fabricadas con cartulina, fómix (goma eva), madera, cartón o cualquier otro material reciclado del que disponga o pueda conseguir con facilidad. No es necesario tener material costoso ni prefabricado. Será más beneficioso si sus estudiantes lo crean pues con ello estarán determinan-do, antes de usarlo, qué significa o representa cada elemento. Es también importante que cada una de las fichas algebraicas se hagan en dos colores diferentes, para representar los valores positivos, los cuales son verdes; y los valores negativos que son rojos. Las medidas de las fichas pueden variar, pero es mejor que todos en el aula utilicen las mismas medidas, ya que de

Page 58: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

58

esta manera podrán intercambiar y compartir el material en caso de nece-sidad, y crear un inventario de material uniforme para tenerlo en el aula y usarlo cuando sea requerido. A continuación, le presentamos una muestra de este material, como se comentó anteriormente, puede ser sencillo crear-lo por el estudiantado con material reciclado y a bajo costo.

Como se observa en las figuras, con el uso de las fichas algebraicas se re-presentan solo monomios hasta la segunda potencia, es decir, hasta cua-drados. Se pueden representar monomios cúbicos, pero se requiere fabricar cubos, lo cual resulta más complicado y además no muy necesario, ya que una vez que visualizan la diferencia entre x2 y x, estas se pueden transferir muy fácilmente a otras potencias. Fíjese también que las fichas verdes son positivas y las rojas son negativas y existe una total analogía con las fichas utilizadas en el bloque numérico para introducir las operaciones con los números enteros. Las reglas para simplificar polinomios son las mismas que para simplificar expresiones de números enteros: una ficha positiva con una ficha negativa se cancelan y solamente es posible operar con fichas de la misma naturaleza, es decir, no podremos sumar entre sí fichas cuadradas (x2) con fichas rectangulares (x).

A continuación, le presentamos un ejemplo de simplificación de un polino-mio, paso a paso, con el uso de las fichas algebraicas.

Simplificar el polinomio 3x2 + 6x – 2x2 + 4x – 8 + 7 - 2x.

Este polinomio puede representarse de esta manera:

V

+ x2

V

+ x

V

+ 1

R

– x2

R

– x

R

– 1

V= Verde R= Rojo

V

V

V

V V

V V

V V

V V

V V

V VV V

V VV

R

R

RR

R RR R

R RR R

V= Verde R= Rojo

Page 59: 40131752 Libro Matematicas

Área de M

atemática

59

Es importante revisar los conocimientos previos de sus estudiantes acerca de las propiedades de los números enteros y sus operaciones, y al conca-tenar este contenido con el correspondiente al noveno año de Educación Básica, revisamos los números racionales e irracionales, al igual que las ope-raciones con los mismos. Al trabajar con los números racionales e irraciona-les, se completa el trabajo en los números reales. Las dificultades que con frecuencia se encuentran los estudiantes con los números racionales es la expresión de estos en notación fraccionaria, en especial de los decimales repetitivos e infinitos. El proceso de conversión de racionales repetitivos e infinitos de notación decimal a notación fraccionaria requiere del uso de va-

Bloque: Numérico

V V VV VV VV V

R

V= Verde R= Rojo

El siguiente paso es juntar las fichas iguales, pero de color diferente, para cancelarlas entre sí; por lo tanto, dos fichas cuadradas grandes verdes se eliminarán con dos fichas cuadradas grandes rojas, dos rectángulos verdes se irán con dos rectángulos rojos, y siete cuadrados verdes pequeños se irán con siete cuadrados pequeños rojos, quedando lo siguiente:

Al llegar a esta expresión podemos ver que no es posible simplificarla más, ya que todos los monomios son distintos entre sí y el resultado es finalmen-te: x2 + 8x – 1; por lo tanto, tendremos que:

3x2 + 6x - 2x2 + 4x – 8 + 7 – 2x = x2 + 8x – 1

Verifiquemos este resultado de forma algebraica y, al hacerlo, veremos que el proceso es exacto al mismo que utilizamos con las fichas. Trabajaremos, exclusivamente, con la expresión a la izquierda del signo igual para obtener la expresión a la derecha y expresaremos entre paréntesis la propiedad que nos permite realizar la operación utilizada:

3x2 + 6x – 2x2 + 4x – 8 + 7 – 2x = x2 + 8x – 1 3x2 – 2x2 + 6x + 4x – 8 + 7 – 2x = x2 + 8x – 1 (conmutativa) x2 + 10x – 1 – 2x = x2 + 8x – 1 (suma y resta de enteros) x2 + 10x – 2x – 1 = x2 + 8x – 1 (conmutativa) x2 + 8x – 1 = x2 + 8x – 1 Queda demostrada la simplificación anterior.

Se aconseja trabajar con las fichas algebraicas hasta que el estudiantado pueda transferir los conocimientos de las operaciones con los números en-teros a los polinomios y, además, diferencien los monomios homogéneos. El segundo paso, después de las fichas algebraicas, es la representación gráfica de los polinomios para finalmente pasar a la resolución netamente algebrai-ca. Una vez que se llegue a esta tercera etapa, los estudiantes podrán seguir los procesos de simplificación, y utilizar las propiedades y las operaciones de manera flexible.

Page 60: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

60

riables; por esta razón, no será posible hacerlo antes de que el estudiantado maneje la resolución de ecuaciones y el trabajo con polinomios.

Otro tema relevante en el bloque numérico de este año de Educación Bási-ca es la graficación de números irracionales, sobre todo de los irracionales con radicales como la raíz cuadrada de dos, de tres o de cinco. Sin embargo, para hacerlo, el estudiante requiere haber aprendido el teorema de Pitágo-ras que está detallado en el bloque de geometría.

Para el cálculo de áreas de polígonos regulares se sugiere, antes de dar-les la fórmula y pedirles que reemplacen los valores correspondientes en la misma, que descompongan los polígonos regulares en triángulos cuyas áreas puedan calcular.

Una actividad de inicio puede ser la siguiente: representar en una cuadrí-cula varios polígonos regulares similares, cuyos vértices coincidan con las intersecciones de la cuadrícula. Asegúrese que los estudiantes puedan de-terminar la longitud de cada lado de cada polígono, al igual que las alturas de los triángulos en los cuales descompusieron los polígonos.

Establecer que cada cuadrado de la cuadrícula mide una unidad cuadrada. Solicíteles que estimen las áreas de los polígonos utilizando la cuadrícula como referencia y descomponiendo los polígonos en triángulos, en los cua-les podrán determinar las medidas de la base y de la altura. Una extensión a esta actividad es la de ubicar ahora los polígonos en un plano cartesiano y que los vértices coincidan con intersecciones enteras de abscisas y ordena-das. De nuevo pídales que descompongan estos polígonos en triángulos y que determinen sus bases y sus alturas, y a su vez calculen el área del cada polígono. Luego, repetir los procesos anteriores, usando ahora el mismo po-lígono regular pero de diferentes medidas, decirles que calculen sus áreas y busquen una generalización de la forma de calcularlas, con el objetivo de establecer la fórmula que nos generalizará este trabajo.

Es muy importante que sus estudiantes entiendan el origen de la fórmula ya que si no lo hacen, solamente la aplicarán de un modo memorístico y no en-tenderán la razón por la cual la fórmula funciona para una figura y es diferen-te al cambiar de figura. Una vez que la fórmula haya sido deducida, es necesa-rio aplicarla en varios ejercicios en los cuales el área de los polígonos sea un paso intermedio para resolver los problemas. Es decir, proponer situaciones donde los estudiantes necesiten transferir este conocimiento y aplicarlo.

Como una extensión a este aprendizaje, se puede incluir un polígono irre-gular posible de descomponer fácilmente en triángulos y solicitarles que calculen su área. Al repetir este proceso con otro polígono irregular de igual forma que el anterior, pero de tamaño diferente, el estudiantado podrá constatar que en este caso no se puede deducir una fórmula general sino que hay que calcular para cada caso.

Se sugiere que la evaluación sea constante y permita identificar cuáles son las dificultades de estimación y cálculo de áreas de polígonos regulares antes de iniciar con el proceso de enseñanza - aprendizaje de los polígonos irregulares.

Bloque: Geométrico

Page 61: 40131752 Libro Matematicas

Área de M

atemática

61

Es pertinente recordar a los jóvenes que para el cálculo de áreas de polí-gonos, tanto regulares como irregulares, no es necesario que la descompo-sición deba ser hecha en triángulos exclusivamente, sino que se pueden descomponer los polígonos en figuras familiares y simples, siempre que sea posible, tales como rectángulos, cuadrados y triángulos.

Otro de los temas sobresalientes de este año es el estudio del teorema de Pitágoras. Los prerrequisitos para que los educandos no tengan dificultades en este contenido son los siguientes conceptos, los que serán usados con frecuencia en esta unidad: triángulo rectángulo, catetos, hipotenusa y su re-presentación gráfica. Además, deberán entender y manejar las operaciones de elevar un número al cuadrado, de obtener la raíz cuadrada de un número y determinar el área de un cuadrado en una cuadrícula.

Recuerde que el enunciado del teorema de Pitágoras: “En todo triángulo rectángulo se cumple que el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos” debe ser entendido y deducido por sus estudiantes, y no aprendido de memoria sin entender lo que significa.

Una manera de constatar el teorema de Pitágoras, es pedir a cada estudiante que dibuje en el centro de una hoja cuadriculada un triángulo rectángulo, usando las líneas de la cuadrícula para representar los catetos. Es decir, un cateto será horizontal y el otro vertical.

La medida de cada cateto la definirá cada estudiante, de este modo se ob-tendrá una variedad de triángulos rectángulos.

Una vez que el triángulo rectángulo esté representado, cada educando dibu-jará los cuadrados procedentes de los lados de su triángulo (ver diagrama).

A continuación, los estudiantes pueden determinar, usando la cuadrícula, el área de cada cuadrado y buscar una relación entre estas medidas.

La relación será el enunciado del teorema de Pitágoras, es decir, el área del cuadrado relacionado a la hipotenusa debe ser exactamente igual a la suma del área de los cuadrados vinculados a los dos catetos, o de forma matemá-tica expresado, c2 = a2 + b2.

