AC 2004 presentation.PPT

Embed Size (px)

Citation preview

  • 8/10/2019 AC 2004 presentation.PPT

    1/219

    Air Conditioning 2004

  • 8/10/2019 AC 2004 presentation.PPT

    2/219

  • 8/10/2019 AC 2004 presentation.PPT

    3/219

  • 8/10/2019 AC 2004 presentation.PPT

    4/219

  • 8/10/2019 AC 2004 presentation.PPT

    5/219

    Service AdvisorsGustave Larson A. Company

    Plymouth Office: 800-827-9508

    763-546-9508

    Gale Patterson ext. 343Steve LeMay ext. 346

    Pewaukee Office: 800-829-9609Steve Bukosky ext. 247

    Tim Chamberlain ext. 285

  • 8/10/2019 AC 2004 presentation.PPT

    6/219

    Air Conditioning 2004

    Thermodynamics

    InstallationAir Flow

    R410 vs R22Service

  • 8/10/2019 AC 2004 presentation.PPT

    7/219

    Air Flow

  • 8/10/2019 AC 2004 presentation.PPT

    8/219

    Thermodynamics

    Saturation Temperature

    Density of Refrigerant VaporEnthalpy

    Superheated Vapor

    Sub-cooled Liquid

  • 8/10/2019 AC 2004 presentation.PPT

    9/219

    Heat Transfer

    Hot Object Cold Object

    HEAT

  • 8/10/2019 AC 2004 presentation.PPT

    10/219

  • 8/10/2019 AC 2004 presentation.PPT

    11/219

    212

    0

    32

    One pound of water being heated at one BTU per hour.

    Temperature of the

    water.

    1310 total BTUs used.

    16 144 180 966158 340 1306

  • 8/10/2019 AC 2004 presentation.PPT

    12/219

    Basic Refrigeration

  • 8/10/2019 AC 2004 presentation.PPT

    13/219

    Basic Refrigeration

    Liquid LineLiquid Line MeteringDevice

    Evaporator

    Compressor

    Condenser

    Hi SideLow Side

  • 8/10/2019 AC 2004 presentation.PPT

    14/219

  • 8/10/2019 AC 2004 presentation.PPT

    15/219

    What is Saturation

    Temperature?

    Saturation temperature is the actual

    temperature of the evaporator andcondenser coils.

    In saturation conditions, both vapor

    and liquid are present

  • 8/10/2019 AC 2004 presentation.PPT

    16/219

    How do you find Saturation

    Temperature?Refrigeration Gauges

    The Only purpose of owning aset of gauges is to find therefrigerant saturationtemperature.

  • 8/10/2019 AC 2004 presentation.PPT

    17/219

    Saturated Refrigerant

    Liquid Line

    Suction Line

    Evaporator

    Condenser

    Discharge Line

    Compressor

    MeteringDevice

  • 8/10/2019 AC 2004 presentation.PPT

    18/219

  • 8/10/2019 AC 2004 presentation.PPT

    19/219

    Saturated Refrigerant

    Liquid and Vapor inContact with EachOther in Equilibrium

    Pressure andTemperature TiedTogether

    P/T Chart is

    Applicable

    Saturated Refr igeration

    Example: Conditions, R-22 - 287 PSIG

    128F Temperature

    P-T Chart at 287 PSIG R-22 = 128F

    Line Temperature = 128F

    Refrigerant is Saturated

  • 8/10/2019 AC 2004 presentation.PPT

    20/219

    Pressure/Temperature Chart

  • 8/10/2019 AC 2004 presentation.PPT

    21/219

  • 8/10/2019 AC 2004 presentation.PPT

    22/219

    Thermodynamics/Condenser Coil

    Purpose of condenser coil is to reject theheat load absorbed by evaporator coil, andto cool the refrigerant to a level that is

    below the saturation temperature.-This is accomplished through (1) LatentHeat Transfer, and (2) Sensible Ht.Transfer.

    -Proper sub-cooling prevents saturatedrefrigerant from leaving the condenser,thus optimizing metering deviceperformance.

  • 8/10/2019 AC 2004 presentation.PPT

    23/219

    Sub-Cooled Liquid

    Typical sub-cooling levels - 5 to 20 degrees-Not enough sub-cooling, or large pressure

    losses in the liquid line create theformation of flash gas will affect theoperation of the metering device.-10 degrees overcomes 35PSIG of liquid

    line pressure drop in R-22 systems.-10 degrees overcomes 50PSIG of liquidline pressure drop in R-410A systems.

  • 8/10/2019 AC 2004 presentation.PPT

    24/219

    Sub-Cooled Liquid

  • 8/10/2019 AC 2004 presentation.PPT

    25/219

    Sub-Cooling

    Heat Removed fromthe Liquid Refrigerantthat Causes its

    Temperature to DropBelow its SaturationTemperature

    P/T Charts do not

    Apply- TemperatureDrops without a Dropin Pressure

    Sub-Cooling

    Example: Conditions, R-22 - 280 PSIG

    120F Line Temperature

    P-T Chart at 280 PSIG = 125F

    Line Temperature = 120F5F

    Refrigerant Sub-cooled at 5F

  • 8/10/2019 AC 2004 presentation.PPT

    26/219

    Sub-Cooled Liquid

    Liquid Line

    Suction Line

  • 8/10/2019 AC 2004 presentation.PPT

    27/219

  • 8/10/2019 AC 2004 presentation.PPT

    28/219

    Thermodynamics/Evaporator Coil

    Purpose of evaporator coil is to absorb theheat load from the space being conditionedand to evaporate the liquid refrigerant to alevel above the saturated temperature.

