4087pr

Embed Size (px)

Citation preview

  • 8/12/2019 4087pr

    1/21

    Generalized Multi-Impulsive Maneuvers

    for Optimum Spacecraft Rendezvous

    G. Gaias, S. DAmico, J.-S. Ardaens

    5th International Conference on SpacecraftFormation Flying Missions and Technologies

    Slide1

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    2/21

    Contents

    Objectives and Motivations

    Overall Concept of the Maneuvers Planner

    Description of the Planner

    Example of a Rendezvous

    Conclusions and Way Forward

    Slide 2

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    3/21

    Objectives

    Generation of theopen-loop,impulsive maneuvers profilefor formation

    reconfiguration

    Realistic operational conditions:fuel efficiency

    safe approach during rendezvous

    time constraints

    Autonomy:

    simplicity, closed-form solutions

    Slide 3

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    4/21

    Motivations

    Autonomous Vision Approach Navigation and Target IdentificationAVANTI

    experiment, DLR FireBird Mission

    Background

    Spaceborne Autonomous Formation Flying ExperimentSAFE, PRISMAmission

    TanDEM-X Autonomous Formation FlyingTAFFsystem

    Advanced Rendezvous Demonstration using GPS and Optical Navigation

    ARGON, PRISMA mission - extended phase

    (ground-in-the-loop, man-in-the-loop)

    Autonomous strategy: on-board guidance, constraints handling

    Slide 4

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    5/21

    Motivations

    Autonomous Vision Approach Navigation and Target IdentificationAVANTI

    experiment, DLR FireBird Mission

    Background

    Spaceborne Autonomous Formation Flying ExperimentSAFE, PRISMAmission

    TanDEM-X Autonomous Formation FlyingTAFFsystem

    Advanced Rendezvous Demonstration using GPS and Optical Navigation

    ARGON, PRISMA mission - extended phase

    (ground-in-the-loop, man-in-the-loop)

    Autonomous strategy: on-board guidance, constraints handling

    Slide 4

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    6/21

    Motivations

    Autonomous Vision Approach Navigation and Target IdentificationAVANTI

    experiment, DLR FireBird Mission

    Background

    Spaceborne Autonomous Formation Flying ExperimentSAFE, PRISMAmission

    TanDEM-X Autonomous Formation FlyingTAFFsystem

    Advanced Rendezvous Demonstration using GPS and Optical Navigation

    ARGON, PRISMA mission - extended phase

    (ground-in-the-loop, man-in-the-loop)

    Autonomous strategy: on-board guidance, constraints handling

    Slide 4

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    7/21

    Motivations

    Autonomous Vision Approach Navigation and Target IdentificationAVANTI

    experiment, DLR FireBird Mission

    Background

    Spaceborne Autonomous Formation Flying ExperimentSAFE, PRISMAmission

    TanDEM-X Autonomous Formation FlyingTAFFsystem

    Advanced Rendezvous Demonstration using GPS and Optical Navigation

    ARGON, PRISMA mission - extended phase

    (ground-in-the-loop, man-in-the-loop)

    Autonomous strategy: on-board guidance, constraints handling

    Slide 4

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    8/21

    Overall Concept

    Relative Orbital ElementsROEas state variables

    = {a,,ex, ey, ix, iy}T

    P = a description of each possible configuration

    Layered approach

    P0 PF through intermediate Pi, tooptimizea criterion

    operatives modes: set criterionand evaluation of the relevance of some

    operational conditions

    Maneuvers computation and scheduling in compliance with time

    constraints

    Slide 5

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    9/21

    Overall Concept

    Relative Orbital ElementsROEas state variables

    = {a,,ex, ey, ix, iy}T

    P = a description of each possible configuration

    Layered approach

    P0 PF through intermediate Pi, tooptimizea criterion

    operatives modes: set criterionand evaluation of the relevance of some

    operational conditions

    Maneuvers computation and scheduling in compliance with time

    constraints

    Slide 5

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    10/21

    Use of Relative Orbital Elements

    Along-Track

    Radial

    Along-Track

    C

    ross-Track

    a e

    a a

    a i

    2a ea

    a

    t

    = (tt0)

    a

    t0

    1 0 0 0 0 0 0

    t 1 0 0 0 0 02

    t2 t 1 0 0 t 0

    0 0 0 1 t 0 00 0 0 t 1 0 00 0 0 0 0 1 0

    0 0 0 0 0 t 1

    differential drag meanJ2

    Slide 6

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    11/21

    Planning: problem statement

    Evolution of the motion through (t);effectof the maneuvers at ti:discontinuities in ROE

    P1 = 1,0P0+a()1 P2 = 2,1P1+a()2

    End-conditions: achievement of PF

    Functionalcost, convex form of the ROE jumps overm steps:

    Jplan =m

    i=1()Ti ()i

    ROE variations not due to the natural dynamics

    describes delta-v cost

    Slide 7

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    12/21

    Planning: problem solution

    Optimality conditions reduce to alinear systemin ROE due to:

    structure of (t)

    relations between delta-v andROE

    Generalization of a geometrical approach stepwise reconfiguration,

    disturbances compensation

    Suitable for automatic implementation

    Framework for further development

    Slide 8

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    13/21

    Supported Operative Modes

    Modes Motivations Applicability

    minimum delta-v

    direct P0 PF

    4maneuvers

    absolute min cost small reconfigurations

    accurate P0

    maximum observability

    user definedti Pi

    4i maneuvers

    intensify maneuvers activity

    spread burns over horizon

    maneuver execution errors

    large reconfigurations

    uncertainty on P0

    Synergies

    criterion: minimum delta-v

    local control method: vT minor cost and best non-instantaneous observability

    Slide 9

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    14/21

    Interfaces and Constraints Management

    Guidance(Scheduling, Planning, Safety)

    Control(Maneuvers placement)

    Maneuvers profile

    Forbidden time intervals

    Minimum time to first maneuver

    Minimum time spacing between maneuvers

    Input:

    y0, (P,t)0, (P,t)F, Mode Time constraints

    time

    time

    P0 PFP1 P2

    t0,2 t2

    maneuvers

    Slide 10

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    15/21

    Local control Problem, out-of-plane solution

    Establishment of a (intermediate) reconfiguration over a control window

    fixed time,fixed end-conditionsproblem

    jump corrected by disturbances effects over the window

    a =ai i,0ia0,i

    Out-of-plane solution,deterministic:

    uoop= arctan

    iy

    ix

    |vn|= na

    i

    two options per orbit

    Slide 11

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    16/21

    Local control Problem, in-plane solution

    In-plane solution,underdetermined:

    (minimum2 impulses required 6 unknowns in4 equations)

    selection criterion: minimum delta-v tangential burns

    autonomy: preference for analytical solutions 3-impulses

    Multiple(finite number) feasible solutions over[t0w, tw]:

    u= mod

    arctan

    eyex

    ,

    uipj = u+kj, j = 1...3

    k1 < k2 < k3

    selection ofoneoption according to:1. preference tominordelta-vcost

    2. preference towider spacingbetween burns

    Slide 12

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    17/21

    Safety Concept

    e/iplanning

    Out-of-plane control In-plane control

    optimal / sub-optimal

    Slide 13

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    18/21

    Example of a Rendezvous

    Scenario Input

    500km high

    98degrees inclination

    Btarget: 0.01m

    2/kg

    B/B: 2%

    P0 = [5,10000,50,250,30,200] m

    PF = [0,3000,0,100,0,100] m

    tF: 18orbits aftert0

    time constraints, mode: max-observability

    300 200 100 0 100 200 300300

    200

    100

    0

    100

    200

    300

    aex ai

    x[m]

    aey

    aiy[m]

    start

    target

    0 2 4 6 8 10 12 14 16 18 2020

    0

    20

    40

    60

    80

    time [orbital periods]

    aa[m]

    0 2 4 6 8 10 12 14 16 18 202000

    4000

    6000

    8000

    10000

    12000

    time [orbital periods]

    a

    [m]

    1 1

    1

    1

    Normalized e/i plane

    0 2 4 6 8 10 12 14 16 18 200.04

    0.02

    0

    0.02

    0.04Total deltav: 0.2168 [m/s]

    time [orbital periods]

    deltav,

    vt

    vn

    [m/s]

    Slide 14

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    19/21

    Conclusions and Way Forward

    Impulsive maneuvers plannerfor formation reconfiguration

    realistic operational conditions

    autonomy: simplicity and determinism

    AVANTI experiment, DLR FireBird Mission

    inclusion of constraints of minimum and maximum realizable delta-v

    consolidate interfaces of the module

    flight software implementation

    Further development of the concept (beyond the AVANTI application)

    introduction of collision-avoidance constraints at the planning level

    Slide 15

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    20/21

    Conclusions and Way Forward

    Impulsive maneuvers plannerfor formation reconfiguration

    realistic operational conditions

    autonomy: simplicity and determinism

    AVANTI experiment, DLR FireBird Mission

    inclusion of constraints of minimum and maximum realizable delta-v

    consolidate interfaces of the module

    flight software implementation

    Further development of the concept (beyond the AVANTI application)

    introduction of collision-avoidance constraints at the planning level

    Slide 15

    Munich > 2013/05/30

  • 8/12/2019 4087pr

    21/21

    Generalized Multi-Impulsive Maneuvers

    for Optimum Spacecraft Rendezvous

    Introduction

    Concept

    Description

    Example

    [email protected]