162
1 1.응력의 정의 1.1 물체 표면의 응력 1.1.1 수직 응력(Normal stress) 그림 1과 같이, 물체가 압력 p의 액체 중에 있으면, 액체는 물체의 재질에 상관없이 물체의 표면에 압력 p를 가한다. 이때, 표면에 마찰 력이 작용하지 않으면 압력은 당연히 표면에 수직으로 작용한다. 액체 란, 정지 상태에서 마찰력을 지지하는 것이 불가능하므로, 물체표면에 작용하는 것은 수직방향의 압력 p뿐이다. 이 상태에서, 물체의 표면에 있어서의 수직응력은 압력과 크기가 같으며 수식으로 표현하면 다음 과 같다. 즉, n p σ = 이렇게 수직 응력은 “힘이 표면에 균일하게 작용할 때, 단위 면적당 작용하는 힘”으로 정의하며, 표면에 작용하는 힘의 분포가 균일하지 않은 경우는, 균일하다고 볼 수 있을 정도로 충분히 작은 면적을 생각 해서 정의한다. Fig. 1.1 Isolated material subjected to hydrostatic pressure

탄소성학__보조교재_

  • Upload
    silillo

  • View
    58

  • Download
    14

Embed Size (px)

Citation preview

  • 1

    1. 1.1 1.1.1 (Normal stress) 1 , p , p . , . , , p. , . ,

    n p = , , , .

    Fig. 1.1 Isolated material subjected to hydrostatic pressure

  • 2

    1.1.2 (Shearing Stress) 2 , W , F .

    WF = , . , . . 2 , , .

    FA

    =

    Fig. 1.2 Isolated materials subjected to shearing force

    1.2 1 A , A . A . , A . ,

  • 3

    Fn A .

    0lim nn A

    FA

    =

    , Ft , .

    0l im t

    A

    FA

    =

    , . , . , . , . , . 1.2.1 1.3 p , n

    pn = , 0= . , pn = , 0=. ( A) . ? . , 4 BC, DA 0x AB, CD

    0y BC, DA 0xx = 0=xy AB, CD 0yy = , 0=yx .

    x y x, y x, y . , xy x,y x=const. y

  • 4

    . 0xo , 00 =y , E

    0xx = , 0=y , 0=xy , .

    Fig. 1.3 Fig. 1.4 1.2.2

    1.4 , , .

    0=x , 0=y , 0xyxy = at BC, DA

    0=x , 0=y , 0yxyx = at AB, CD

    ? , AB 0yx x , CD x . , x , x

  • 5

    . BC, DA . ABCD . , xy , z , z 0 . A z . ( ) ( ) 000 = DACDABBC yxyx , CD=AB, DA=BC .

    00 yxxy =

    . , . 1.5 .

    Fig. 1.5 Fig. 1.6

  • 6

    1.3 2 1.6 ,

    .

    0xx = , 0yy = , 0xyxy =

    X-Y . , . , X-Y - , , . 1.6 ABC

    1.7 ,

    0xx = , 0xyxy = at AC, 0yy = , 0xyxy = at AB

    , 1.7 AC AB - . BC 1 , X-Y - . (cosine), .

  • 7

    Fig. 1.6 Fig. 1.7

    1.7 ABC . ( ) 11 = ( ) 11 llx + ( ) 11 mmy + ( ) 11 mlxy + ( ) 11 lmxy ( ) 11 = ( ) 21 llx + ( ) 21 mmy + ( ) 21 mlxy + ( ) 21 lmxy

    ( ) , ( ) , . . , .

    = 21lx + 21my +2 11mlxy = 22lx + 22my +2 22mlxy = 21llx + 21mmy + ( )1221 mlmlxy + 1.1

    1.7 .

  • 8

    = 2cosx + 2siny +2 sincos xy = 2sinx + 2cosy -2 sincos xy = ( ) sincos xy + ( ) 22 sincos xy 1.2

    , , . 1.4 3

    Fig. 1.8 Fig. 1.9

    1.8 , . () , 3 6 .

    x , y , z , xy , yz , zx 6 , 1.9

  • 9

    - - , .

    , 2

    . , 1.1 1.2 , . , 2 3 , 2 z - , x-y , n1=n2=0, l3=m3=0 . 3 . = x 21l + y 21m + z 21n +2( 11mlxy + 11nmyz + 11lnzx ) = x 1l 2l + y 1m 2m + z 1n 2n + xy ( 1l 2m + 2l 1m )

    + yz ( 1m 2n + 2m 1n )+ zx ( 1n 2l + 1l 2n ) = x 1l 3l + y 1m 3m + z 1n 3n + xy ( 1l 3m + 3l 1m )

    + yz ( 1m 3n + 3m 1n )+ zx ( 1n 3l + 31l 2n ) , 1.9 3

    , 4

    x y z 1l 1m 1n

    2l 2m 2n 3l 3m 3n

    x y z 1l 1m 0

    2l 2m 0 0 0 1

  • 10

    . , 3 , ABC 1 , OBC=l1, OCA=m1, OAB=n1 .

  • 11

    2. (Strain) 2.1 2 . 2.1 , ABCD . 2 (x,y) (u,v) . . x y . x,y . 2.1 , ABCD . ( ) , ( ) . . .

    4 ABCD 2.2 , A x x (x+u) , B x .

    dxxudxux

    +++

    Fig. 2.1 Fig. 2.2

  • 12

    , AB dx dxxudx )(+ .

    x .

    xu

    dx

    dxdxxudx

    x =

    +

    ==

    , y yv

    y = .

    , . ABCD . , ABCD . , 2.3 .

    , A,B , DC D', C' . . . 2.3 (b) . .

    xv

    yuBABDADxy

    +=+= ''

    2.3 a b . z .

    (a) AD AB , . , AD AB ((b) ).

  • 13

    Fig. 2.3

    , x

    . .

    xv

    xv

    yu

    z =+

    + )(

    21 or

    yu

    xv

    yu

    z =

    + )(

    21

    z .

    )(21

    yu

    xv

    z

    = 2.2 3

    3 , 1 2 . 2 x-y , y-z, z-x , x,y,z u,v,w 6 3 .

  • 14

    xu

    x = ,

    yv

    y = ,

    zw

    z =

    xv

    yu

    xy +

    = , yw

    zv

    yz +

    = , zu

    xw

    xz +

    =

    )(21

    yu

    xvwz

    = , )(

    21

    zv

    zvwz

    = , )(

    21

    xw

    zuwy

    =

    6 3 . 2.3 ( ) 2.3.1 2

    Fig. 2.4

    , x-y xyyx ,,

    . 2.4 2.5

  • 15

    . , 2.4 C C' , OC, OC' 1 . 2.4 2,5 , O C yx , .

    121 mxx += A 111 myy += A 2.8

    , 11,mA . OC ,

    11 myx += A

    2.9

    yx .

    Fig. 2.5

    2.8 2.9 ,

    112

    12

    111212

    12

    1 )( mmmm xyyxyx AAAA ++=+++= 2.10 C' O yx

  • 16

    222 mlxx += , 221 ml yy += 2.11 .

    222

    22

    2 mm xyyx AA ++= 2.12 2.8 2.11 2,5(b) , .

    )()( 112221 mm yxyx+++=+= AA

    = )(22 12212121 mmmm xyyx AAAA +++ 2.13 sin,cos ,

    sincossincos 22 xyyx ++= sincoscossin 22 xyyx +=

    )sin(cossincos)(2 22 += xyxy 2.14

    . . , , , /2 . , 2 , . 1/2 .

  • 17

    2.3.2 3

    x, y, z xyzyx ,,, , , 2 2.10 ~ 2.13 . 2 3 . .

    1111112

    12

    12

    1 AAA nnmmnm zxyzxyzyx +++++= 222222

    22

    22

    22 AAA nnmmnm zxyzxyzyx +++++=

    )()(2 2121212121 AAAA mmnmmm xyzyx ++++= )()( 12211221 AA nnnmnm zxyz ++++

    2.4 0

    . , . , 2.8 z . ,

    1211211121 )(21)(

    21 mmm xxx ++=+= AA

    1211121111 )(21)(

    21 AAA +++=+= mm yyy

    .

  • 18

    +

    +

    +=

    1

    1

    21

    21

    1

    1

    21

    21

    )(21

    )(21

    )(21

    )(21

    mmy

    x

    y

    x

    y

    x AA

    +

    =

    1

    1

    1

    1

    00

    21

    21

    mm zz

    yxy

    xyx AA

    , 1 , 2

    . , . , . . 2.4 C C' , . ,

    0)(

    21

    21)(

    =

    yxy

    xyx

    2.18

    2)()(

    ,22

    21xyyxyx ++= 2.19

    . 3 ,

  • 19

    .

    0

    )(21

    21

    21)(

    21

    21

    21)(

    =

    yyzzx

    yzyxy

    zxxyx

    2.20

    3 321 ,, , .

    0))()(( 321 = 2.21 .

    3211 ++=++= zyxI

    )(

    )41

    41

    41(

    133221

    2222

    ++=++= zxyzxyxzzyyxI

    321222

    3 41

    41

    41

    41 =+= xyzzxyyzxzxyzxyzyxI 2.22

    , 321 ,, III . 1I . () , .

  • 20

    2.5

    2.6 6 3 . , 6 3 . , 6 x,y,z 3 6 . . ( () ) .

    . . 6 . .

    ),,(,, zyx DDDzyx

    ,

    wDvDuD zzyyxx ===

    uDwDwDvDvDuD zxzxyzyzxyxy +=+=+= 2.23

    yx , u,v,w 3 . , 6 4 , 1 .

    , xyzyx ,,, 4 , 1 .