Motívelos para que verifiquen y comparen entre sí que la relación se cum-ple para todos los triángulos rectángulos. Una vez que se ha demostrado y deducido esta relación, utilizarla para el cálculo de la longitud de la hipote-nusa conociendo la longitud de los catetos, o de la longitud de uno de los catetos, sabiendo las longitudes del otro cateto y de la hipotenusa.

b2

a2

c 2

Page 62: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

62

En este año, las aplicaciones de este teorema serán únicamente en el cál-culo de longitudes de lados de triángulos rectángulos y en la representa-ción gráfica de números irracionales; por ejemplo, si se quiere representar la raíz cuadrada de cinco por medio de un segmento, se puede hacer en una cuadrícula, utilizando un triángulo rectángulo cuyos catetos midan 1 y 2 unidades, respectivamente. La hipotenusa de este triángulo medirá y, de esta manera, se obtiene una representación gráfica de un número irracional. Se puede repetir este proceso para otros números irracionales.

22 + 13 = 5

En este año se inicia con la medida de ángulos notables en los cuatro cua-drantes y se introduce a través de la proporcionalidad en el primer cuadran-te; luego, se lo extrapola a los demás cuadrantes. Se comienza el trabajo con el ángulo de 90° y con sus múltiplos, después se pasa al ángulo de 45° y sus múltiplos y, finalmente, al ángulo de 30° y sus múltiplos. La forma más fácil de introducir estas medidas es por medio de una circunferencia con centro en el origen. Los estudiantes de noveno año de Básica deben reconocer que una rotación completa equivale a un ángulo de 360°; y si algunos de sus estudiantes no están seguros de esta medida, trace un círculo en el pizarrón y divídalo en cuatro sectores circulares iguales por medio de dos rectas perpendiculares que se intersectan en el centro del círculo. Estas forman cuatro ángulos rectos entre sí, por lo que al sumarlos obtendremos los 360° de una rotación completa.

Este contenido se presta mucho al trabajo con material concreto, a partir de un círculo de cualquier radio. Se puede pedir al estudiantado que cada uno elabore dos círculos del mismo radio, recortados en cartulina, con su centro claramente marcado y con un diámetro representado, el cual será usado como la referencia para la medida de los ángulos. Al primer círculo se lo re-cortará en ocho sectores circulares congruentes, cada uno con un ángulo de 45° y al segundo se lo recortará en sectores circulares de 30° cada uno. Con estos dos tipos de sectores circulares, los estudiantes podrán combinarlos y formar los ángulos notables en los cuatro cuadrantes. Es importante pedir-les que comparen si todos los ángulos de 60° son congruentes, a pesar de estar representados con sectores circulares de diferentes radios.

Bloque: Medida

En este año se introducirá un nuevo diagrama para representar datos esta-dísticos, que es conocido como el “Diagrama de tallo y hojas”. Este es un diagrama que tiene la ventaja de permitir una visualización rápida de las diferentes categorías de una serie de datos numéricos. Para iniciar con la explicación de este diagrama, escribir en la pizarra una serie de datos o va-lores que se encuentren en la primera centena y pedir a los estudiantes que los ordenen en forma ascendente, como por ejemplo los siguientes:

25, 12, 8, 65, 43, 35, 36, 89, 57, 43, 29, 12, 8, 6, 4, 9, 36, 62, 42, 15

Bloque: Estadística y probabilidad

Page 63: 40131752 Libro Matematicas

Área de M

atemática

63

Estos valores ordenados quedarían de de esta manera:

4, 6, 8, 8, 9, 12, 12, 15, 25, 29, 35, 36, 36, 42, 43, 43, 57, 62, 65, 89

A continuación, explicar a los estudiantes que se va a trabajar en un nuevo método de representar datos estadísticos conocido como “Diagrama de ta-llo y hojas”, para lo cual haremos una analogía con el sistema numérico y el valor posicional, es decir, vamos a representar cada uno de los datos numé-ricos anteriores dentro de la categoría correspondiente a su decena.

La tarea de los estudiantes es la de organizar los valores ordenados ante-riormente por decenas y que representen cada decena en una fila; así ten-dremos en la primera fila los valores del 0 al 9; en la segunda fila, los valores del 10 al 19 y así, sucesivamente, como se detalla a continuación:

4, 6, 8, 8, 9

12, 12, 15,

25, 29,

35, 36, 36,

42, 43, 43

57

62, 65

89

A partir de este ordenamiento, se puede explicar que en este diagrama a cada decena se le considera el “tallo” y a cada unidad, dentro de cada dece-na, se le llama la “hoja” con lo cual la representación sería la siguiente:

Decena

0

1

2

3

4

5

6

7

8

Unidad

4, 6, 3, 3, 9

2, 2, 5

5, 9

5, 6, 5

2, 3, 3

7

2, 6

9

Es importante aclararles que este diagrama es una manera de simplificar la escritura de los datos, ya que en este caso podemos usar solamente las “hojas” para determinar las medidas de tendencia central y, al hacerlo, rela-cionarlas con el “tallo” al que corresponden. En este ejemplo, en particular, la media está entre el 9 de la segunda decena y el 5 de la tercera decena, es decir, la media está entre 29 y 35; por lo tanto, es igual a 32.

Practicar esta representación de datos con otros valores, los cuales pueden ser generados por una encuesta verdadera o a partir de valores solicitados a los estudiantes, con las debidas restricciones, como por ejemplo: valores entre 50 y 200, o la talla del calzado de ellos y de sus familiares directos

Page 64: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

64

o datos obtenidos de las edades de cuatro personas que conformen sus familias, etc..

Al finalizar este año, los educandos deben ser capaces de representar cual-quier grupo de datos estadísticos en este tipo de diagrama y deben tener muy claro cómo establecer los tallos y las hojas. Pero, sobre todo, los estu-diantes deben tener muy en cuenta que al trabajar con las hojas, para deter-minar diferentes valores solicitados como media, mediana o rangos, siem-pre es necesario considerar el tallo al cual estas hojas están relacionadas; de lo contrario, los valores obtenidos estarán totalmente desconectados de los valores con los cuales están trabajando.

Se recomienda que la evaluación del aprendizaje sea un proceso continuo y variado en su forma. Es imprescindible que las evaluaciones se presenten en diferentes formatos, no solo en cuestionarios de selección múltiple o la reso-lución de problemas, ya que al variar estos métodos ayudaremos a los estu-diantes a familiarizarse con distintas formas de evaluación. La observación es una gran herramienta de evaluación, pues logra corregir errores en el proceso y permite evaluar aspectos diversos a los netamente cognitivos como son las actitudes, el orden y la rigurosidad en los justificativos, entre otros.

Page 65: 40131752 Libro Matematicas

Área de M

atemática

65

Indicadores esenciales de evaluación

4

• Simplifica polinomios con la aplicación de las operaciones básicas y de las propiedades conmutativa, asociativa y distributiva.

• Factoriza polinomios y desarrolla productos notables.

• Resuelve ecuaciones e inecuaciones de primer grado.

• Aplica las operaciones con números reales en la resolución de problemas.

• Aplica las reglas de potenciación y radicación en la simplificación de expresiones numéricas y de polinomios con exponentes negativos.

• Aplica el teorema de Pitágoras en la resolución de triángulos rectángulos.

• Deduce las fórmulas del área de polígonos regulares y las aplica en la resolución de problemas.

• Calcula áreas laterales de prismas, cilindros y sectores circulares.

• Reconoce medidas en grados de ángulos notables en los cuatro cuadrantes.

• Representa un conjunto de datos estadísticos en un diagrama de ta-llo y hojas; además calcula la media, la mediana, la moda y el rango.

Page 66: 40131752 Libro Matematicas
Page 67: 40131752 Libro Matematicas

pROYECCIÓN CURRICULAR DE DÉCIMO AÑO

Page 68: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

68

Objetivos educativos1

• Reconocer una función lineal por medio del análisis de su tabla de valores, gráfico o ecuación y conociendo uno de los tres modelos anteriores, determinar los otros dos para comprender y predecir va-riaciones constantes.

• Aplicar el patrón de la función lineal y sus valores relevantes en la resolución de problemas de la vida cotidiana.

• Contrastar la función lineal con la función exponencial para com-prender las diferencias entre variaciones constantes y variables.

• Representar y resolver un sistema de dos ecuaciones lineales con dos incógnitas a través de gráficos y algebraicamente para aplicar-los en la solución de situaciones concretas.

• Aplicar el teorema de Pitágoras para deducir y entender las funcio-nes trigonométricas y las fórmulas usadas en el cálculo de períme-tros, áreas, volúmenes, ángulos de cuerpos y figuras geométricas con el propósito de alcanzar un mejor entendimiento de su entorno.

• Realizar conversiones con unidades de medida del SI y con otros sis-temas a través de la comparación y del cálculo, para comprender las equivalencias con unidades usadas comúnmente en nuestro medio.

• Recolectar, representar y analizar datos estadísticos y situaciones probabilísticas relacionadas con lugares históricos, turísticos y bie-nes naturales, para fomentar y fortalecer la apropiación y cuidado de los bienes culturales y patrimoniales del Ecuador.