  • 21

    xyzyx CCC =++ 321 , vDuDwDCvDCuDC xyzyx +=++ 321

    ,

    0321 === CDDC

    DD

    Cy

    x

    x

    y

    ,

    xyyy

    xx

    x

    y

    DD

    DD =+

    xyyxyxxy DDDD =+ 22 ,

    yxxyxyyx

    =

    + 2

    2

    2

    2

    2

    . 6 4

    1546 =C . 15 6 .

    )(222

    2

    2

    2

    2

    zyxxzyyxxyxyzxyzxxyxx

    +

    +

    =

    =

    +

    )(222

    2

    2

    2

    2

    zyxyxzzyyzxyzxyzyyzzy

    +

    =

    =+

    )(222

    2

    2

    2

    2

    zyxxyxxzzxxyzxyzzzxxz

    +

    =

    =+

    2.24

    6 .

  • 22

    2.24, 2.6 2.23 , . 2.24, 2.6 wvu ,, .

  • 23

    3. 3.1 2

    Fig. 3.1

    3.1 , bc 2 ,

    . 0 2 , 0 . .

    3.1, P bc 2p = 2 + 2 . bc 1 , , AB=m1, AC=l1 . ABC , BC x,y .

    =xp +1lx 1mxy =yp +1lxy 1my

    0 , BC x,y .

    =xp 1l , =yp 1m

  • 24

    0= .

    +1lx =1mxy 1l 1lxy =+ 1my 1m ( ) x 1l 01 =+ mxy 1lxy ( ) + y 01 =m

    1l 01 == m 1,1 ml 2 0 . , l1=m1=0 . ( )

    ( )

    yxy

    xyx =0

    2 1 , 2 ,

    .

    1 , 2 = ( ) ( )2

    4 22 xyyxyx ++ .

    , . , . . , . , B .

  • 25

    =1

    1

    lm =tan

    xy

    y

    1tan =

    xy

    y

    0/ = dd ,

    0 . 3.2 3 2 , 3 1 , 2 , 3 . , ( )

    ( )( )

    zyzzx

    yzyxy

    zxxyX

    =0

    , ( ) ( ) 22223 zxyzxyxzzyyxzyx +++++ ( ) 02 222 =+ xyzzxyyzxzxyzxyzyx 3.1

    3 , .

    x , y , z 3 . , 2 . 3 1 , 2 , 3 . ( )( )( ) 0321 = 3.2

  • 26

    0322

    13 = JJJ 3.3

    =1J 1 + 2 + 3 =2J - ( )133221 ++

    = ( ) ( ) ( ) ( )[ ]2321213232221 261 ++++ =3J 1 2 3

    1J , 2J , 2J , 1, 2, 3 . 3.1 3.3 , , ( )zyx ++ , ( )+yx . , , x-y-z - - .

    =1J 1 + 2 + 3 = zyx ++ = ++ =2J ( )133221 ++ = ( )222 zxyzxyxzzyyx ++

    = ( )222 ++ =3J 1 2 3 = 2

    222 xyzzxyyzxzxyzxyzyx + = 2222 +

    3 3.1 , . 1J (hydrostatI c) (Hooke )

  • 27

    . 3J 3J 1J , 2J . 3.3 ( Hooke )

    Hook . (Isotropic) . , . (anisotropic) . . , .

    (Homogeneous), . , , . , . .

    .......),,( xyyxx f =

    0...... ==== zyx 0=x x , 2 .

  • 28

    zxyzxyzyxx CCCCCC 161514131211 +++++= 1611 ~ CC . , .

    =y =z * * =xy * * =yz * *

    xzx c 61= * * * * zxc 66 .

    * * * * * *

    * * * zxa 66 3.4 ija .

    3.4 1 , xy x . . 014 >a , 3.1(a) xy , 0>x . , x . , (b) , x . , (a) (b)

    0a ,

    zxyzxyzyxx cccccc 161514121211 +++++=

    zxyzxyzyxyx aaaaaa 161514131211 +++++=

    =zx

  • 29

    014

  • 30

    )(21 yxzz aa ++= 3.7 xyxy a 3= yzyz a 3= zxzx a 3= 3.8

    3.8, 0 . .

    )( 322111 ++= aa )( 132212 ++= aa )( 212313 ++= aa 3.9

    (123) (x,y,z) xy 1 2 3 xy 1 2 3

    )(2 211212211 nnmmxy ++= AA 3.10 213212211 nnmmxy ++= AA 3.11

    3.8 1 3.9~11 3a

    1a 2a . , 3.8 3.10, 3,11

    )()(2 2132122113211212211 nnmmannmm ++=++ AAAA 3.9

    ))(()([2 21212132122132122111 nnmmannmma +++++++ AAAA )])(( 213212211212 nnmmaaa ++ AA

    ))((2 21321221121 nnmmaa ++= AA

  • 31

    )(2 213 aaa = 2 .

    Ea /11 = 12 aa = Ea /)1(23 +=

    , Hooke

    )]([1 zyxx E +=

    )]([1 xzyy E +=

    )]([1 yxzz E +=

    Gxyxy / = Gyzyz / = Gzxzx / = E: Youngs Modulus =Poissons Ratio G: Shear Modulus

    )1(2/ += EG 3.4 6 , 3

    9 . x-y-z - - , .

  • 32

    =

    333

    222

    111

    nmlnmlnml

    zyx

    3.12

    3.12 , .

    =

    333

    222

    111

    nmlnmlnml

    zyzxz

    zyyxy

    zxyxx

    1

    1

    1

    nml

    .

    =

    333

    222

    111

    nmlnmlnml

    zyzxz

    zyyxy

    zxyxx

    T

    nmlnmlnml

    333

    222

    111

    3.12 ,

    (tensor) . , , .

  • 33

    4. Cartesian 4.1 ?

    (physical process) (coordinate system) . (quality) ?

    (tensor analysis)' . ( 4 ) , Cartesian 3 . (tangent) .

    . (order rank)' 0 , 1 . 3 Cartesian 1 (=30) , 3 (=31) . 2 9 (=32) n 3n( 6n) .

    . (linear operator) . 2 . 3 2

  • 34

    33 . 31 u 33 T 31 v , .

    Tu = v u, v 2 T . vuT = (coordianate-free invariant validity)' . . . . Cartesian u (u1, u2, u3) , ),,( 321 uuu (transformation equation) . 1 u u u . (3 ) 3 1 : 1 . () .

    3 33 9 2 9 .

  • 35

    2 . . (an objective physical reality) . . Cartesian . Cartesian , Cartesian . 4.2

    2 e- - (Einstein ) (summation convention)' . ( ) ( 3 Cartesian i=13) . . . .

  • 36

    (3 ) . (i) aixi a1x1 + a2x2 + a3x3 (ii) aijbjk ai1b1k + ai2b2k + ai3b3k (iii) aijbjkck ai1b1k + ai2b2k + ai3b3k (iv)

    (v) (dummy index)' (free index)' . , . , aifbjkckl aijbjjcjl ailblkckl , aimbmkckl aimbmncnl . ( .) Kronecker delta"ij .

    ij .

    ikkjijjkij aaa == 4.1

    3

    3

    2

    2

    1

    1

    xv

    xv

    xv

    xv

    i

    i

    +

    +

    32

    2

    22

    2

    12

    22

    xxxxx ii +

    +

    ==

    ) 2() (1

    jiij

  • 37

    (j) Kronecker delta (k) . (5.1) AI = A , A aij , U A .

    iijj bb =

    Kronecker delta .

    ) ( jkkjjiijkijkij bababa =

    Kronecker delta (substitution operator)' . 3

    Levei-Civita" (alternating) (permutation) eijk .

    ij ( ij = ji) eijk . eijk eijk 3 .

    +

    =)(0

    ) 3,2,1 ,,(1) 3,2,1 ,,(1

    kjikji

    eijk

  • 38

    33 A eijk .

    ijknkmjlilmn eAAAeA = 4.2 3 Laplace , NN . .

    ij eijk (contracted) . , Cartesian , a = b c ai = eijkbjck i . Tij = vicj 2 (outer product)' (dyadic product)'

    T = bc .

    e- - e-(identity)" .

    jlimjmilklmijk ee = 4.3 ) 2 4 ( 6 ) . 4.3 . +1 (i=l j=mi) 4.4

  • 39

    -1 (i=m j=li) 4.5 0 ( I,jj,l,m ) 4.6 k 1klmijk ee ( k ), 0 k I,l,j,m . 3 (1,2,3) , 0 i=l j=m . 4 . ( i=j l=m e 0 .) 4.3 4.4, 4.5 4.6 . 4.4 4.5 4.3 . (1) i=l, j=m, klmlmkijk eee == ijke +1 -1 , +1 , (2) i=m, j=l, klmlmkijk eee == , klmijk ee (n.s.) -1 . 4.3 . 4.3

    .

    .

    4.7

    krkqkp

    jrjqjp

    iriqip

    lmnijk ee

    =

  • 40

    4.3 . 4.7 4.3 .

    kljmkmjlijmijk ee = 4.8

    e ( i) , j, k, l, m . 4.8 j = l , kk = 3 .

    kmkmkmijmijk ee 23 == 4.9 , k = m , .

    6=ijkijk ee 4.10 4.3 Cartesian 4.3.1

    3 Euclid Cartesian (base) ( ) , (orthonormal triad)' . {x, y, z} {y1 ,y2 ,y3},

  • 41

    {i, j, k} {i1, i2, i3} . [ .] 4.2 e- - 4.11 4.12 .

    pqqp ii = 4.11 mpqmqp ieii = 4.12

    Cartesian i1, i2, i3 u

    ui , i1,i2,i3 Cartesian ui . u 2 {i1, i2, i3} {i1, i2, i3} .

    Fig 4.1 Cartesian

    { 321 ,, iii } { '',,' 321 iii }

  • 42

    O Oy1y2y3 Oy1y2y3 . Oy1y2y3 (direction cosine) . ljp j p . ij lj1,lj2,lj3 . .

    232211' ililili jjjj ++= (j=1,2,3) ( p )

    pjpj ili =' 4.13

    ),'cos(' pjpjjp yyiil == 4.14 i1, i2, i3 .

    ''' 332211 ililili pppp ++= ljp ip ij .

    'jjpp ili = 4.15 4.13 4.15 .

    )'(' kkpjppjpj illili == 4.16

  • 43

    [ 4.15 j k . j 4.16 .] 4.16 .

    ''' kjpjkkpjp iiill == ik .

    jkkpjpll = 4.17 4.13 4.15 .

    qpqqjqjpjjpp iillili === '

    Fig. 4.2 321 ,, iii ',',' 321 iii 3i

    pqjqjpll = 4.18

  • 44

    Cartesian ( ) () 4.17 4.18 4.14 lij () R (orthogonal) . ( RT=T-1) i1, i2 i3 i1, i2, i3 ( 4.2 ). 4.13

    3211 0sincos' iiii ++= 3212 0cossin' iiii ++= 4.19

    3213 100' iiii ++= 4.17 4.18 . 4.3.2 u i1, i2, i3

    .

    ppiuiuiuiuU =++= 333211 4.20 . 4.13 .

    '''''''' 333211 jj iuiuiuiuU =++= 4.20 .

    jpjp luu '= 4.21

  • 45

    . 4.15

    '')'( jjjjpppp iuiluiuU ===

    pjpjppj ulluu ==' 4.32 (1 ) . 4.4 Cartesian 4.4.1

    Cartesian . Cartesian ( ) . (crysual lattice)' . 3 ( ) 3 . . 3 p1, p2, p3 . [p1, p2, p3] 0 . 3 (basis)' ,

  • 46

    v . v1, v2, v3 {p1, p2, p3} v ()

    v1p1, v2p2, v3p3 v . v () . v2 v3 v1 (power) .( (v1)2 (v1)3 .) {p1, p2, p3} (reciprocal)' {p1, p2, p3} .

    ji

    ji pp = 4.34

    i j 1 3 . p1 p2, p3 . p1p1 = 1 . )),cos(/(1 1111 pppp = cos(p1, p1) p1 p1 . p1 p1 (+) cos(p1,p1) , p1 p1 . p2 p2 p3 p3 . 5.3 . {pi} {pi} .

  • 47

    4.4.2 () Cartesian {p1, p2,

    p3} , {p1, p2, p3} 4.33 p1, p2, p3 v . v p1, p2, p3 .

    ii pvpvpvpvv =++= 332211 4.27

    {v1, v2, v3} v (covariant)' . . {v1, v2, v3} v (contravariant)' . 4.34 . . (non-Cartesian) . pj (5.33) .

    iji

    iji

    ii vvppvpv ===

    jji

    iji

    ij vvppvpv === v v .

    ii pvv = , ii pvv = 4.38

  • 48

    4.3 2 {p1, p2} {p1, p2} v . Cartesian (self-reciprocal)' . . .

    Fig. 4.4 2 },{ 21 pp },{ 21 pp v

  • 49

    4.4.3 Cartesian Cartesian Cartesian pi Cartesian ij . () L11, , L33 .

    33

    122

    111

    11 iLiLiLP ++= 3

    322

    221

    122 iLiLiLP ++=

    33

    322

    311

    33 iLiLiLP ++= ( ,

    ) .

    jj

    ii iLP = 4.39 () Lij Cartesian ( ai = aej) .

    jij ipL = 4.40

    pi 4.39 () Mij .

    jj

    ii iMp = 4.41 j ( , ) Cartesian ij = ij . Mij 4.40 .

  • 50

    j

    ij

    i ipM = 4.42 4.34 4.39 4.41 .

    )()( li

    jk

    ki

    ji

    ji iLiMpp ==

    kl

    ljk

    il

    kljk

    i LMiiLM == )(

    jik

    jki LM = 4.43

    .

    IML = 4.44 [ M(=Mij) () , L(=Lij) () .] Cartesian Cartesian . r .

    jjii iypxr == 4.45

    (y1, y2, y3) Cartesian (x1, x2, x3) Cartesian . {yi} {xi} 4.45 pi 4.39 .

    jjjj

    ii

    ii iyiLxex ==

  • 51

    yi = Lijxi , yj .

    iji

    j xLy = 4.46

    Mkj yj xi , j , 4.34 .

    kii

    kijij

    kjj

    k xxxLMyM ===

    jj

    ii yMx = 4.47 4.46 4.47 . Cartesian . 4.5 1 0 () Cartesian {i1, i2, i3} Cartesian . u u u1, u2, u3 .

    jj iuu = (j=1,2,3) 4.48 u =ujij 4.11 .

  • 52

    {i1, i2, i3} Cartesian u u1, u2, u3 . 4.32 . uj = ljpup ljp ij ip . 1 () Cartesian ( CT1 ) 4.32 . CT1 4.32 . {i1, i2, i3} {u1, u2, u3} .

    pjpj ulu =' pjjp iil = ' 4.49

    4.3 R(=lij) 4.49 up = ljpuj( 4.31) . CT1 . [ (coordinate invariance), () .] Cartesian Cartesian . u (column) .

    Tuuu ),,( 321

  • 53

    4.32 .

    Ruu =' 4.50 u (u) 9 u = ujij = ujij), R(=lij) ( 4.14 ). 4.3 R , RRT = RTR = I R .

    ijjkik ll = ijkjkill = 4.51 Cartesian , ui = lijuj ui = mijuj , ML .

    kikkjkijjiji uMLulmumu )(''' === 1 ( ) . , m Cartesian ( mx1, mx2, mx3) . ( (m) ) ( ) () (x1, x2, x3) . 1 . , m L = rp = m(rr) 1 . L

  • 54

    (quotient law) eijk . 1 , . 0 . 0 ( 0 ). , r2 = y12 +y22 + y32 . r2 = x12+x22+x32 y12 + y22 + y32 . uv ,

    1 () 0 (). ) 2 Cartesian u v vu . ) }{ iy iivu , }'{ iy .

    jjkkjkkjikijkikjijii vuvuvullvlulvu ==== '' 4.51 . , .

  • 55

    0 . , [ e , E Fdr, eEdr] . . , . 2 1 0 , 1 . , grad CT1 . 4.6 2 () Cartesian 4.6.1 2 Cartesian (CT2) ( ) CT1 . 3 CT2 9 Tij . I j 1 3 . 33 . 4.58

  • 56

    {i1, i2, i3} . {i1, i2, i3} Tij . .

    pqiqipij TllT =' 4.59 lip ( 4.57) . CT2 CT1 ( 4.50) . CT2 2 T . (Cartesian) T T .

    TRTRT =' 4.60 (i) Tij=lipTpqljq (4.59) . (ii) ljp 2 RT q-j . (block form)' 3 (indicinal form)' . CT2 CT1 (dyadic product)' . Cartesian ui vi u v .

  • 57

    jiij vuT = T= (uv) .

    4.59 CT2 . ) CT1 4.49 .

    pipi ulu =' qjqj vlv ='

    .

    ))((''' qjqpipjiij vlulvuT == qjqpip vlul=

    pqjqip Tll 4.59 . )( uvT = .

    TuvT =

    u 3x1 Tv 1x3 . 4.50 .

    Ruu =' TTT Rvv ='

  • 58

    4.60 4.50 .

    ))((''' TTT RvRuvuT == TTT RTRRuvR == )(

    CT2 4.60 . 4.59 ijT T ijT . (linearity) ( CT2 ) . S T Cartesian ijS ijT CT2 ijij TS + CT2 . (S+T ). T CT2 ijT . T . 2

    . 4.60 .

    TTTTTTTTT RRTRTRRTRT === )()()'( 4.61 TT

    4.60 CT2 . vuuvT TT == )( , TT vuT = . () T

    () T 4.61 . ( TT T = ')'( TT T =

  • 59

    .) . T (symmetric) CT2 , TT =' . CT2 S ijjiT SSSS == , (skew symmetric) CT2 , . CT2 .

    )(2/1)(2/1 TT TTTTT ++= 4.62 )(2/1 TTT +

    )(2/1 TTT . CT2 . 1) 2 T , 3 3 2 T(3) . 2) T () ( T = Tijeiej ) T = (tij) . CT2 T v (mapping) Tv = , TV = .

  • 60

    3) U(m)v(n) ( U B m n ) (a) () m+n-2 (b) () m+n-1 (c) m+n . 4.6.2 2 CT2 2 . . 2 {i1,i2} u {u1,u2} 2 T 22 .

    , {i1,i2,i3} 3 Cartesian i3 0 u u3 T T13,T23,T31,T32,T33 2 ( 4.2 ). i3 i1 i2 ( )

    22 . ( 4.19)).

  • 61

    4.60 .

    T11+T22 = T11+T22 .

    22 (trace) (invariant)'. . T12-T21=T12-T21 . i2 i1 i1 i2 . (i3 ) 2 , 3 i1=i2, i2=i1, i3=-i3 i3 () . (T12-T21) (T12=T21)2 . 2 . detR=1 detT=detT . .

    2112221121122211 '''' TTTTTTTT =

    4.64 .

  • 62

    2 ( T12=T21) . 4.65 T . ( T12=T21) 0 . Cartesian 2 T Tij y3 (i3) ( 4.2 ) Tij 4.65 Mohr ( 5.5) . Mohr . (a) 2 CT2 (T11, T12) (T22, -T12) . (b) a . (c) 2 . (T11,T12) (T22, -T12). (d) (b) i1-i2 Cartesian T () ( i1-i2) . T (1,2) Mohr .