Page 69: 40131752 Libro Matematicas

Área de M

atemática

69

planificación por bloques curriculares

2

Bloquescurriculares Destrezas con criterios de desempeños

1. Relaciones y funciones

• Construir patrones de crecimiento lineal con su ecuación generadora. (P, A)

• Evaluar si una función lineal es creciente o decreciente en la base de su tabla de valores, gráfico o ecuación. (C)

• Determinar la ecuación de una función lineal si su tabla de valores, su gráfico o dos puntos de esta función son conocidos. (C, P)

• Reconocer una función exponencial con la base en su tabla de valores. (C, P)

• Evaluar si una función exponencial es creciente o decreciente. (C, P)

• Operar con números reales aplicados a polinomios. (P, A) • Representar y resolver un sistema de dos ecuaciones lineales con

dos incógnitas, con gráficos y algebraicamente. (P, A)

2. Numérico

• Transformar cantidades expresadas en notación decimal a notación científica con exponentes positivos y negativos. (P, A)

• Resolver operaciones combinadas de adición, sustracción, multiplicación, división, potenciación y radicación con números reales. (P, A)

• Racionalizar expresiones algebraicas y numéricas. (P)• Evaluar y simplificar potencias de números enteros con

exponentes fraccionarios. (C, P) • Simplificar expresiones de números reales con exponentes

fraccionarios con la aplicación de las reglas de potenciación y radicación. (P, A)

3. Geométrico

• Aplicar el teorema de Pitágoras en el cálculo de áreas y volúmenes. (P, A)

• Calcular volúmenes de pirámides y conos con la aplicación del teorema de Pitágoras. (P, A)

• Calcular medidas de ángulos internos en polígonos regulares de hasta seis lados para establecer patrones. (P, A)

• Calcular áreas laterales de conos y pirámides en la resolución de problemas. (C, A)

• Reconocer ángulos complementarios, suplementarios, coterminales y de referencia en la resolución de problemas. (A)

Page 70: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

70

• Definir las razones trigonométricas en el triángulo rectángulo. (C)• Aplicar las razones trigonométricas en el cálculo de longitudes de

lados de triángulos rectángulos. (C, A)

4. Medida

• Realizar reducciones y conversiones de unidades del SI y de otros sistemas en la resolución de problemas. (P, A)

• Reconocer medidas en radianes de ángulos notables en los cuatro cuadrantes. (C, P)

• Realizar conversiones de ángulos entre radianes y grados. (C, P)

5. Estadística y probabilidad

• Calcular media aritmética de una serie de datos reales. (C, P) • Calcular probabilidades simples con el uso de fracciones. (A)

Page 71: 40131752 Libro Matematicas

Área de M

atemática

71

precisiones para la enseñanza y el aprendizaje

3

La Matemática forma parte esencial de nuestra sociedad, es una disciplina cuyo desarrollo responde a la necesidad y deseo de resolver situaciones provenientes de los más variados ámbitos; es por esta razón que el pro-grama de décimo año de Educación Básica en el área de Matemática busca desarrollar la capacidad de pensar matemáticamente y de interpretar fenó-menos y situaciones cotidianas, facilitando la comprensión de una sociedad y de una naturaleza en constante cambio.

Recuerde que en este año el proceso de construcción y adquisición de ha-bilidades intelectuales, relativas al proceso de abstracción y generalización, todavía continúa. Es por esto que le sugerimos que:

• Al realizar las actividades educativas en el salón de clase, el profe-sorado debe buscar la motivación de los estudiantes, incluyendo sus intereses y las relaciones con las otras áreas del saber, de mane-ra que despierten la curiosidad y que representen un desafío para ellos. Es necesario recordar que los problemas iniciales no deben ser muy complicados, ya que si les resulta imposible resolverlos, el estudiantado pierde interés y puede causar reacciones negati-vas hacia la materia. La creatividad es importante a la hora de pre-sentar un problema, y se recomienda el uso de situaciones que son familiares al estudiantado pues esto les brinda la oportunidad de demostrar sus talentos matemáticos. Es imprescindible enfatizar que los problemas propuestos deben desarrollar actitudes críticas, reflexivas y de análisis. Más importante que el resultado mismo del problema, es el razonamiento y las estrategias que utilizan para su resolución. Pida a sus estudiantes que verbalicen estos procesos y promueva discusiones acerca de las diferentes estrategias utiliza-das para que constaten que existen diferentes formas de hacer y de resolver problemas, algunas más efectivas que otras, pero todas igualmente válidas.

Page 72: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

72

• En las clases, cree espacios para que los estudiantes formulen con-jeturas, propongan encadenamientos argumentativos, y utilicen y analicen modelos que permitan describir y predecir el comporta-miento de algunos fenómenos en diversos contextos.

• Para trabajar con la proposición de encadenamientos argumen-tativos, se recomienda que motive a sus educandos a formular y a responder preguntas que nazcan del trabajo en grupo o que sean planteadas por el docente. Todas sus respuestas deben ser argumen-tadas mediante la descripción o la explicación, y deben ser capaces de defender sus procedimientos y estrategias de resolución. Es im-portante también que aprendan a escuchar argumentos contrarios a los suyos y que desarrollen la capacidad de contraargumentar. Esta práctica, muy usada en las áreas de Lengua y Estudios Sociales, ayu-da ampliamente en el área de Matemática, ya que el debatir permite lograr una mayor comprensión y sistematización de los temas estu-diados, además de una flexibilidad de pensamiento. Como resultado, formaremos estudiantes que sean comunicadores matemáticos, es decir, capaces de resolver, argumentar y demostrar procesos lógicos de razonamiento en cualquier área del conocimiento.

• La resolución de problemas y ejercitación no son las únicas activi-dades que se solicita realizar a los estudiantes; recuerde que la lec-tura, indagación específica y exposición sobre temas relacionados con la Matemática son otro tipo de actividades que también apoyan el aprendizaje y la aplicación de los conocimientos. Guíe y asesore en las indagaciones y las exposiciones para que sean eficaces, y se recomienda que usted oriente al estudiantado a buscar en fuentes especializadas y confiables, a clasificar y organizar la información buscada, y a redactar en forma original la presentación en función de la audiencia escogida.

• Es esencial que utilice varios recursos para el trabajo con sus edu-candos, como la calculadora (básica o científica) o un software de cálculo, geometría o estadística. Si el centro educativo no dispone de estos recursos, puede usar algunos programas de acceso libre en Internet, en donde encontrará varias páginas especializadas en el área de la Matemática, divididas por niveles de educación, con diversas opciones, tanto interactivas como de videos o de hojas de trabajo impresas. Muchas de estas páginas de Internet incluyen también estrategias y metodologías para abordar ciertos temas.

• Es conveniente que en su trabajo diario con los estudiantes, pro-mueva algunas actitudes relacionadas directamente con el área de Matemática, tales como la utilidad de dicho conocimiento, su apli-cación, la organización, la precisión, la justificación y utilidad del lenguaje numérico y algebraico en la resolución de problemas o situaciones cotidianas. Al momento de proponer un problema ma-temático, trate de escoger aquellos que estén relacionados con te-mas sensibles y/o críticos de la actualidad nacional o en contexto con el medio en el que los alumnos y alumnas se desenvuelven, de

Page 73: 40131752 Libro Matematicas

Área de M

atemática

73

este modo no solo se analizará la parte matemática en forma crítica sino que, efectivamente, se abre la posibilidad de entablar debates sobre temas tales como la protección del ambiente, la prevención de catástrofes naturales y cómo estos se relacionan con los conoci-mientos matemáticos esperados. Además, es fundamental fomen-tar la confianza del estudiantado en sus propias capacidades para afrontar problemas en cálculos y estimaciones, así como el respeto a puntos de vista o procedimientos de otros estudiantes. La per-severancia y flexibilidad son otros de muchos ejes transversales a desarrollar en Matemática.

Al igual que en otros niveles, se recomienda trabajar siempre relacionan-do todos los contenidos estudiados, tanto del año en curso como de los años anteriores, y no solamente del área de Matemática sino de todas las otras áreas. Al establecer estas relaciones, los estudiantes encuentran apli-caciones inmediatas del conocimiento y su utilidad, además de realizar conexiones entre las diferentes asignaturas y comprender que todas ellas están relacionadas entre sí. Por ejemplo, todo lo que se ve en el sistema de funciones como el simplificar, ordenar y combinar polinomios y productos notables por el uso de las operaciones básicas, se ve reflejado al momen-to de trabajar en otros contenidos como la factorización, que a la vez nos servirá para el trabajo con funciones cuadráticas o para la resolución de ecuaciones de segundo grado. De la misma forma, todo lo aprendido acerca del sistema numérico y sus operaciones, se ve manifestado en la aplicación del teorema de Pitágoras, en el cálculo de perímetros y áreas, en conversio-nes, en el cálculo de medias aritméticas o geométricas, o en el cálculo de probabilidades. Es muy importante hacer hincapié en esas relaciones, ya que a menudo el estudiantado ve a cada uno de los bloques del currículo como secciones aisladas entre sí, y tienen dificultad en transferir y aplicar los conocimientos de forma integrada.

Al igual que en los años anteriores, se sugiere trabajar en cada una de las unida-des usando todos los bloques del currículo, como son el sistema de funciones y relaciones, el numérico, el geométrico, de medida, y el estadístico y probabilidad.

A continuación, le sugerimos ciertas estrategias metodológicas para el tra-bajo de algunos contenidos clave en este año de Básica.

En este año y en este bloque, el nudo crítico más importante es el estu-dio de la función lineal y su comparación con lo que más adelante apren-derán como la función exponencial. La función lineal es la más simple de las funciones y a través de su estudio se desarrollan destrezas que serán después aplicadas al estudio de funciones más complejas. Se aconseja que para empezar con las funciones lineales, se permita a los estudiantes de-ducir el patrón generador de las mismas a partir de varios ejemplos, con el uso de material concreto o con representaciones gráficas. De igual manera, es necesario que los educandos relacionen las representaciones concretas o gráficas que están desarrollando con tablas de valores, en las cuales sus

Bloque: Relaciones y funciones

Page 74: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

74

datos se verán más organizados. Muchos estudiantes podrán hacerlo di-rectamente de forma abstracta, mientras que otros necesitarán tener más bases concretas. El siguiente ejemplo permite desarrollar una función lineal a partir de construcciones con cubos o de representaciones gráficas en las cuadrículas de sus cuadernos.

Pídales que construyan con cuadrados y que representen en sus cuadernos las siguientes figuras, a las cuales llamaremos las “eles” crecientes:

Fig. 1 Fig. 2 Fig. 3

Una vez que hayan construido y representado las tres eles anteriores, decir-les que representen la figura que sigue y, luego, las dos siguientes.

Al mismo tiempo, y para empezar a crear la función y relacionar dos varia-bles, solicitarles que completen la tabla dada a continuación, en la cual la variable independiente (x) es el número de figura y la variable dependiente (y) es la cantidad de cuadrados necesarios para construir cada una.

Fig. 1 2 3 4 5 10 25 X

No. cuadrados 3 5 7

Como se ve, en el cuadro anterior existe una secuencia en las abscisas has-ta la quinta figura, después nos saltamos a la décima figura y nuevamente saltamos a la figura 25. La razón de hacerlo así es para que los estudiantes utilicen las cinco primeras figuras para entender el patrón generador y lue-go, a partir de este patrón, deducir los valores que completan la tabla. En la última columna se espera que lleguen a la fórmula generadora de estas “eles”, con lo cual se relacionará a la variable x (número de la figura) con la variable y (cantidad de cuadrados de la figura correspondiente).

Después de llenar los tres primeros cuadros, se espera que el estudiantado comprenda el patrón que genera las figuras, es decir, cómo pasamos de una figura a la siguiente; en este caso, aumentando un cuadrado a cada extre-mo, lo que significa ir aumentando dos cuadrados. A continuación, pídales que relacionen los valores en forma vertical, o sea que asocien el número de orden de cada figura con el número de cubos que la componen. En este caso deberán relacionar la figura 1 con 3 cuadrados, la 2 con 5 cuadrados y así, sucesivamente. El objetivo es que los educandos unan estas variables por medio de una fórmula. La fórmula que determinen debe funcionar para todas y cada una de las “eles” y es la base de la ecuación de la función. Si se analiza la relación anterior, se puede determinar que la fórmula es la siguiente:

Número de cuadrados = 2 (número de figura) + 1

Page 75: 40131752 Libro Matematicas

Área de M

atemática

75

En la condición anterior, la fórmula se visualiza como un cuadrado en la esquina y el número de la figura tanto al costado de este cuadrado como encima del mismo. Posiblemente no todo el estudiantado verá la relación de igual manera; sin embargo, la fórmula, una vez simplificada, será equiva-lente a la anterior. Es importante también graficar esta relación en un plano cartesiano y constatar que el gráfico que se obtiene es una recta. Precisar que si el gráfico es una recta, la función se llama función lineal.

La relación anterior es la ecuación de la función, la cual se puede expresar algebraicamente como y = 2x + 1.

De acuerdo a la actividad inicial, se determinó la ecuación, la tabla de valo-res y el gráfico de una función lineal.

Para afianzar este aprendizaje, repita el proceso con cualquier otra figura creciente en la cual el cambio sea constante, condición necesaria y única para que la función sea lineal. Este cambio constante se conoce como pen-diente y se representa con la letra m. En el gráfico de la función, la pendien-te es la relación del cambio en y sobre el cambio en x y al ser constante obtenemos una recta. En la tabla, la pendiente es la diferencia entre dos ordenadas consecutivas y en la ecuación es el coeficiente de la variable x.

El otro valor importante en una función lineal es la intersección con el eje y, representada en la fórmula por la variable b, la cual se evidencia, igual que para la pendiente, en el gráfico, en la tabla de valores y en la ecuación. En el gráfico es el valor en el cual la recta corta el eje y, en la tabla de valores correspondiente al valor de la ordenada cuando x = 0 y en la ecuación ex-presada en la forma y = mx + b es el valor independiente de x.

De todo lo anterior, podemos concluir que para generar una función lineal necesitamos solamente un valor inicial y un cambio constante para generar los valores hacia adelante o hacia atrás. La función lineal, por lo tanto, no es más que un patrón sumativo, es decir, sumamos o restamos la misma canti-dad para pasar de un valor al siguiente.

Una vez que sus estudiantes entiendan la relación entre el gráfico, la tabla de valores y la ecuación de una función lineal, se puede pasar a analizar la posición y la tendencia de la recta en función del signo y del valor tanto de la pendiente como de la intersección con el eje y.

Al final de este año escolar se espera que los escolares manejen con fluidez las funciones lineales y tengan la capacidad de generar la tabla de valores, la ecuación o el gráfico a partir de cualquiera de ellas. Para evaluar el apren-dizaje de esta sección, existen varios métodos que son muy eficaces. Uno de ellos es darles una serie de rectas en un sistema coordenado de ejes, pero sin valores. Algunas de las rectas son crecientes y otras decrecientes, con diferentes pendientes y con distintas intersecciones con el eje y. Además del gráfico con las rectas, es necesario darles las ecuaciones de las mismas, y el estudiantado debe identificar qué ecuación corresponde a cuál recta solamente por la aplicación de las características. Un ejemplo de este ejer-cicio se presenta a continuación:

Page 76: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

76

Como un elemento de comparación, se puede introducir a los estudiantes en un patrón creciente o decreciente pero multiplicativo, a diferencia del sumativo, revisado en la función lineal. Este patrón multiplicativo se conoce como la función exponencial. Al iniciar con la función exponencial, es perti-nente revisar con el estudiantado ciertos conocimientos importantes de la función lineal, ya que a partir de ésta se puede construir el concepto de la función exponencial. Los temas importantes a revisar son el patrón genera-dor de la función lineal (patrón sumativo), la pendiente, la intersección con el eje Y y su representación gráfica.

Para iniciar con la función exponencial, presénteles un patrón multiplicati-vo, es decir, un patrón que aumente ya no en la misma cantidad (lineal) sino en igual proporción, como el siguiente:

2, 6, 18, 54, 162, ...

Dígales que expliquen el patrón, que determinen los dos siguientes valores y que los representen gráficamente, utilizando esta tabla de valores:

a

b

e

d

c

1. y = – 2x – 3

2. y = 2x + 3

3. y = x – 3

4. y = 3x + 3

5. y= – 1,5x + 1

x 1 2 3 4 5 6 7

y 2 6 18 54 162

A partir del gráfico, pregúnteles si esta función puede ser considerada una función lineal e inicie una discusión en cuanto a las similitudes y las dife-rencias con la misma. A estas alturas, la mayoría de los estudiantes habrán descifrado el patrón y entenderán que el cambio de un valor a otro no es constante; por consiguiente, la representación gráfica no tiene una pen-diente constante y no obtendremos una recta sino una curva.

Explicar que cuando el cambio ya no es sumativo sino multiplicativo y siem-pre en el mismo factor, estamos representando una función conocida como

Page 77: 40131752 Libro Matematicas

Área de M

atemática

77

En este bloque se realiza una revisión completa de las propiedades de los números reales (naturales, enteros, racionales e irracionales) y de las ope-raciones con los mismos. Se enfatiza, además, en el trabajo con potencias fraccionarias y en la simplificación de expresiones numéricas con radicales o con potencias racionales, tanto enteras como fraccionarias. Antes de em-pezar con este tema, es necesario hacer una revisión de las reglas de poten-ciación y de radicación estudiadas en años anteriores.

Introducir luego la notación de un número entero (preferiblemente un cua-drado) con una potencia racional igual a ½, como 91/2 y utilizar la calcu-ladora para evaluar esta cantidad. Repetir el proceso con otros números cuadrados y no cuadrados, y deducir la regla. Luego de discutir las reglas propuestas por los estudiantes, expresarla explícitamente y enfatizar la igualdad . Extender esta regla a cualquier potencia racional con denominador diferente de 2 y después repetir el proceso con potencias ra-cionales con numerador diferente de 1.

Proceder a expresar las reglas con potencias racionales y realizar simplifi-caciones de valores y de polinomios con estas potencias, tanto con valores negativos como con valores positivos.

Al finalizar este año de estudios, el estudiantado debe tener la capacidad de operar con fluidez dentro del conjunto de los números reales, incluyendo las operaciones de potenciación y radicación. Los educandos, en este nivel de estudios, al simplificar expresiones algebraicas, están trabajando en los bloques de relaciones y funciones, y en el numérico. De esta manera, com-probamos que aplican las reglas de las operaciones de los números reales en los polinomios.

Otro tema a ser tratado en este bloque es la conversión entre notación de-cimal y notación científica con exponentes positivos y negativos. La nota-ción científica es muy utilizada en aplicaciones de la física, sobre todo, en unidades de medida; por lo tanto, el manejo fluido de este lenguaje es una destreza necesaria para el futuro buen desempeño de los estudiantes en otras áreas del saber.

Bloque: Numérico

función exponencial, ya que a pesar de que la razón es constante, el cre-cimiento es cada vez mayor (proporcionalmente el doble de 4 y el doble de 10 son iguales, pero cuantitativamente el doble de 10 es mayor que el doble de 4). Esto hace que el cambio de un valor al siguiente en una función exponencial crezca o decrezca. Esta función se estudia con mayor detalle en el bachillerato.

a1/2 = a

En este bloque se estudian las aplicaciones del teorema de Pitágoras que ya fue introducido y tratado en el año escolar anterior. En este nivel se espera que los estudiantes ya manejen con facilidad el teorema y puedan determi-nar la longitud del lado de un triángulo rectángulo conociendo las longitu-des de los otros dos lados, y que logren aplicar estos conocimientos en la resolución de problemas de la vida cotidiana. También se espera que pue-

Bloque: Geométrico

Page 78: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

78

dan usarlo en nuevos conocimientos relacionados con la trigonometría y con la geometría, y aplicarlos a la resolución de problemas como el siguien-te: calcular a qué altura de un árbol llega la parte superior de una escalera de 3 m de longitud, si su base es colocada a 1 m de la base del árbol. El teo-rema de Pitágoras tiene muchísimas aplicaciones prácticas, lo cual permite trabajar con el estudiantado en la resolución de problemas aplicados a su realidad. En este punto, es importante su creatividad y su conocimiento de las necesidades de los estudiantes.

Una manera interesante de evaluar si entendieron este teorema y sus aplicacio-nes en la vida cotidiana, es pedirles que escriban un problema relacionado con su entorno, en el cual se requiera la aplicación de esta regla para su solución.

El teorema de Pitágoras, combinado con las razones trigonométricas, es una herramienta muy importante en la determinación de distancias y de ángu-los, y se puede aplicar en muchas situaciones prácticas como por ejemplo: determinar si un ángulo es recto, sin tener la necesidad de medirlo con un graduador o con una escuadra.