    +++++

    =

    2sin2cos)(

    21)(

    212cos2sin)(

    21

    2cos2sin)(212cos)(

    21)(

    21

    1211222211121122

    12112222112211

    TTTTTTTT

    TTTTTTTT

  • 63

    Fig. 4.5 CT2 T ),,( 221211 TTT ()

    )',','( 221211 TTT Mohr )

    )/tan )....(cos(sincos 22 abbaba =+=+ )/tan )....(sin(sincos 22 abbaba =+= 4.66

    4.65 .

    )22cos()(2/1' 221111 ++= aTTT )22sin('12 = aT

    )22cos()(2/1' 221122 += aTTT 2/1

    1222

    2211 ])(4/1[ TTTa += )/()2(2tan 221112 TTT = 4.67

    a Mohr , T () ( ) .( 2/1== a

    )]/()2[(tan 1211121 TTT 'ijT .

    4.67 ijT

  • 64

    'ijT 4.59 Mohr . Mohr 2 , . 3 CT2 Mohr .

  • 65

    5.

    Fig. 5.1 Fig. 5.2

    ,

    . X Y Z . , 5.1 X 5.2 . x , .

    dzdxdzdxdyy

    dydzdydzdxx xy

    xyxyx

    xx

    ++ )()(

    0)( =+++ Xdxdydzdxdydxdydz

    z zxzx

    zx 5.1

  • 66

    0)( =++

    +

    dxdydzXzyxzxxyx 5.2

    0=++

    +

    Xzyxzxxyx 5.3

    y,z . ,

    0=++

    + X

    zyxzxxyx

    0=++

    +

    Yzyxyzyxy

    0=++

    + Z

    zyxzyzzx 5.4

    , , , . 3 3 6. 2 5.4 z , .

    0=++

    Xyxxyx

    0=++

    Y

    yxyxy 5.5

    2 , 2 3. 2 3 . , 5.5 ),( r

  • 67

    .

    01 =+++

    r

    rrr Frrr

    021 =+++

    F

    rrrrr 5.6

    FFr r .

  • 68

    6. Saint-Venant

    Fig. 6.1

    , 6.1 . . 6.1(b), 6.1(a)

    . (a) A-A, B-B, C-C , (c) . (c) , P

  • 69

    . A-A C-C

    , C-C . 6.1(b) , L=2W, C-C . 6.2, .

    Fig. 6.2 , A-A 5.1 A-A

    . C-C 5.1 . , 6.1 P 6.2 P 2 , C-C .

  • 70

    . Saint-Venant . 7.

    , . . . . 7.1

    . 0 , . 7.1 , 2 const= , . , no , nto , , . x, y ,X Y .

    Xmxyx =+ A Ymyxy =+ A

    ),( mA x, y .

  • 71

    Fig 7.1

    , ,

    . , () . , Saint-Venant . , . 7.2 .

    0 . . ,

  • 72

    - .

  • 73

    8. 2

    2 , , CLOSED FORM SOLUTION , . CLOSED FORM SOLUTION . 2 , CLOSED FORM SOLUTION , . CLOSED FORM SOLUTION 2 , , . 8.1 8.1.1 (Plane Stress Problem) x-y , z

    ),,( xyyx 0 . . , . Hooke .

    )(1 yxx E = )(1 xyy E =

  • 74

    )( yxz E += G

    xy

    xy

    = 0= z 0= yz 0= zx 8.1 8.1.2 (Plane Strain Problem)

    ( z) . , , . , . .

    , y . Poisson . , . , . ,

    . Hooke .

    )}({1 zyxx E += )}({1 xzyy E +=

  • 75

    0)}({1 =+= yxzz E )( yxz += G

    xy

    xy

    = 0= yz 0= zx 8.2 8.2 , .

    )(1 ** yxx E = )(1 *

    * xyy E = Gxy

    xy * = 8.3

    ,

    2*

    1 =EE )1(

    *

    = GEEG =+=+= )1(2)1(2 *

    **

    8.4 xyyx ,, , yx , , Young's modulus E Poisson 8.4 yx , . , Young's modulus E

    )1(1

    2 ,

    3.0 , 10% . 8.2

    )}({1 zxxx E += )( yxz +=

  • 76

    )1

    ()1(

    })1()1{(1

    ))}(({1

    2

    2

    yx

    yx

    yxyxx

    E

    E

    E

    =

    +=

    ++=

    )1

    ()1( 2 xyy E =

    8.2 ( )

    Fig 8.1

    . , . , . , .

  • 77

    , 8.1 . .

    0=x 0= x 0= xy ax = 0=x )(2 0 ayxy = 0=y 0= y 0= xy 8.5 ay= 0=y )(2 0 axxy =

    .

    20

    )(ax

    x = 20 )( ayy = )( 202 axyxy = 8.6 , .

    0=+

    yx

    xyx 0=+

    yx

    yxy 8.7 8.6 8.7 , x, y 8.6 . 8.6 8.1 . Hooke , .

    ayx

    EE yxx 2

    22

    0)(1 ==

  • 78

    axy

    EE xyy 2

    22

    0)(1 ==

    axy

    GGxy

    xy 202 == 8.8 yv

    xu

    yx =

    = , , , )()

    3(1 2

    3

    20 yfxy

    Eu x

    a+= 8.9

    )()3

    (1 23

    20 xgyx

    Ev

    ya

    += 8.10 , )(yf y , )(xg x

    .

    xxg

    yyfxy

    Eaxv

    yu

    xy +

    +=+

    = )()(4 2 0 8.11

    , xy 7.8 xy . , .

    yxxyxyyx

    =+

    22

    2

    2

    2

    8.12

    ,

    . , , 8.8 xy 8.11 xy

  • 79

    , , . 8.3

    2 (, , ) .

    8.7 , 2 3. , (x, y) .

    ),( yxfx = ),( yxgy = ),( yxhxy = 8.13

    , , 8.7 . 3 2, 8.13 1 . , f(x, y) , xy 8.7 .

    )(),( xGdyx

    yxfxy +

    = 8.14 )(xG x . , 8.13 , ,

    2

    2

    yx = . x

    , 8.7 xy y . , ,

  • 80

    2

    2

    yx = 2

    2

    xy =

    yxxy =

    2

    8.15

    x , y , xy , Airy's stress function ( ) . 8.15 , 8.12 , Hooke

    yxExyExyxyyx

    +=

    +

    22

    2

    2

    2 )1(2)()(1 8.16

    8.15 , .

    02 44

    22

    4

    4

    4

    =+

    +

    yyxx 8.17

    Laplacian 22

    2

    22

    yx +

    = ,

    0))(( 422222

    2

    22

    2

    2

    2

    2

    ===+

    +

    yxyx

    8.18

    . . 8.18 E, . E .

    xyyx ,, 8.3

  • 81

    . 8.18 , 21, )( 21 + , 1 2 . (Principle of superposition) . , , . 8.4

    . , ),( r . , 8.18 . ,

    0)11)(11 22

    22

    2

    2

    2

    22

    2

    =+

    +

    +

    +

    rrrrrrrr 8.19 , .

    2

    2

    2

    11

    +=

    rrrr 2

    2

    r= )1(

    =rrr

    8.20

    , r , 0= r r r 8.19 .

    0)1)(1( 22

    2

    2

    =++drd

    rdrd

    drd

    rdrd 8.21

    ,

  • 82

    0112 32

    23

    3

    4

    4

    =+++drd

    rdrd

    rdrd

    rdrd 8.22 , )log( rtorer t == ,

    0)2( 22 = DD 8.23 ,

    dtdD = .

    8.23

    eCCCC ttt 2'4'3'2'1 )( +++= 8.24 r ,

    DCrrBrrA +++= 22 loglog 8.25 ABCD .

  • 83

    Fig 8.3

    8.20 .

    )log21(21 2 rBrAC

    drd

    rr+++==

    )log23(2 222

    rBrAC

    drd ++== 8.26

    8.26 8.3(a)-(c) . A, B, C 8.3(a)-(c) . 3 . 8.3(a) , 3 . : (i) r = a 1 =r

    (ii) r = b 2 =r : u, v r . , u , v=0 . .

    drdu

    r = 8.27

    ru= 8.28

    8.28 u , 8.27

    drdu

  • 84

    . . ,r Hooke , 8.26 , A, B, C . , . 8.27 8.28

    04)()(1)(1)( ===EB

    drd

    drd

    Er

    EEdrrd r

    rrr

    8.29 B=0 8.30 , 8.3(a) .

    22 rACr += 221 r

    CCr +=

    22 rAC = 221 r

    CC = 8.31 8.31, . 8.3(b) , v

    0B . ) a, b iP , 0P ? (Hint> r = a, R = b (8.31) .)

  • 85

    8.4.1

    Fig 8.8

    , . (stress concentration) . , , .

    , 8.8 , x 0 =x , a

    . , , , , . 8.8 .

    , 8.8 04 = ( 8.18) . Saint-venant , , . 1) 0 =x 0=y 0=xy at Edge (Cart.) 2) 0=r 0= r at )( ar = (Polar)

  • 86

    Fig. 8.5

    , 1), 2) . , 2) , 1) . , 1) . 1)

    22cos

    2cos 0020

    +==r 22sin0 =r

    1 ) 2) , 8.4 8.5 . 8.5(b) . 8.5(c) .

    =

    021 =r

    abb >>)(

    (a) + 2cos21

    0=r

    2sin21

    0=r(c) b >> a

  • 87

    ,04 = a) ar = 0=r 0= r b) =r

    22cos0 =r 2

    2sin0 =r , 8.19 (a), (b) . , abr >>= .

    2cos

    2111

    02

    2

    2 =+

    =rrrr

    2sin2

    1)( 0=

    =

    rrr 8.33

    8.33 , .

    2cos)( = rf 8.34 , f(r) r . 8.34 8.19 , 2cos .