En este año se inicia con la medida de ángulos en radianes, pero debido a que el estudiantado aún no tiene los conocimientos necesarios para enten-der la deducción de esta unidad, simplemente se introducirá a través de la proporcionalidad. Para que sus estudiantes puedan entender de dónde vie-nen los radianes, necesitan conocer las razones trigonométricas, las cuales se estudiarán recién el próximo año y ciertas identidades trigonométricas, las cuales se verán en el bachillerato; por lo pronto, para no confundirlos, en este año solo hablaremos del radián como una unidad alternativa de medir ángulos. La forma más fácil de introducir esta unidad de medida es por medio de la circunferencia. Los estudiantes de décimo año de Básica deben conocer que una rotación completa equivale a un ángulo de 360°. Si algunos de sus estudiantes no están seguros de esta medida, trace un cír-culo en el pizarrón y divídalo en cuatro sectores circulares iguales trazando dos rectas perpendiculares que se intersecan en el centro del círculo. Estas forman cuatro ángulos internos iguales entre sí y además cada uno igual a 90°, por lo que al sumarlos obtendremos los 360° de una rotación comple-ta. Esta misma rotación equivale a 2π radianes; por lo tanto, ya tenemos una equivalencia entre grados y radianes:

360° = 2π radianes o 180° = π radianes

De acuerdo a esta equivalencia, es posible determinar, por medio de propor-ciones, las medidas en radianes de cualquier ángulo expresado en grados. Es necesario recalcar que cuando se trabaja en radianes, no se convierte el valor π en su equivalente decimal sino que todos los valores en radianes de los ángulos se expresan como una función de π.

El convertir grados en radianes es una buena práctica de proporciones, de fracciones y de expresar valores en función de otros. Al finalizar este año, los estudiantes deberán conocer las medidas de los ángulos de referencia del primer cuadrante en radianes, es decir, sabrán las medidas en radianes de los ángulos de 30°, 45°, 60° y 90°.

Bloque: Medida

Page 79: 40131752 Libro Matematicas

Área de M

atemática

79

La evaluación de este aprendizaje consistirá en solicitar a los educandos que realicen conversiones entre grados y radianes de diferentes ángulos en el primer cuadrante. Otra posible evaluación es pedirles que ordenen de mayor a menor varios ángulos expresados en radianes, sin necesidad de convertirlos a grados.

La otra destreza crítica, en este año y en el bloque de medida, es la reducción y conversión de unidades del Sistema Internacional. Esta destreza será amplia-mente aplicada en Física, en el bachillerato, y en este año debe practicarse con la mayor cantidad de unidades; primero, dentro del Sistema Internacional y luego, ampliado a otros sistemas y unidades de uso común en nuestro medio.

Concerniente a este bloque tenemos que calcular medias aritméticas. Para este tema, es imprescindible que inicie indagando los conocimientos del es-tudiantado, ya que se espera que conozcan y manejen con fluidez el cálculo de la media aritmética, concepto estudiado en años anteriores.

La fórmula de la media aritmética permite no solamente calcular la media, sino establecer la suma de una serie de números y aplicarla a diferentes pro-blemas muy prácticos, como el cálculo de promedios, o el cálculo de cuántos puntos necesita sacar un estudiante en la próxima evaluación para subir su promedio en un determinado número de puntos. Este concepto está muy relacionado con la vida estudiantil, por lo cual es de mucho interés para el estudiantado y puede aplicarse en situaciones muy recientes de la clase.

Finalmente, recuerde que la evaluación es parte del proceso de enseñanza - aprendizaje, el cual debe ser aprovechado para continuar, corregir, retroa-limentar y orientar actividades futuras. Se aconseja que se evalúen diversos aspectos del proceso, por tal razón no sólo considere los resultados de los diversos ejercicios, también debe evaluar el proceso, observar el razona-miento empleado, la originalidad y flexibilidad del pensamiento.

A continuación, le presentamos algunos criterios para la evaluación:

Bloque: Estadística y probabilidad

• Resuelve problemas en los cuales se involucran las relaciones mate-máticas. En este punto es importante considerar si: reconoce la inte-rrogante planteada, diseña alternativas o estrategias de solución, es capaz de traducir el problema, sea en forma grafica, simbólica o a tra-vés del lenguaje, y es capaz de demostrar y argumentar su respuesta.

• Desarrolla habilidades de razonamiento matemático, es decir, la ca-pacidad de hacer conjeturas, organizar y encadenar argumentos ma-temáticos con base en procedimientos, teoremas, y demostrar las mismas, ya sean numéricas, algebraicas o geométricas.

• Comprende y aplica procedimientos, los cuales pueden abarcar des-de las reglas, algoritmos, fórmulas o formas para realizar determina-dos cálculos y transformaciones.

• Analiza e interpreta gráficos, cuadros, fórmulas, relaciones o procedimientos.

Estas son solo algunas alternativas para el trabajo con los estudiantes del décimo año de Educación Básica.

Page 80: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

80

Indicadores esenciales de evaluación

4

• Reconoce una función lineal a partir de su ecuación, tabla de va-lores y gráfico; además, a partir de una de ellas, determinar las otras dos.

• Diferencia una función lineal de una función exponencial por me-dio de su gráfico, de la tabla de valores y de la ecuación.

• Opera con polinomios, los factoriza y desarrolla productos notables.

• Determina, a partir de la ecuación de una recta, la ecuación de una recta paralela o de una recta perpendicular a ella.

• Resuelve un sistema de dos ecuaciones con dos incógnitas por me-dio de gráficos o de procesos algebraicos.

• Opera con números reales.

• Aplica el teorema de Pitágoras a la resolución de problemas.

• Reconoce y aplica las razones trigonométricas en la resolución de problemas.

• Realiza conversiones dentro del Sistema Internacional de medidas y con otros sistemas de uso común en nuestro medio.

• Calcula perímetros, áreas y volúmenes de figuras y cuerpos geométricos.

• Calcula medias aritméticas y probabilidades simples.

Page 81: 40131752 Libro Matematicas

Área de M

atemática

81

• Alvarado, M. y Brizuela B. (2005). Haciendo números. Las notaciones numéricas vistas desde la psicología, la didáctica y la historia. Argentina: Editorial Paidós.

• Bermejo, V. (1990). El niño y la aritmética. Instrucción y construcción de las primeras nociones aritméticas. Argentina: Editorial Paidós.

• Cerda, H. (2000). La evaluación como experiencia total. Logros - objetivos - procesos competencias y desempeño. Bogotá: Cooperativa Editorial Magisterio.

• Confederación Ecuatoriana de Establecimientos de Educación Católica (1999). Técnicas activas generadoras de aprendizajes significativos. Ecuador: Autor.

• Fernández, J. (2003). Técnicas creativas para la resolución de problemas matemáticos. Bilbao: Col. Monografías Escuela española, Praxis, S.A.

• Laboratorio latinoamericano de evaluación del la calidad de la educación XVII, reunión de coordinadores nacionales (2009). Habilidades para la vida en las evaluaciones de matemática, (SERCE - LLECE), Oficina Regional de Educación para América Latina y el Caribe, UNESCO.

• Lahora, C. (2000). Actividades matemáticas. Con niños de 0 a 6 años. Madrid: Editorial Narcea.

• National Council of Teachers of Mathematicas (2000). Principles and Standars for School Mathematics. United States of America: Autor.

• Parra, C. y Saiz, I. (2009). Enseñar aritmética a los más chicos. Argentina: Ediciones HomoSapiens.

• Parra, C. y Saiz, I. (2008). Didáctica de las matemáticas, aportes y reflexiones. Argentina: Editorial Paidós.

• Panizza, M. y otros (2006). Enseñar matemática en el Nivel Inicial y el Primer ciclo de la EGB. Argentina: Editorial Paidós.

• Pitluk, L. (2006). La planificación didáctica en el Jardín de Infantes. Las unidades didácticas, los proyectos y las secuencias didácticas. El juego trabajo. Argentina: Ediciones HomoSapiens.

BIBLIOGRAFÍA

Page 82: 40131752 Libro Matematicas
Page 83: 40131752 Libro Matematicas

Área de M

atemática

83

Map

a de

con

ocim

ient

os d

e M

atem

átic

a

Cont

enid

os

SEG

UN

DO

TERC

ERO

CU

ART

O

BLO

QU

E D

E R

ELA

CIO

NES

Y F

UN

CIO

NES

• pa

tron

es d

e ob

jeto

s y

figu

ras

• C

on d

os a

trib

utos

• pa

tron

es n

umér

icos

dec

reci

ente

s•

Sum

as y

rest

as

• pa

tron

es n

umér

icos

cre

cien

tes

• Su

ma

y m

ulti

plic

ació

n

• Re

laci

ón d

e co

rres

pond

enci

a•

Rela

ción

de

corr

espo

nden

cia

• Re

laci

ón d

e co

rres

pond

enci

a

BLO

QU

E N

UM

ÉRIC

O

• N

úmer

os n

atur

ales

del

0 a

l 99

• N

oció

n de

con

junt

os, e

lem

ento

s y

subc

onju

nto

• Va

lor p

osic

iona

l

• Re

laci

ón d

e or

den

• N

oció

n de

adi

ción

sin

reag

rupa

ción

• N

oció

n de

sus

trac

ción

sin

reag

rupa

ción

• Co

mbi

naci

ones

de

10

• Re

solu

ción

de

prob

lem

as c

on e

stra

tegi

as s

impl

es

• N

úmer

os o

rdin

ales

: pri

mer

o al

déc

imo

• N

úmer

os n

atur

ales

del

1 a

l 999

Num

erac

ión

• N

oció

n y

pres

enta

ción

de

subc

onju

ntos

• Se

cuen

cia

y or

den

• Va

lor p

osic

iona

l

• N

úmer

os p

ares

e im

pare

s

• U

nión

de

conj

unto

s en

form

a gr

áfic

a

• Ad

ició

n y

sust

racc

ión

con

reag

rupa

ción

• O

pera

dore

s de

sum

a y

de re

sta

en d

iagr

amas

• N

úmer

os o

rdin

ales

: pri

mer

o al

vig

ésim

o

• N

úmer

os n

atur

ales

has

ta e

l 9 9

99

• Va

lor p

osic

iona

l: un

idad

es, d

ecen

as, c

ente

nas

y

unid

ades

de

mill

ar

• Re

laci

ón d

e or

den

• Ad

ició

n y

sust

racc

ión

con

reag

rupa

ción

• N

oció

n de

div

isió

n: (r

epar

tir e

n gr

upos

igua

les)

• Re

solu

ción

de

prob

lem

as

• N

oció

n de

mul

tipl

icac

ión

• Pa

tron

es d

e su

man

dos

igua

les

• Ta

ntas

vec

es ta

nto

• Se

ries

num

éric

as

• Re

solu

ción

de

prob

lem

as a

diti

vos

con

estr

ateg

ias

desa

rrol

lada

s en

el a

ño

• M

ulti

plic

ació

n•

Mod

elo

linea

l

• M

odel

o gr

upal

• M

odel

o ge

omét

rico

• M

ulti

plic

ació

n po

r 10,

100

y 1

000

• Té

rmin

os d

e la

mul

tipl

icac

ión

• P

ropi

edad

es d

e la

mul

tipl

icac

ión

(con

mut

ativ

a y

asoc

iati

va)

• M

emor

izac

ión

de la

s co

mbi

naci

ones

mul

tipl

icat

ivas

(t

abla

s de

mul

tipl

icar

)

Page 84: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

84

• O

pera

dore

s: a

diti

vos

(+),

sus

trac

tivo

s (–

) y

mul

tipl

icat

ivos

(x)

• Re

solu

ción

de

prob

lem

as

BLO

QU

E D

E G

EOM

ETR

ÍA

• C

lasi

fica

ción

de

obje

tos,

form

as y

figu

ras

segú

n pr

opie

dade

s pr

opue

stas

• Lí

neas

rect

as, c

urva

s y

vért

ices

• La

dos,

vér

tice

s y

ángu

los

• N

oció

n de

sem

irre

cta,

seg

men

to y

áng

ulo

• C

lasi

fica

ción

de

ángu

los

por a

mpl

itud

: rec

to, a

gudo

y

obtu

so

• La

do, i

nter

ior,

exte

rior

y f

ront

era

de la

s fi

gura

s ge

omét

rica

s

• Fi

gura

s ge

omét

rica

s: c

uadr

ados

, tri

ángu

los,

rect

ángu

los

y

círc

ulos

• Cu

erpo

s ge

omét

rico

s•

Cili

ndro

, esf

era,

con

o, c

ubo,

pir

ámid

e de

bas

e cu

adra

da, p

rism

a re

ctan

gula

r

• Pr

opie

dade

s

• Cu

adra

dos

y re

ctán

gulo

s •

Perí

met

ro d

e cu

adra

dos

y re

ctán

gulo

s

BLO

QU

E D

E M

EDID

A

• M

edid

as d

e lo

ngit

ud•

Uni

dade

s no

con

venc

iona

les

• M

edid

as d

e lo

ngit

ud

• U

nida

des

no c

onve

ncio

nale

s

• M

edic

ión

de c

onto

rnos

• M

edid

as d

e lo

ngit

ud

• El

met

ro y

sub

múl

tipl

os (d

m, c

m, m

m)

• Es

tim

acio

nes

y m

edic

ione

s

• Co

nver

sion

es s

impl

es d

el m

etro

a s

ubm

últi

plos

• M

edic

ión

de c

apac

idad

es•

Uni

dade

s no

con

venc

iona

les

• M

edic

ión

de c

apac

idad

es•

Uni

dade

s no

con

venc

iona

les

• M

edic

ión

de c

apac

idad

es•

Litr

o

• M

edic

ión

de p

eso

• U

nida

des

no c

onve

ncio

nale

s

• M

edic

ión

de p

eso

• U

nida

des

no c

onve

ncio

nale

s

• M

edic

ión

de p

eso

• Li

bra

• M

edid

as m

onet

aria

s •

Uni

dade

s m

onet

aria

s

• M

edid

as m

onet

aria

s •

Uni

dade

s m

onet

aria

s

• Co

nver

sion

es

• M

edid

as m

onet

aria

s •

Uni

dade

s m

onet

aria

s

• Co

nver

sion

es

• M

edid

as d

e ti

empo

Día

s de

la s

eman

a

• M

eses

del

año

• M

edid

as d

e ti

empo

Conv

ersi

ones

usu

ales

ent

re m

edid

as d

e ti

empo

: año

s,

mes

es, s

eman

as, d

ías,

hor

as y

min

utos

• Le

ctur

a en

el r

eloj

aná

logo

de

hor

as y

min

utos

• M

edid

as d

e ti

empo

Conv

ersi

ones

sim

ples

de

med

idas

de

tiem

po

(de

hora

s a

min

utos

)

Page 85: 40131752 Libro Matematicas

Área de M

atemática

85

BLO

QU

E D

E ES

TAD

ÍSTI

CA

Y p

ROBA

BILI

DA

D

• pi

ctog

ram

as•

Reco

lecc

ión

• Re

pres

enta

ción

• pi

ctog

ram

as•

Frec

uenc

ias

sim

ples

Dia

gram

as d

e ba

rras

• Re

cole

cció

n •

Repr

esen

taci

ón

• Co

mbi

naci

ones

• Co

mbi

naci

ones

sim

ples

de

dos

por d

os

• Co

mbi

naci

ones

• Co

mbi

naci

ones

sim

ples

de

tres

por

tres

Cont

enid

os

QU

INTO

SEX

TOSÉ

pTIM

O

BLO

QU

E D

E R

ELA

CIO

NES

Y F

UN

CIO

NES

• pa

tron

es n

umér

icos

dec

reci

ente

s•

Res

tas

suce

siva

s

• D

ivis

ione

s su

cesi

vas

• Su

cesi

ones

• Co

n su

mas

y re

stas

• Su

cesi

ones

• Co

n m

ulti

plic

acio

nes

y di

visi

ones

• Cu

adrí

cula

Coo

rden

adas

• U

bica

ción

en

una

cuad

rícu

la

• pa

res

orde

nado

s•

Plan

o ca

rtes

iano

con

núm

eros

nat

ural

es

• pa

res

orde

nado

s•

Plan

o ca

rtes

iano

con

dec

imal

es•

Plan

o ca

rtes

iano

con

frac

cion

es

BLO

QU

E N

UM

ÉRIC

O

• N

úmer

os n

atur

ales

has

ta s

eis

cifr

as•

Num

erac

ión

• Se

cuen

cia

y or

den

• Va

lor p

osic

iona

l

• Ad

icio

nes

y su

stra

ccio

nes

• Re

solu

ción

de

prob

lem

as c

on o

pera

cion

es c

ombi

nada

s

• N

úmer

os n

atur

ales

• C

rite

rios

de

divi

sibi

lidad

por

2, 3

, 4, 5

, 6, 9

y 1

0

• M

últi

plos

y d

ivis

ores

• Po

tenc

iaci

ón (c

uadr

ados

y c

ubos

)

• Ra

dica

ción

com

o op

erac

ión

inve

rsa

de p

oten

ciac

ión

• po

tenc

iaci

ón y

rad

icac

ión

• Es

tim

ació

n de

cua

drad

os y

cub

os p

ara

núm

eros

in

feri

ores

a 2

0•

Cál

culo

de

cuad

rado

s y

cubo

s co

n ca

lcul

ador

a•

Esti

mac

ión

de ra

íces

cua

drad

as y

cúb

icas

de

núm

eros

m

enor

es a

100

• U

bica

ción

de

raíc

es c

uadr

adas

y c

úbic

as c

on

desc

ompo

sici

ón e

n fa

ctor

es p

rim

os

• M

ulti

plic

ació

n de

núm

eros

nat

ural

es•

De

hast

a tr

es c

ifra

s

• Pr

oduc

to d

e un

núm

ero

natu

ral p

or 1

0, 1

00 y

1 0

00

• Pr

opie

dad

dist

ribu

tiva

• N

úmer

os p

rim

os y

com

pues

tos

• D

efin

ició

n•

Des

com

posi

ción

en

fact

ores

pri

mos

• M

áxim

o co

mún

div

isor

(MC

D)

• M

ínim

o co

mún

múl

tipl

o (m

cm)

• D

ivis

ión

• En

tre

un n

úmer

o na

tura

l y u

n nú

mer

o de

cim

al

y vi

ceve

rsa

Page 86: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

86

• D

ivis

ión

de n

úmer

os n

atur

ales

• D

ivis

or d

e un

a ci

fra

y co

n re

sidu

o

• D

ivis

ión

de u

n nú

mer

o na

tura

l por

10,

100

y 1

000

• D

ivis

ión

de n

úmer

os n

atur

ales

• D

ivis

or d

e do

s ci

fras

• D

ivis

ión

entr

e un

núm

ero

natu

ral

y un

núm

ero

deci

mal

• Fr

acci

ones

• O

rden

ent

re fr

acci

ones

, dec

imal

es y

nat

ural

es

• M

ulti

plic

ació

n

• D

ivis

ión

• Re

solu

ción

de

oper

acio

nes

com

bina

das

de s

uma,

re

sta

y m

ulti

plic

ació

n

• N

úmer

os d

ecim

ales

• D

efin

ició

n

• Re

laci

ón d

e or

den

• U

bica

ción

en

la s

emir

rect

a nu

mér

ica

• Tr

ansf

orm

ació

n a

frac

cion

es c

on d

enom

inad

ores

de

10,

100

y 1

000

• Ad

icio

nes,

sus

trac

cion

es y

mul

tipl

icac

ione

s

• Re

dond

eo

• N

úmer

os d

ecim

ales

• Re

dond

eo

• D

écim

as, c

enté

sim

as y

milé

sim

as

• M

ulti

plic

ació

n po

r 10,

100

y 1

000

• D

ivis

ione

s pa

ra 1

0, 1

00 y

1 0

00

• Tr

ansf

orm

ació

n a

porc

enta

jes

(10%

, 25%

y

sus

múl

tipl

os)