    0)41)(41( 222

    22

    2

    =++r

    fdrdf

    rdrfd

    rdrd

    rdrd 8.35

    ,

    0992 322

    23

    3

    4

    4

    =++drdf

    rdrfd

    rdrfd

    rdrfd 8.36

    8.22 , 423

    42

    21)( Cr

    CrCrCrf +++= 7.37

  • 88

    2cos)( 4234221 CrCrCrC +++= 8.38

    2cos)462(11 244312

    2

    2 rC

    rCC

    rrrr++=

    += 8.39

    2cos)6122( 4322122

    rCrCC

    r++=

    = 8.40

    2sin)2662()1( 2443221 r

    CrCrCC

    rrr+=

    = 8.41

    (a), (b) 41 ~CC ,

    01 41=C 02 =C 0

    4

    3 4aC = 0

    2

    4 2aC = 8.42

    8.39~8.41 , 8.5(c)

    . 8.5(b) , 8.5(a) .

    2cos)431(2

    )1(2 2

    2

    4

    40

    2

    20

    ra

    ra

    ra

    r ++=

    2cos)31(2)1(2 44

    02

    20

    ra

    ra ++=

    2sin)231(2 22

    4

    40

    ra

    ra

    r += 8.43

    8.43 . .

    ar = 0=r 0= r 8.44 2cos2 00 = 8.45

  • 89

    8.44 , 8.45

    , 2 = , ,0=

    .

    2 = 0max 3 = ,0= 0min =

    8.5(a) ,

    3 , Kt=3 . , 8.6 . y

    x .

    .

    Fig 8.6

  • 90

    8.4.2 8.7 , , , x y .

    +

    ++

    ++= 22

    222

    2 )()(3

    21

    )1(1

    11

    babba

    baba

    baba

    baa

    oy

    + ba

    aba

    bba

    b 232

    2

    )1(4 8.46

    ,

    2222

    , bacc

    cxx =+= 8.47 A(x=a) y . maxy

    oy ba

    += 21 8.48

    x x

    y

    0A

    B

    aa

    t t

    b

    0

    0

  • 91

    t t

    0

    0

    +t21K t

    Fig. 8.7

    tK

    t

    baKt 21

    21 +=+= 8.49 A ab /2= , at = . B x b/a .

    oxB = 8.50 8.47 8.50 . , .

    0

    +t21K t

    0

    Fig. 8.8 Fig. 8.9

  • 92

    8.8 , , 8.9 . 8.9 , . . . 8.4.3 (Edge)

    x x

    y y

    P Q

    Fig. 8.10 Fig. 8.11

    8.10 8.11 ,

    , . .

    , 04 = . 8.10 , .

    (1) 2 = 0, = r

  • 93

    (2) r yx FF , r PFF yx == ,0 .

    8.20 ( ) , .

    2 = . const

    r=

    . 1 constr

    = 8.51

    .

    )( fr = 8.52 8.50 04 =

    )11)(11(2

    22

    2

    2

    2

    22

    2

    +

    +

    +

    +

    rrrrrrrr

    0)2(1 22

    4

    4

    3 =++= fdfd

    dfd

    r

    02 22

    4

    4

    =++ fd

    fdd

    fd 8.53

    A-D .

    sincossincos DCBAf +++= 8.54 , 8.52 8.54 ,

    )sincossincos( DCBAr +++= 8.55 8.20 ,

    )cos2sin2(1 DCrr

    += 0= 0= r 8.56

  • 94

    8.10 r C=0 .

    cos2rD

    r = 8.57 (2) ,

    =22

    cos Prdr 8.58

    =22

    0sin rdr 8.59

    8.57 8.58

    PD = 8.60

    , 8.10 .

    sin= rP 8.61

    rP

    r

    cos2 = 0= 0= r 8.62

    r 0 , simple

    radial distribution . 8.11 , .

    cos= rQ 8.63

    rQ

    r

    sin2 = 0= 0= r 8.64

  • 95

    , simple radial distribution , 8.10 8.11 simple radial distribution . 8.4.4

    x

    y

    = ++ o

    3rP

    ord

    (a) (b) (c) (a)

    or

    1r1 r1 2r

    r2

    2

    Fig. 8.12

    8.12 ,

    ( P) , , . 8.12(a) , (b),(c) (d) . (b) (c) 8.10 , d r1, r2 .

    1

    11

    cos2r

    Pr

    = 8.65

    2

    22

    cos2r

    Pr

    = 8.66

    221 =+ 11 cosdr = 22 cosdr =

  • 96

    1r 2r . dP

    r 2

    1 = dP

    r 2

    2 =

    21 rr = ),( ),( 2211 rr , (b)(c) ,

    dP

    2 .

    , (d) dP

    r 2

    3 = . , (b),(c),(d) (a) y x

    dP

    x 2= 8.67

    x y

    ])4(

    41[223cos4 2224

    xdd

    dP

    dP

    rP

    y +=+=

    .

  • 97

    8.5

    . . , . 8.5.1

    O

    y

    xl

    T x

    y

    rdr

    d

    z

    z z

    Fig. 8.13

    . 8.13 zz = , z . d T r dr dT .

  • 98

    drrdT z 22= 8.68

    2/dr = , z max ,

    maxmax 2/2 d

    rdr

    z == 8.69

    === max32/0 max3 164 ddrrddTTd

    8.70

    PZT

    dT == 3max 16 8.71

    0 1

    Fig. 8.14

    o ,

    8.14

    PP GIT

    dGZT

    dGd====

    )2/()2/(2/max

    0 8.72

    32

    4dI P= 8.73

  • 99

    PGITll == 0 8.74

    8.71 8.74 2 . 8.5.2 (Thin-walled)

    (a) (b)

    Fig. 8.15

    8.15 T . () A,B 8.15(b) . 8.15(b) . A,B ,

    11 = BBAA hh 8.75

    BA hh , A,B . A,B 8.75

  • 100

    .

    .consth= 8.76 8.76 .

    Fig. 8.16

    T

    8.16 ds O z ,

    rhdsdT = 8.77 (9) , == dsrhdsrhT 8.78

    , dsr OCD 2 dsr

    A 2 . ,

    hAT 2= 8.79

    T o T .

  • 101

    = 02 212 ThdsG 8.80 (12) (13)

    = hdsGAT20 4 8.81

    0h 0s .

    02

    00 4 GhA

    Ts= 8.82 8.5.3 Saint-Venant

    Saint-Venant . 3 .

    (i) z=0 1zz = , 2zz = 21,

    2121 // zz= 8.83 (ii) z . (iii) . (iii)

  • 102

    . 0 . (i) (ii) .

    T

    z

    O x

    y

    Fig. 8.17

    (x + u, y + v)

    0r(x , y)

    0

    O x

    y

    Fig. 8.18

    Saint-Venant

    . 8.17 . z x-y

  • 103

    0 . x,y,z u,v,w , Saint-Venant .

    ===

    ),(00

    0

    yxwzxv

    zyu

    8.84

    o , ),( yx

    0),( =yx . Navier O . Saint-Venant 8.18 ,, . 8.84 .

    +=

    +=

    =

    +=

    ====

    )(

    )(

    0

    0

    0

    xyz

    vyw

    yxz

    uxw

    yz

    zx

    xyzyx

    8.85

    +=

    =

    ====

    )(

    )(

    0

    0

    0

    xy

    G

    yx

    G

    yz

    zx

    xyzyx

    8.86

  • 104

    8.85 , 8.86 ),( yx . , . , 8.84 , . 8.5.4

    , , . . ()

    0=++

    + Z

    zyxzyzzx 8.87

    (x,y) . ,

    0,0 == Zz

    0=+

    yxyzzx 8.88

    ),(),,( yxgyxf yzzx == 2

    8.88 , yzzx , . ),( yxf

    yzx =

    xyz = 8.89

    . .

  • 105

    () () 8.18,

    0)( =+

    yxxzxyz 8.90

    0)( =

    yxyzxyz 8.91

    0)( =+

    yxzzxyz 8.92

    . zxyz , z

    8.92 . 8.90 8.91

    'Cyxzxyz =

    + 8.93

    Cyxzxyz =

    + 8.94

    8.93 8.94

    Saint-Venant 8.84 8.85 8.86 . 8.89 8.94

    Cyx

    =+

    2

    2

    2

    2 8.95 , 8.86 8.94 ,

    02 GC = 8.96

    02

    2

    2

    2

    2 Gyx

    =+

    8.97

  • 106

    8.97 . ()

    x

    y

    z

    A

    B A

    B

    x

    y

    l

    m

    1

    A

    B A

    B

    O1 m

    l1

    O2

    yz

    xz x

    y

    dy

    dx

    A

    Bds

    Fig. 8.19

    8.19

    . AA BB . ,

    21 'OAAO z BBOO '21 z 0 . , z

    011 =+ ml yzzx 8.98

    l,m x,y s .

    dsdxm

    dsdyl == , 8.99

  • 107

    , 8.99 8.98 0=

    dsdx

    dsdy

    yzzx 8.100 8.92

    0==

    +

    sdsdx

    xdsdy

    y 8.101

    , C ,

    C= () 8.102

    C , C=0 . , 8.97 8.102 T . 8.20 , 0= . , +By By y ,

    +Bx

    Bx .