• Re

solu

ción

de

oper

acio

nes

com

bina

das

con

natu

rale

s

• R

azon

es y

pro

porc

ione

s•

Dir

ecta

• In

vers

a

• Re

solu

ción

de

prob

lem

as

• Fr

acci

ones

• D

efin

ició

n y

nota

ción

• M

edio

s, te

rcio

s, c

uart

os, q

uint

os y

oct

avos

• D

écim

os, c

enté

sim

os y

milé

sim

os

• Re

pres

enta

ción

grá

fica

• U

bica

ción

en

la s

emir

rect

a nu

mér

ica

• Co

mpa

raci

ón d

e fr

acci

ones

con

½ y

con

1

• Fr

acci

ones

• Re

laci

ones

de

orde

n

• Ad

ició

n y

sust

racc

ión

• Tr

ansf

orm

ació

n a

porc

enta

jes

(10%

, 25%

y s

us

múl

tipl

os)

• po

rcen

taje

s•

Repr

esen

taci

ón e

n di

agra

mas

cir

cula

res

• Ex

pres

ión

en fr

acci

ones

• Ex

pres

ión

en d

ecim

ales

• Ap

licac

ione

s co

tidi

anas

• pr

opor

cion

alid

ad d

irec

ta •

Rec

onoc

imie

nto

• pr

opor

cion

alid

ad d

irec

ta

• E

ntre

dos

mag

nitu

des

med

ible

s

• N

úmer

os ro

man

os•

Lect

ura

y es

crit

ura

BLO

QU

E D

E G

EOM

ETR

ÍA

• Re

ctas

par

alel

as, p

erpe

ndic

ular

es y

sec

ante

s •

Repr

esen

taci

ón g

ráfi

ca

• Re

cono

cim

ient

o en

figu

ras

geom

étri

cas

• Tr

iáng

ulo

• Co

nstr

ucci

ón c

on re

gla

y co

mpá

s

• Ár

ea

• Re

ctas

• Po

sici

ón re

lati

va

• G

rafi

caci

ón

• pa

rale

logr

amos

y tr

apec

ios

• C

arac

terí

stic

as

• Pr

opie

dade

s

• po

lígo

nos

regu

lare

s•

Cla

sifi

caci

ón

• Pe

rím

etro

• po

lígo

nos

irre

gula

res

• C

lasi

fica

ción

seg

ún s

us la

dos

• C

lasi

fica

ción

seg

ún s

us á

ngul

os

• Pe

rím

etro

Page 87: 40131752 Libro Matematicas

Área de M

atemática

87

• pe

rím

etro

• D

e tr

iáng

ulos

• D

e pa

rale

logr

amos

• D

e tr

apec

ios

• pa

rale

logr

amos

y tr

apec

ios

• Ár

ea

• D

educ

ción

de

fórm

ulas

• po

lígo

nos

regu

lare

s•

Área

• Tr

iáng

ulos

• C

lasi

fica

ción

por

sus

lado

s

• C

lasi

fica

ción

por

sus

áng

ulos

• pr

ism

as y

pir

ámid

es•

Car

acte

ríst

icas

• El

emen

tos

• Fó

rmul

a de

Eul

er

• C

írcu

lo•

Gra

fica

ción

• El

emen

tos

• C

ircu

nfer

enci

a

• Tr

azar

Para

lelo

gram

os y

trap

ecio

s

BLO

QU

E D

E M

EDID

A

• M

edid

as d

e lo

ngit

ud•

El m

etro

• M

últi

plos

• Co

nver

sion

es

• M

etro

cua

drad

o y

cúbi

co•

Subm

últi

plos

• M

etro

cua

drad

o y

cúbi

co•

Múl

tipl

os

• M

edid

as d

e ár

ea y

vol

umen

• M

etro

cua

drad

o

• M

etro

cúb

ico

• pe

so•

Kilo

gram

o y

gram

o: c

onve

rsio

nes

a ot

ros

sist

emas

(de

la lo

calid

ad)

• M

edid

as d

e su

perf

icie

agr

aria

s•

Hec

táre

a

• Ár

ea

• Ce

ntiá

rea

• Re

laci

ón c

on la

s m

edid

as d

e su

perf

icie

• pe

so•

Kilo

gram

o

• G

ram

o

• Li

bra

• Re

laci

ón

• Á

ngul

os•

Med

ició

n co

n gr

adua

dor

• Si

stem

a se

xage

sim

al

• Co

nver

sión

a g

rado

s y

min

utos

Page 88: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

88

• Á

ngul

os•

Rect

os

• Ag

udos

• O

btus

os

• M

edic

ión

con

plan

tilla

s de

10

en 1

0

• M

edid

a de

tiem

po•

Lust

ro

• D

écad

a

• Si

glo

BLO

QU

E D

E ES

TAD

ÍSTI

CA

Y p

ROBA

BILI

DA

D

• D

iagr

amas

de

barr

as•

Inte

rpre

taci

ón

• Ra

ngo

• D

iagr

amas

Barr

as

• C

ircu

lare

s

• Po

ligon

ales

• Ta

blas

• D

atos

dis

cret

os

• Re

cole

cció

n

• D

iagr

amas

de

barr

as y

cir

cula

res

• Co

mbi

naci

ones

• D

e ha

sta

tres

por

cua

tro

• M

edid

as d

e te

nden

cia

cent

ral

• M

edia

, med

iana

y m

oda

• M

edid

as d

e te

nden

cia

cent

ral d

e da

tos

disc

reto

s•

Med

ia, m

edia

na y

mod

a

• pr

obab

ilid

ad•

Repr

esen

taci

ón g

ráfi

ca c

on fr

acci

ones

• pr

obab

ilid

ad •

Rep

rese

ntac

ione

s gr

áfic

as

Cont

enid

os

OC

TAV

ON

OV

ENO

DÉC

IMO

BLO

QU

E D

E R

ELA

CIO

NES

Y F

UN

CIO

NES

• Su

cesi

ones

con

núm

eros

ent

eros

• Su

cesi

ones

con

sum

as y

rest

as

• Su

cesi

ones

con

mul

tipl

icac

ión

y di

visi

ón

• Su

cesi

ones

con

ope

raci

ones

com

bina

das

• pa

tron

es d

e cr

ecim

ient

o li

neal

• Pa

tron

es c

reci

ente

s y

decr

ecie

ntes

por

sum

a o

rest

a

• Ta

blas

de

valo

res

• G

ráfi

cos

de c

reci

mie

nto

linea

l

• Fu

nció

n li

neal

Patr

ón c

reci

ente

o d

ecre

cien

te

• Ta

bla

de v

alor

es

• G

rafi

ca

• Ec

uaci

ón

Page 89: 40131752 Libro Matematicas

Área de M

atemática

89

• pa

res

orde

nado

s co

n en

tero

s •

Ubi

caci

ón e

n el

pla

no c

arte

sian

o

• po

lino

mio

s •

Repr

esen

taci

ón c

oncr

eta

(has

ta g

rado

2)

• Si

mpl

ific

ació

n

• Fa

ctor

izac

ión

y pr

oduc

tos

nota

bles

• Fu

nció

n ex

pone

ncia

l •

Patr

ón g

ener

ador

• Te

nden

cia

crec

ient

e o

decr

ecie

nte

• M

onom

ios

• Re

pres

enta

ción

con

cret

a (h

asta

gra

do 2

)

• Ag

rupa

ción

de

mon

omio

s ho

mog

éneo

s

• Ec

uaci

ones

e in

ecua

cion

es d

e pr

imer

gra

do

• Pl

ante

amie

nto

• Re

solu

ción

• Si

stem

a de

dos

ecu

acio

nes

line

ales

con

dos

incó

gnit

as

• Re

pres

enta

ción

grá

fica

• Re

solu

cion

es a

lgeb

raic

as

• Ex

pres

ión

de u

n en

unci

ado

sim

ple

en le

ngua

je

mat

emát

ico

• U

so d

e va

riab

les

para

repr

esen

tar i

ncóg

nita

s

• po

lino

mio

s•

Ope

raci

ones

con

núm

eros

real

es

BLO

QU

E N

UM

ÉRIC

O

• N

úmer

os e

nter

os

• O

rden

y c

ompa

raci

ón

• U

bica

ción

en

la re

cta

num

éric

a

• Re

solu

ción

de

las

cuat

ro o

pera

cion

es b

ásic

as

• Re

solu

ción

de

oper

acio

nes

com

bina

das

de a

dici

ón,

sust

racc

ión,

mul

tipl

icac

ión

y di

visi

ón e

xact

a

• Po

tenc

iaci

ón y

radi

caci

ón

• N

úmer

os r

acio

nale

s •

Ord

en y

com

para

ción

• Re

pres

enta

ción

dec

imal

y fr

acci

onar

ia

• U

bica

ción

en

la re

cta

num

éric

a

• Re

solu

ción

de

oper

acio

nes

com

bina

das

de a

dici

ón,

sust

racc

ión,

mul

tipl

icac

ión

y di

visi

ón e

xact

a

• Po

tenc

iaci

ón y

radi

caci

ón.

• N

otac

ión

cien

tífi

ca

• Ex

pres

ión

deci

mal

con

exp

onen

tes

posi

tivo

s

y ne

gati

vos

• N

úmer

os ir

raci

onal

es•

Repr

esen

taci

ón g

ráfi

ca

• O

rden

, com

para

ción

y u

bica

ción

en

la re

cta

num

éric

a

• Re

solu

ción

con

ope

raci

ones

com

bina

das

de a

dici

ón,

sust

racc

ión,

mul

tipl

icac

ión

y di

visi

ón e

xact

a

• Po

tenc

iaci

ón y

radi

caci

ón

• Ex

pres

ione

s al

gebr

aica

s y

num

éric

as•

Sim

plif

icac

ión

• Ra

cion

aliz

ació

n

• N

úmer

os re

ales

• Re

solu

ción

con

las

cuat

ro o

pera

cion

es b

ásic

as

• Ex

pone

ntes

neg

ativ

os

• Si

mpl

ific

ació

n ex

pres

ione

s

• N

úmer

os re

ales

• Re

solu

ción

con

ope

raci

ones

com

bina

das

de a

dici

ón,

sust

racc

ión,

mul

tipl

icac

ión,

div

isió

n, p

oten

ciac

ión

y

radi

caci

ón

• Ex

pone

ntes

frac

cion

ario

s

Page 90: 40131752 Libro Matematicas

Act

ualiz

ació

n y

Fort

alec

imie

nto

Curr

icul

ar d

e la

Edu

caci

ón B

ásic

a 20

10

90

BLO

QU

E D

E G

EOM

ETR

ÍA

• Fi

gura

s ge

omét

rica

s •

Cons

truc

ción

con

el u

so d

e re

gla

y co

mpá

s

• pi

rám

ides

y c

onos

• Co

nstr

ucci

ón a

par

tir d

e pa

tron

es e

n do

s di

men

sion

es

• Te

orem

a de

pit

ágor

as

• Ap

licac

ione

s en

áre

as y

vol

úmen

es

• Re

solu

ción

de

prob

lem

as

• Tr

iáng

ulos

Cong

ruen

cia

y se

mej

anza

• Fa

ctor

de

esca

la e

ntre

dos

triá

ngul

os s

emej

ante

s

• M

edia

nas,

med

iatr

ices

, alt

uras

y b

isec

tric

es

• Ba

rice

ntro

, ort

ocen

tro,

ince

ntro

y c

ircu

ncen

tro

• Re

cono

cim

ient

o de

líne

as d

e si

met

ría

en fi

gura

s ge

omét

rica

s.•

pirá

mid

es y

con

os•

Volu

men

• Ár

eas

late

rale

s

• Vo

lum

en d

e pr

ism

as y

de

cili

ndro

s•

Ded

ucci

ón d

e fó

rmul

as

• Re

solu

ción

de

prob

lem

as

• Á

reas

de

polí

gono

s re

gula

res

• D

educ

ción

de

fórm

ulas

por

des

com

posi

ción

en

triá

ngul

os

• Ap

licac

ión

de fó

rmul

as e

n la

reso

luci

ón d

e pr

oble

mas

• R

azon

es tr

igon

omét

rica

s •

Def

inic

ión

• Ap

licac

ión

a la

reso

luci

ón d

e tr

iáng

ulos

rect

ángu

los

• Re

solu

ción

de

prob

lem

as

• Te

orem

a de

Tha

les:

• Fi

gura

s ge

omét

rica

s se

mej

ante

s

• Á

reas

late

rale

s de

pri

smas

y c

ilin

dros

• Ár

eas

de s

ecto

res

circ

ular

es

• Á

ngul

os

• In

tern

os e

n po

lígon

os re

gula

res

• Co

mpl

emen

tari

os, s

uple

men

tari

os, c

oter

min

ales

y d

e re

fere

ncia

• C

írcu

lo•

Área

• Te

orem

a de

pit

ágor

as•

Reso

luci

ón d

e tr

iáng

ulos

rect

ángu

los

BLO

QU

E D

E M

EDID

A

• Te

orem

a de

Tha

les

• Fa

ctor

de

esca

la e

ntre

figu

ras

sem

ejan

tes

• Á

ngul

os n

otab

les

• M

edid

as e

n gr

ados

en

los

cuat

ro c

uadr

ante

s

• Co

nver

sion

es•

Entr

e un

idad

es d

el S

iste

ma

Inte

rnac

iona

l de

med

idas

• O

tros

sis

tem

as

• Á

ngul

os n

otab

les

• M

edid

as e

n ra

dian

es e

n lo

s cu

atro

cua

dran

tes

• Co

nver

sion

es d

e án

gulo

s en

tre

radi

anes

y g

rado

s

Page 91: 40131752 Libro Matematicas

Área de M

atemática

91

BLO

QU

E D

E ES

TAD

ÍSTI

CA

Y p

ROBA

BILI

DA

D

• Fr

ecue

ncia

s ab

solu

tas

y ac

umul

adas

• C

álcu

lo

• Co

ntra

ste

• An

alis

is

• D

iagr

amas

de

tall

o y

hoja

s•

Repr

esen

taci

ón

• An

ális

is

• M

edia

ari

tmét

ica

• C

álcu

lo

• Re

solu

ción

de

prob

lem

as

• M

edid

as d

e te

nden

cia

cent

ral

• M

edia

, med

iana

y m

oda

• Ra

ngo

• pr

obab

ilid

ades

sim

ples

Cál

culo

• Re

pres

enta

cion

es g

ráfi

cas

Page 92: 40131752 Libro Matematicas

María Acosta Héctor Alcívar Jorge Alcívar

Magdalena AlmeidaMónica Ambrossi Ángel Anchundia

Marcia Andino Consuelo Andrade

Rugero Aguiar César Aguilar

Rodrigo AguilarRené Aguirre

Amanda Aponte Carlos Argüello Gladys ArgüelloAbdón Armijos Eladio ArmijosErmel Arteaga

Germán Arteaga Nuvia Arteaga

Mariana Astudillo Antonio AraujoLinda Banegas Fausto Baño Elsa Barrera

Alicia Bastidas Isabel Bastidas

Roberto BastidasCésar Bautista

Guido BenavidesEdgar Betancourt

Luisa BlacioMaría Borja Elena Borja

Gladys BravoJorge Bravo Mercy Bravo Susana Bravo

Silverio Briones Julia Brito

Luis Cabadiana Mariana Cabrera

Manuel Calle Luis Camacho

Nelson CampoverdeLuis Cando

Norma Cando Mario Cantos Amalia Carpio

Mercedes CarrilloYolanda Carrillo

Luis CastilloLuisa Castillo Juana Castro

Guadalupe CatotaFabián Cerda

Carmen CevallosDenny CevallosElva Cisneros Elicio Conlago

Inés Constante Luis Coque

Cléver Coronel Libertad CoronelMatilde Coronel

Doris Cortez Lorena Costa

Bolívar Costales Gloria CriolloEsman Cueva Martha Cuzco Rosa Chafla

Sonia Chamorro Nancy Chanalata Liamela ChangJairo Chávez Rosa Chávez

Willian ChávezLaura De Mora

Margarita Del Pezo César Delgado Enrique Díaz

Rosa DíazNastha Doumet Carlos Duarte Manuel Dután

Washington Espinoza Carmela Estrella

Silvia FabaraJuly Fabre

María FeijoóMariana FeijóoPatricia Flores

Abdón Fogacho Héctor FrancoVicente Gaibor

Cristóbal Gaibor José Gaibor

Patricio Gallardo Geovani GallegosMarieta Gallegos

Mery GarcíaMariana Garzón Enith González Rosa GonzálezAgustín Granda Sonia Gualpa

Carlos Guallpa Giovanny Guamán

Patricia Guanochanga Luis Guapulema Martha GuerraRosario Guerra Pilar Guerrero

Estilita GuevaraGlenda Guevara Nelly Guevara

Wilson GuevaraAlexandra Haro Martha Heras

Jorge Hernández Gladys Hidalgo

Hugo Horna María Huertas

Janeth JaramilloManuel Jaramillo Marcelo Jaramillo

David JimboLidia JimboPaco Lamar María Lara

Raquel LarreaMatilde LeónEstela Llerena Luis Llivicura

Rolando Lomas Elena Loaiza Gloria López Laura López

Ma. Inés López Sonia López Luis Lozada

Arturo Macías Edison Madrid

Humberto MaldonadoElaynes MaffareElva Marchena

Carmen Martínez Zoila Marín

Kleber MariñoConcepción Márquez

Isaías MayorgaMercy Mena

Rodrigo Meneses Mariana MenesesDenny MerchánMiguel Merchán

Oscar Meza Patricio Meza Mariela Mier

Julia MoncayoWilson Montenegro

Nelson Morales Luis Morán

Rosario Morán Eudolifo Moreira Harol MosqueraMariana Moya

Silvia Moya Alicia Muñoz Irma Muñoz

Blanca Nájera Jaime Naranjo

Abraham Naranjo Mirella Navarrete

Enzo NeiraRómulo NinacuriEdison Noguera Camilo Noriega

Eva Oña

EQUIpO DE pROFESIONALES DE LA EDUCACIÓNQUE VALIDARON ESTE DOCUMENTO CURRICULAR:

Page 93: 40131752 Libro Matematicas

AGRADECEMOS LA pARTICIpACIÓN DURANTEEL pROCESO DE ELABORACIÓN DE ESTE DOCUMENTO A:

María OchoaWagner Olarte

Marlene OlmedoCecilia Palacios Lindon PalaciosMaría PalaciosNorma Parra Janeth Palma Salín Pastrana

Elio PeñaIrma Pérez

William Pazmiño Marcos Peralvo

Miguel PintoLuisa Ponce

Susana Ponce Miriam Portilla Maribel Pozo Juan Quezada

Luisa QuiñónezRaquel Quiñónez

Adela Reyes Euclides Rivadeneira

Cecilia RomeroFrancisca Romero

Milton Romero Patricia RoblesRoberto RoblesIrma Rodríguez

Segundo Ruano Jaime Ruiz

Norma Saldarriaga Laura SalazarLuis Salazar

Sandra Salazar Susana Salazar María Salcedo

Miriam Salvador Fabián SánchezNelly Sánchez Rosa Sánchez

Enma Sanmartín Flavio Santamaría

Edison SarangoBeatriz Saritama Mirtha Segarra José Solórzano Dolores Solís

Fernando SolísJuan Solís

Nelly Suárez Carlos Tamayo

Elena TapiaMariana Tinizaray

Wilson Tinoco Elvia Trilles Luis Tomalá Luis Togra

Mercy Trujillo Luis Ulloa

Ruth Urgilés Aurelio Valdivieso

Concepción VásquezMarco Vásquez

Alba Velasco Maura Vélez

Germania VeraMercedes Villacrés

Ángel VillarroelFrancisco Vinueza

Jenny VivarAnita VizcaínoHolger Yánez

Colombia Yépez Honorio Zambrano

Jorge Zambrano Mirian Zambrano Marisol ZambranoMartha Zambrano

Verónica ZambranoRuth Zaruma

Gloria Zarzosa Eduardo Zurita

Elvia ZuritaMariana Zurita

José CumbalAndrés Delich

Jorge FasceSilvia FinoccioTomás FleisherGustavo IaiesEnna Nuques

Ma. Gabriela MenaPedro Montt

Graciela PiantanidaSonia Salazar

Elsa SernaVioleta Villarroel

Page 94: 40131752 Libro Matematicas