    ==

    +

    =+=

    +=

    +

    +

    dydx

    dydxxdxdyy

    dydxx

    xy

    y

    dydxxy

    dydxxdydxyT

    B

    B

    B

    B

    xx

    yy

    yzzx

    yzzx

    2

    }]{[}]{[

    )(

    )(

    )(

    8.103

  • 108

    ,2= A dAT 8.104

    x

    y

    +By

    +BxBx

    By

    O

    dy

    dxT

    Fig. 8.20 () ( 8.21)

    01// 2222 =+ byax 8.102 C=0 .

    y

    xO a

    b

    a > b

    Fig. 8.21

  • 109

    )1( 22

    2

    2

    0 += by

    axC 8.105

    0C 8.97 8.104

    Cba

    baC += )(2 2222

    0 8.106

    33

    22

    0)(22

    babaTGC

    +== 8.107 8.5.5 (Membrane analogy)

    L. Prandtl(1903) , .

    O

    x

    y

    xq

    O

    dy

    s n

    dx

    dy

    dx

    S S

    xdx

    z

    (a) (b) Fig. 8.22

  • 110

    q , 8.22 . , dxdy

    2

    2

    2

    2 1,1y

    zx

    z

    yx =

    = 8.108 , z . ,

    xx

    dxd = , yydyd = 8.109

    , S

    0=+ dyqdxSdxdySdydxyx 8.110

    8.108 8.110

    Sq

    yz

    xz =

    +

    2

    2

    2

    2

    8.111

    8.97 . , . z

    0= () 0=z 02 G Sq / = dxdyT 2 zdxdy2 ( 2

    )

  • 111

    n

    ( ) nz

    ( ) .

    Sqz

    G /2 0=

    8.112

    Sqnz

    Gn

    //

    2/

    0

    = 8.113

    Sq

    Gnz =

    02 8.114

    ,

    = qASdsnz 8.115 , 8.114 . = AGds 02 8.116 , memebrane analogy . 8.5.6

    const.= 02= const.

    0const.1 ==)a( )( b

    Fig. 8.23

  • 112

    8.23(a) . 8.23(b) . , membrane analogy . ()

    8.24 membrane analogy , q . .

    Sq

    yz

    xz =

    +

    2

    2

    2

    2

    8.117

    , 22 / yz 0/ 22 = yz ,

    Fig. 8.24

    Sq

    dxzd =2

    2

    8.118

    ,

    1CxSq

    dxdz += 8.119 x=0 0/ =dxdz 01 =C . ,

    22

    2Cx

    Sqz += 8.120

  • 113

    2/hx = z=0 SqhC 8/22 = . ,

    Sqhx

    Sqz

    82

    22 += 8.121

    , 2/hx =

    Sqh

    dxdz

    2max= 8.122

    V ,

    = 203

    122

    h

    SqbhbzdxV 8.123

    oG2 Sq / ,

    0

    3

    32 GbhVT == 8.124

    xG 02 = 8.125 0max hG= 8.126

    GbhT30

    3= 8.127

    2max3bh

    T= 8.128 8.5.7

    8.81 8.82 A

  • 114

    . . ()

    )a( )b(

    h

    b b

    h

    Fig. 8.25

    8.25 (a) (b) 01 02 .

    31

    013

    GbhT= 8.129

    hbGT

    GhAsT

    32

    202

    024

    4 == 8.130 21 TT =

    1)(4

    343 2

    3

    3

    02

    01 >>==hb

    bhhb

    8.131 0201 =

  • 115

    2

    2

    1 )(34

    bh

    TT

    = 8.132 1.0/ bh 321 104/ TT . 8.25(b) (a) .

  • 116

    9.

    , . . 9.1 (Strain energy) , , . Cauchy . Cauchy(1868) . Cauchy , .

    9.1~9.4 Cauchy . 9.1 zyx PPP ,, 9.1 zyx ( nm,,A ) .

  • 117

    Fig. 9.1

    nmP zxyxxx ++= A nmP zyyxyy ++= A nmP zyzzxz ++= A 9.1

    yxxy = xzzx = zyyz = 9.2

    0=++

    + X

    zyxzxyxx

    0=++

    +

    Yzyxzyyxy

    0=++

    + Z

    zyxzyzzx 9.3

    xu

    x =

    yv

    y =

    zu

    xw

    zx +

    = 9.4

  • 118

    Clapeyron . , 0E . , , 1E . , 01, EE 01 EEE = , 0>E . 0>E 0>E () . .

    9.2 , .

    zYXzxyxzxyx ,,,,,,

    Fig. 9.2 Fig. 9.3

    Xxx ,, 9.3

    udydzdxudydzdxx xx

    xx +

    + 21)()(

    21

  • 119

    dxdydzx

    udxdydz xxx +

    21

    21 dxdydz

    xu xxx )(2

    1+= 9.5

    XudxdydzdxdydzdxuX x 21)

    21(

    21 + 9.6 xz 9.4

    wdydzdzdxxwwdydzdx

    x zxxx

    zx +

    + 21)()(

    21

    dxdydzx

    wxw xz

    zx )(21

    +

    9.7

    Fig 9.4

    dxdydzy

    v yyy )(21

    + dxdydz

    zw zxz )(2

    1+

    dxdydzx

    vxv xy

    xy )(21

    +

    dxdydzy

    uyu xy

    xy )(21

    +

    dxdydzy

    wyw yz

    yz )(21

    +

    dxdydzz

    vzv yz

    yz )(21

    +

    dxdydzz

    uzu zx

    zx )(21

    +

  • 120

    Y,Z

    Yvdxdydz21 , Zwdxdydz

    21

    dU

    dxdydzZzyx

    w

    Yyyy

    vXzyx

    u

    dU

    zyzzx

    zyyxyzxyxx

    zxzxyzyzxyxyzzyyxx

    )](

    )()(

    )[(21

    ++

    ++

    ++

    +++

    ++

    +

    +++++=

    9.8 [ ] 2,3,4 0. ,

    dxdydzdU zxzxxx )(21 ++= 9.9

    U0 dU=dxdydz

    )(21

    0 zxzxyzyzxyxyxyxyzzyyxxU ++++++= 9.10 0U . Hooke 0U , .

  • 121

    )(21

    )}(2){(21

    222

    2220

    zxyxxy

    xzzyyxzyx

    G

    EU

    +++

    ++++= 9.11

    )(21

    )}{()()21)(1(2

    222

    22220

    zxyzxy

    zyxzyx GEU

    +++

    ++++++= 9.12

    0U . Poisson . 9.2 . , A , 1, 2 . 1: zxxzyx ,, 2: zxxzyx ,, 1, 2 , , , 1 ,

    0=++

    + X

    zyxzxxyx

  • 122

    0=++

    +

    Yzyxyzyxy

    0=++

    +

    Zzyx

    zyzxz 9.13 x,y,z

    zyx PPP , ( nm,,A )

    xzxyxx pnm =++ A yzyyxy pnm =++ A zzyzxz pnm =++ A 9.14

    , 2 9.14 9.15 . 9.15 9.16 1 2 = xxx

    0=+

    +

    zyxzxxyx 0=

    ++

    zyxyzyxy

    0=+

    +

    zyxzyzzx 9.17

    0=++ nm zxyxx A

    yzyyxy nm 0=++ A zzyzxz nm 0=++ A 9.18

    9.17 9.18 1 2 ,

  • 123

    . , 0, 0U 9.8 9.9

    0==== zyx == ,, yyxx , . , . , , , , () . 9.3 (Principle of virtual work) ,

    ( ) 0 . .

    , , 0 . . . ( .) S: V:S Su

    S :()

  • 124

    P: S )( zyx PPP F:(X,Y,Z)

    uS:wvu sU

    dSwPvPuPU

    s zyxs ++= )( 9.19 +++++= s yzyxyzxxyxs vnmunmU )()[( AA

    dSwnm zyzzx ])( +++ A +++++= s yzyxyzxxyx mwvuwvu )()[( A

    dsnwvu zyzzx ])( +++ 9.20 Gauss (Divergence theory) ,

    +++++= v yzyxyzxxyxs wvuywvuxU )()([ dVwvu

    z zyzzx)]( ++

    +

    vzyx

    uzyx

    yzyxyzxv

    xyx )()[( +

    ++

    ++

    = zw

    yv

    xuw

    zyx zyxzyzzx

    +

    ++

    ++

    + )(

    dVxw

    zu

    zv

    yw

    yu

    xv

    zxyzxy )]()()( +

    ++

    ++

    + 9.21 ,

    +++++ Vs zyx dVwZvYuXdSwPvPuP )()( dVzxzxV yzyzxyxyzzyyxx )( +++++= 9.22

  • 125

    . . , , . , . .

    Fig 9.5

    9.5 2 ,

    , .

  • 126

    sincos yx PP + += cos)sinsin( RQ ++ sin)coscos( RQ 9.4

    9.22 . 9.10 , +++V

    zxzxyyxx dV)(

    =++= V Vzxzxxx dVUdVUU

    000 )( 9.23

    8.22

    )2

    cos()2

    cos(

    sincos

    ++=+

    RQ

    PP yx

    coscossinsin

    RQPRQP

    y

    x

    +=+=

  • 127

    ++++=V

    zyS

    xV

    dVwZvYuXdSwPvPuPdVU )()(0

    9.24 ( zyx PPP ) (X,Y,Z)

    ++++=V

    zyS

    xV

    dVZwYvXudSwPvPuPdVU )()(0

    9.25 ,

    ++++=V

    zyS

    xV

    dVZwYvXudSwPvPuPdVU )()(0

    9.26 (potential energy of the system) . 9.26 1 , 3 , 2 .

    , 9.10 , . , , ,

    0= .

  • 128

    Fig. 9.6

    9.6 . . : 342321 xaxaxaaw +++= : ,0 0 10 === aw x 0 0 20 == = aw x

    34

    23 xaxaw += 243 32 xaxaw += xaaw 43 62 +=

    A A

    0 0

    22 )(21 )2/( dxwEIdxEIM

    000

    2)(21 MdxwEI = A

    A== xw0 )32()62(

    21)()(

    21 2

    4300

    2430

    0

    2 AAA

    A

    AaaMdxxaaEIwMdxwEI x ++== =

    )32()12124(21 2

    43032

    42

    432

    3 AAAAA aaMaaaaEI +++=

  • 129

    0=

    03

    =a 0

    4

    =a

    02)128(21

    042

    3 =+ AAA MaaEI

    03)2412(21 2

    043

    32 =+ AAA MaaEI

    EIMa2

    03 = 04 =a 202 xEI

    Mw = , , Rayleigh-Ritz 9.5

    Fig. 9.7 Fig. 9.8

    9.7 , U, P

    . P 9.8 . OBC CU (Complementary strain energy)

  • 130

    . , 9.7 .

    PUU C =+ 9.27 9.8

    = PU = UP 9.28

    PUC = PUC= 9.29

    , 9.7 , .

    EAPA= 9.30

    )2/()2/(21 22 AA EAEAPPUU C ==== 9.31

    9.7 P M,

    . 9.31 , PU / , 9.29 . 9.9 (a),(b) CUU P , PU / .

  • 131

    Fig. 9.9

    ,

    , () . , .

    0)()()( =++

    ++++

    + XXzyx

    zxzxyyxx 9.32 , (Castigliano) .

    dVUUUUUUU zxzx

    Cyz

    yz

    Cxy

    xy

    C

    Vz

    z

    Cx

    y

    Cx

    x

    CC ))(

    ++

    ++

    +=

    9.33

    xx

    CU = y

    y

    CU =

    +++=V

    zxzxyyxxC dVU )( 9.34

  • 132

    ++++= V xyzyxC xv

    yu

    zu

    yu

    xuU )()[(

    dVzu

    xw

    yw

    zv

    zxyz ])()( +

    ++

    +

    })()({})()(

    {})()([{z

    wz

    wy

    vy

    vx

    ux

    u zzyyxxV

    +

    +

    })()(

    {})()(

    {})()(

    {z

    vz

    vx

    vx

    vy

    uy

    u yzyzxyxyxyxy

    +

    +

    +

    dVz

    uz

    ux

    wx

    wy

    wy

    w zxzxzxzxyzyz }])()(

    {})()(

    {})()(

    {

    +

    +

    +

    9.35

    9.32

    +

    ++

    ++

    =V

    yzyxyzxxyxC z

    vy

    vx

    vz

    uy

    ux

    uU })()()(

    {})()()([(

    dVZuYuXuz

    wy

    wx

    w zyzzx )](})()()({ +++

    ++

    )()[( yzyxy

    Szxxyx nvmvvnumuu +++++= AA

    ++++++V

    zyzzx dVZwYvXudSnumww )()]( A

    +++++=V

    zyxS

    dVZwYvXudSPwPvPu )()(

    ++++++++=VSu

    zyxzyxS

    dVZwYvXudSPwPvPudSPwPvPu )()()( 000000

    0=== ZYX , 0000 === wvu (

  • 133

    ) xx PdSP =0 , yy PdSP =0 , zz PdSP =0 ( )

    =

    ++=n

    izyxC iPwPvPuU

    1)( 9.36

    xi

    Ci P

    Uu =

    yi

    Ci P

    Uv =

    zi

    Ci P

    Uw = 9.37

    xyz .

    i

    Ci P

    U= 9.38

    , , .

    ii

    UP = 9.39

  • 134

    10.

    . , , . , , . , 0 .

  • 135

    h, l, b . 9.1(a) (b) .

    O

    yl

    h x O

    y

    x

    Fig. 10.1

    10.1 oTyxT = ),(

    9.1(a) oyTxT T == 0=xyT 0=== xyyx . 10.1(b), lTo = . 10.1(b) l )1( oTl + , P l

    EBH

    PlTEbhTPl

    o

    o ++= 2)1(

    )1( 10.1

    ,

    EbhTP o= 10.2 , .

  • 136

    ETox = , 0=y , 0=xy 10.3 10.2

    hyTyxT o2),( =

    y , , 10.1(a)

    , . 10.1(b) , x

    hyToxT 2= x .

    hyETox 2= 10.4

    , 0x = lx = , x 0 , .

    ETbhM o62

    = 10.5 , M (). , 10.1(a) , 10.1(b)

    10.5 10.1(b) . 10.4 , 10.1(a) . , .

  • 137

    10.3 22),(

    =hyTyxT o

    , 10.2 , 10.1(a)

    . 10.1(b) , x

    22

    =hyToxT x

    .

    22

    =hyETox 10.6

    , 0x = lx =

    , P .

    ETbhbdyP oh

    h x

    32/

    2/== 10.7

    10.1(a) , 10.1(b)

    10.7 10.1(b) . , .

    ETbhp

    ox 31' == 10.8

    10.6 10.8 , .

    2231

    =

    hyETET oox 10.9

  • 138

    , 0x = lx = 10.9 . 10.9 , x 0 , 10.9 Saint-Venant . , 10.1(a) 10.9 .

    , Hooke . T , T ( ) () . Hooke . , . :

    [ ])(1 zyxx ET ++= [ ])(1 xzyy ET ++= [ ])(1 yxzz ET ++= 10.10

    Gxyxy / = , Gyzyz / = , Gzxzx / = 10.11 :

  • 139

    [ ])(1 zrr ET ++= [ ])(1 rzET ++= [ ])(1 ++= rzz ET 10.12

    Grr / = , Gzz / = , Gzrzr / = 10.13

    () , 10.10 10.12 2 . , , . 11.

    , , closed form solution . , , , .

  • 140

    , , , , . 11.1 1 1) ,

    Fig. 11.1 : kuF = Hooke , A

    )211 ( AAAA uukF = , )( 122 AAAA uukF = 11.1 ,

    =

    2

    1

    2

    1

    A

    A

    A

    A

    AA

    AA

    FF

    uu

    kkkk 11.2

  • 141

    11.2 .

    =

    2

    1

    2

    1

    2221

    1211

    A

    A

    A

    AAA

    AA

    FF

    uu

    kkkk 11.3

    , 2 Ak11 , Ak12 , jiij kk = k . ijk . Ak11 , 2 1 11 =Au , 1 ( 10.2). Ak12 , 1 2 12 =Au 1 ( 10.3).

    Fig. 11.2 Fig. 11.3

    .

    AA kk =11 , AA kk =12 , AA kk =21 , AA kk =22

    11.3 . [ ]{ } { }AAA fuk = 11.4 B , .

    =

    2

    1

    2

    1

    2221

    1211

    B

    B

    B

    BBB

    BB

    FF

    uu

    kkkk

    11.5

  • 142

    [ ]{ } { }BBB fuk = 11.6

    BB kk =11 , BB kk =12 , BB kk =21 , BB kk =22

    11.1 , 12 BA uu = , 11.3, 11.5 .

    +=

    +

    2

    12

    1

    3

    2

    1

    2221

    12112221

    1211

    0

    0

    B

    BA

    A

    BB

    BBAA

    AA

    FFF

    F

    uuu

    kkkkkk

    kk 11.7

    11 Auu = , 122 BA uuu == , 23 Buu = , 11.1 .

    =+=

    =

    0

    0

    12

    02

    1

    BA

    B

    FFFF

    u

    Fig. 11.4

    == ,, 1211 AAAA kkkk , 11.7

  • 143

    =

    +

    0

    1

    3

    2 00

    0

    )(0

    F

    F

    uu

    kk

    kkkkkk A

    BB

    BBAA

    AA

    11.8

    11.8 132 ,, AFuu . ,

    , . 11.8 , .

    =+=+

    =

    032

    32

    12

    0)(Fukukukukk

    Fuk

    BB

    BBA

    AA

    11.9

    32 ,uu , 11.9 2,3 ,

    1 1 , , 1AF . .

    AkFu 02 = ,

    BA kF

    kFu 003 += , 01 FFA = 11.10

    . , , . , 11.7 () . , 11.8 11.9 1 . 2:

  • 144

    Fig. 11.5

    A 1 11.1 .

    =

    2

    1

    2

    1

    2221

    1211

    A

    A

    A

    AAA

    AA

    FF

    uu

    kkkk

    11.11

    A

    AAA

    lESk =11 ,

    A

    AAA

    lESk =12 ,

    A

    AAA

    lESk =21 ,

    A

    AAA

    lESk =22 11.12

    B

    =

    2

    1

    2

    1

    2221

    1211

    B

    B

    B

    BBB

    BB

    FF

    uu

    kkkk

    11.13

    B

    BBB

    lESk =11 ,

    B

    BBB

    lESk =12 ,

    B

    BBB

    lESk =21 ,

    B

    BBB

    lESk =22 11.14

    11.11 11.13 , 1

    +=

    +

    2

    12

    1

    3

    2

    1

    2221

    12112221

    1211

    0)(

    0

    B

    BA

    A

    BB

    BBAA

    AA

    FFF

    F

    uuu

    kkkkkk

    kk 11.15

    2312211 ,, BBAA uuuuuuu ==== .

  • 145

    11.5 ,

    +=

    +

    2

    12

    1

    3

    2

    1

    0

    )(

    0

    B

    BA

    A

    B

    BB

    B

    BB

    B

    BB

    B

    BB

    A

    AA

    A

    AA

    A

    AA

    A

    AA

    FFF

    F

    uuu

    lES

    lES

    lES

    lES

    lES

    lES

    lES

    lES

    11.16

    11.16 . 11.2

    1 . FEM 1 2 3 . , , . FEM , . 11.3 3

    11.6 11.6(b) . c . , . 11.6 , , , b

  • 146

    . , 1 , . 11.7 3 6 . , 1, 2 . ,

    Fig. 11.6(a) Fig. 11.6(b)

    Fig. 11.7 [ ] [ ] { }fuk = 11.17

  • 147

    [ ]

    =

    666564636261

    565554535251

    464544434241

    363534333231

    262524232221

    161514131211

    kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

    k 11.18

    [ ]

    =

    k

    k

    j

    j

    i

    i

    vuvuvu

    u , [ ]

    =

    k

    k

    j

    j

    i

    i

    YXYXYX

    f 11.19

    2 , lmk .

    lmk , . lmk . - - () , -

    , , . , . , , . , .

    , lmk ,

  • 148

    . 11.4

    . )(

    1 2 yxxE += , )(1 2 xyy

    E += , 0=z

    xyxyxyEG )1(2 2== , 0=yz , 0=zx 11.20

    11.20 , { } [ ]{ } D= 11.21 ,

    { }

    =xy

    y

    x

    , { }

    =xy

    y

    x

    , [ ]

    =

    2/)1(000101

    1 2

    ED

    11.22 ,

    =

    xy

    y

    x

    xy

    y

    x E

    2/)1(000101

    1 2 11.23

    11.5

    11.6 , ()

  • 149

    , , . , , , . , , . , , , . , . , , . .

    yxu 321 ++= , yxv 654 ++= 11.24

    , 11.24 ,

    , . , 11.8 11.9 . 11.8 11.9 , .

  • 150

    Fig. 11.8 Fig. 11.9

    , 24

    ++=++=++=++=++=++=

    kkkkkk

    jjjjjj

    iiiiii

    yxvyxuyxvyxuyxvyxu

    654321

    654321

    654321

    ,

    ,,

    11.25

    , .

    11.25 , { } [ ]{ }Tu = 11.26 ,

    { }

    =

    =

    =

    6

    5

    4

    3

    2

    1

    }{,

    10000001

    10000001

    10000001

    ][,

    kk

    kk

    jj

    ji

    ii

    ii

    k

    k

    j

    j

    i

    i

    yxyx

    yxyx

    yxyx

    T

    vuvuvu

    u

  • 151

    }{][}{ 1 uT = 11.27

    =

    21]T[ 1

    ijkijk

    jiikkj

    ijjikiikjkkj

    ijkijk

    jiikkj

    ijjikiikjkkj

    xxxxxxyyyyyy

    yxyxyxyxyxyxxxxxxxyyyyyy

    yxyxyxyxyxyx

    000000

    000000

    000

    000

    11.28

    kk

    jj

    ii

    yxyxyx

    111

    det2 = 11.29

    .

    xv

    yu

    yv

    xu

    xyyx +

    ==

    = 11.30 11.24 11.30 .

    5362 +=== xyyx 11.31 11.31 ,

  • 152

    )16()63(

    010100100000000010

    6

    5

    4

    3

    2

    1

    =

    xy

    y

    x

    11.32

    , { } ]][[ B= 11.33 11.27 11.33 , { } ]][[][]][[ 1 uNuTB == 11.34

    1]][[][ = TBN

    11.34 x,y , . , . , , , .

    { } { } Txyxyyyxxw =++=int 11.35 11.21 ,

    { } { } ][int Dw T= 11.34 ,

    { } { }uNDNuw TT ]][[][int = 11.36 1

  • 153

    { } { }udxdydzNDNudvolwW TT

    V

    ]]][[][[intint == 11.37 ,

    }{][ uFW Text = 11.38 , F ,

    { }

    =

    k

    k

    j

    j

    i

    i

    YXYXYX

    F 11.39

    , { } { } { } { }udzdydxNDNuuF TTT ]]][[][[ = 11.40 , , { } { } ]]][[][[ = dzdydxNDNuF TTT { } { }udzdydxNDNF T ]]][[][[ = 11.41 11.41 [ ] . , [ ] = dzdydxNDNk T ]][[][ 11.42 to

  • 154

    [ ] = dydxNDNtk T ]][[][0 11.43 x,y [ ] ]][[][0 NDNtk T= 11.44 [ ]k 11.18 66 , 11.28, 11.32 11.34 .

    [ ] [ ][ ]

    ==

    jiijikkikjjk

    ijkijk

    jiikkj

    yyxxyyxxyyxxxxxxxx

    yyyyyyTBN 000

    000

    211

    11.45 , [ ]D 11.22 , [ ]k .

    )1(4 20

    =Etc

    += 2211 )(2

    1)( jkkj xxyyck

    += )()(

    21)()(12 kjjkjkkj yyxxxxyyck

    += )()(

    21)()(13 kijkikkj xxxxyyyyck

    += )()(

    21)()(14 ikjkkikj yyxxxxyyck

    += )()(

    21)()(15 ijjkjikj xxxxyyyyck

  • 155

    += )()(

    21)()(16 jijkijkj yyxxxxyyck

    1221 kk =

    += 2222 )(2

    1)( kjjk yyxxck

    += )()(

    21)()(23 kikjikjk xxyyyyxxck

    += )()(

    21)()(24 ikkjkijk yyyyxxxxck

    += )()(

    21)()(25 ijkjjijk xxyyyyxxck

    += )()(

    21)()(26 jikjijjk yyyyxxxxck

    ,1331 kk = 2332 kk =

    += 2233 )(2

    1)( kiik xxyyck

    += )()(

    21)()(34 ikkikiik yyxxxxyyck

    += )()(

    21)()(35 ijkijiik xxxxyyyyck

    += )()(

    21)()(36 jikiijik yyxxxxyyck

    ,1441 kk = ,2442 kk = 3443 kk =

    += 2244 )(2

    1)( ikki yyxxck

    += )()(

    21)()(45 ijikjiki xxyyyyxxck

    += )()(

    21)()(46 jiikijki yyyyxxxxck

    ,1551 kk = ,2552 kk = ,3553 kk = 4554 kk =

  • 156

    += 2255 )(2

    1)( ijji xxyyck

    += )()(

    21)()(56 jiijijji yyxxxxyyck

    ,1661 kk = ,2662 kk = ,3663 kk = ,4664 kk = 5665 kk =

    += 2266 )(2

    1)( jiij yyxxck

    11.6

    , . A,B .

  • 157

    3

    4

    Fb

    Fa

    2

    1

    1

    2

    Fig. 11.11

    11.11, , 4

    . , . , .

    ==

    b

    a

    FyFxvyux

    "

    ""

    4

    01 03,1

    11.46

    , 1 , 1

    }{][}{ 111 kf = 11.47 , .

  • 158

    =

    3

    3

    2

    2

    1

    1

    166

    161

    126

    122

    121

    116

    115

    114

    113

    112

    111

    13

    13

    12

    12

    11

    11

    vuvuvu

    kk

    kkkkkkkkk

    YXYXYX

    """""""######"""""

    11.48

    , mnX , mnY m , n . mk11 , mk12 , .

    11.46 11.48 .

    ,

    ,

    ,

    31562

    1542

    153

    13

    31362

    1342

    133

    12

    31162

    1142

    113

    11

    vkvkukXvkvkukXvkvkukX

    ++=++=++=

    ++=++=++=

    31662

    1642

    163

    13

    31462

    1442

    143

    12

    31262

    1242

    123

    11

    vkvkukYvkvkukYvkvkukY

    11 .49

    2

    =

    4

    4

    2

    2

    3

    3

    266

    261

    226

    222

    221

    216

    215

    214

    213

    212

    211

    24

    24

    22

    22

    23

    23

    vuvuvu

    kk

    kkkkkkkkk

    YXYXYX

    """""""######"""""

    11.50

    , 1 11.49

    10.46 .

  • 159

    42664

    2652

    2642

    2633

    262

    24

    42564

    2552

    2542

    2533

    252

    24

    42464

    2452

    2442

    2433

    242

    22

    42364

    2352

    2342

    2333

    232

    22

    42264

    2252

    2242

    2233

    222

    23

    42164

    2152

    2142

    2133

    212

    23

    vkukvkukvkY

    vkukvkukvkx

    vkukvkukvkY

    vkukvkukvkx

    vkukvkukvkY

    vkukvkukvkx

    ++++=++++=++++=++++=++++=++++=

    11.51 ,

    24

    24

    23

    13

    22

    12

    22

    12

    ,

    0,0,0

    YFXFYYYYXX

    ba ==+=+=+=

    11.52

    , 11.49 11.51 .

    )853.11(

    )753.11(

    )653.11()()()(

    )553.11()()()(

    )453.11()()()(

    )353.11()()()(

    )253.11(

    )153.11(

    42664

    2653

    2622

    2642

    263

    24

    42564

    2553

    2522

    2542

    253

    24

    42264

    2253

    222

    1662

    224

    1642

    223

    163

    23

    13

    42164

    2153

    212

    1562

    214

    1542

    213

    153

    23

    13

    42464

    2453

    242

    1462

    244

    1442

    243

    143

    22

    12

    42364

    2353

    232

    1362

    234

    1342

    233

    133

    22

    12

    31262

    1242

    123

    11

    31162

    1142

    113

    11

    ++++=++++=

    +++++++=++++++++=++++++++=++++++++=+

    ++=++=

    vkukvkvkukYvkukvkvkukX

    vkukvkkvkkukkYYvkukvkkvkkukkXXvkukvkkvkkukkYYvkukvkkvkkukkXX

    vkvkukYvkvkukX

    11.53 8 , 4

    . 11.53, 53-3, 53-4, 53-6, 53-7, 53-8 5 11.52 , . 5, 5

  • 160

    . , 53-1,53-2,53-5 ( ) .

    +++++++++

    =

    4

    4

    3

    2

    2

    266

    265

    262

    264

    263

    256

    255

    252

    254

    253

    226

    225

    222

    166

    224

    164

    223

    163

    246

    245

    242

    146

    244

    144

    243

    143

    236

    235

    232

    136

    234

    134

    233

    133

    )()()(

    )()()(

    )()()(

    0000

    vuvvu

    kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

    FF

    b

    a

    11.54

    11.54 1.

    , 53-1, 53-2, 53-5 . 11.54 . { } [ ]{ }KF = 11.55

    11.54 , 11.34 . 11.23 . , , . . 11.11 , 11.54 5 , . , 2 , 100 200 1 .

  • 161

    11.7

    Fig. 11.12

    Fig. 11.13

  • 162

    Fig. 11.14

    , 11.12 .

    A b . b . 11.13 a , . , . 11.14 . , .