    This is accomplished through (1) LatentHeat Transfer, and (2) Sensible HeatTransfer.Proper superheating prevents liquid refrig

    from leaving the evaporator, thusoptimizing the removal of heat from thespace and protecting the compressor fromdamage

  • 8/10/2019 AC 2004 presentation.PPT

    29/219

    Superheat Principles

    Superheat is the temperature of the refrigerantvapor above its saturation temperature.Superheating is done by the load. If the load islow, the superheat will be low. If the load is high,

    the superheat will be high.Superheat is a Sensible Heat Transfer thatprovides very little useful cooling. This occursbecause there is no change in state; only change intemperature.Refrigerants should never leave the evaporatorcoil at saturation temperature, because liquid isstill present.

  • 8/10/2019 AC 2004 presentation.PPT

    30/219

    Superheat Principles (cont)

    Latent Heat Transfer gives us our greatest energy

    transfer and results in massive cooling capacity.

    The evaporator surface performance is based onthe amount of Latent to Sensible Heat Transfertaking place.

  • 8/10/2019 AC 2004 presentation.PPT

    31/219

    Superheat

    Heat Added to

    Refrigerant Vapor that

    Causes its Temperature

    to Rise Above itsSaturation

    Temperatures

    P/T Charts Do Not

    Apply - Temperature

    Rises Without a Rise in

    Pressure

    Superheated Refrigerant

    Example: Conditions, R-22 - 75.0 PSIG

    Suction Line - 54F

    Line Temperature = 54F

    P-T Chart at 75.0 PSIG= 44F

    10F

    Coil Operating at 10F Superheat

  • 8/10/2019 AC 2004 presentation.PPT

    32/219

  • 8/10/2019 AC 2004 presentation.PPT

    33/219

    Superheated Refrigerant

    Compressor

    Suction Line

    Liquid Line

    Discharge Line

  • 8/10/2019 AC 2004 presentation.PPT

    34/219

    What is R-410A?

    R-410A is a blend of two refrigerants,near Azeotropic mixture of 50% HFC-32

    and 50% HFC-125.Many of us have been using refrigerant

    blends for awhile, R-502.

    The Temp. Glide is negligible (< 0.3F).

    There is no significant change incomposition due to system leaks.

  • 8/10/2019 AC 2004 presentation.PPT

    35/219

    What is R-410A?

    The Ozone depletion potential(ODP)for R-410A is 0.00 Vs 0.05 for R-22

    (1.0 is R-12 which is the baselineestablished by EPA).The ASHRAE safety classification is

    A1/A1, the same as R-22.Boiling point is -62.9F Vs -41.4F for

    R-22.

  • 8/10/2019 AC 2004 presentation.PPT

    36/219

    What is R-410A?

    Flammability classified as non-

    flammable.Combustibility can occur when

    mixed with air under pressure

    (same as R-22).Toxicity is classified as low.

  • 8/10/2019 AC 2004 presentation.PPT

    37/219

    WHAT IS R-410A?

    Thermal stability is similar to R-22.

    Handling cautions are the same as R-22.

    Remember 50 to 70% higher pressuresrequire the proper tools for

    servicing.

  • 8/10/2019 AC 2004 presentation.PPT

    38/219

  • 8/10/2019 AC 2004 presentation.PPT

    39/219

    R-410A POE Oil

    Non-contaminated POE oils willnot harm skin.

    Non-contaminated POE oil has alight sweet odor.

    POEs are classified as non-hazardous.

  • 8/10/2019 AC 2004 presentation.PPT

    40/219

    R-410A POE Oil

    POE oils from a severe acidsystem will smell like dirty

    diapers.Severe burn outs create acids

    and alcohol and moisture.

    Waste oil may be disposedthrough waste recyclers.

  • 8/10/2019 AC 2004 presentation.PPT

    41/219

    R-410A POE Oil

    Synthetic oil will attack many roofingmaterials. When servicing equipment

    mounted on a roof, the roof must beprotected from oil spray or spills. Usea plastic covering or tarp to protect

    the work area.Wiping up a spill will notstop long

    term damage to the roofing materials.

  • 8/10/2019 AC 2004 presentation.PPT

    42/219

  • 8/10/2019 AC 2004 presentation.PPT

    43/219

    R-410A POE Oil

    Open containers can absorb

    1500 to 2000 ppm/ water.

    Keep containers sealed when not

    in use.

    Use reasonable refrigerationpractices.

  • 8/10/2019 AC 2004 presentation.PPT

    44/219

    R-410A POE Oil

    Vacuum pumps will not

    completely remove moisture,

    driers must be replaced everytime a refrigerant component is

    replaced.

    Not even a deep vacuum will

    remove moisture from POE oils!

    Oil M i t Ab ti R t

  • 8/10/2019 AC 2004 presentation.PPT

    45/219

    Oil Moisture Absorption Rate(POE Oil)

    Time Minutes

  • 8/10/2019 AC 2004 presentation.PPT

    46/219

    Discus Compressors/Polyol Ester OilMoisture Content Versus Time

    100

    200

    300

    Sample Size: 13

    237 PPM

    129 PPM93 PPM

    75 PPM

    270 PPM

    156 PPM

    Filter Change at 60Days Operating

    30 PPM

    20 PPMExit Copeland Exit-Rack

    Manufacturer

    At Jobsite At Jobsite

    30 Days 75 Days

  • 8/10/2019 AC 2004 presentation.PPT

    47/219

    DRIERS

    Suction line driers must only be usedon the low side of the system.Operating temperatures and

    pressures may be exceeded if appliedon the high side.

    High temperatures will cause theactivated alumina in suction linedriers to decompose, causing moreacid.

  • 8/10/2019 AC 2004 presentation.PPT

    48/219

  • 8/10/2019 AC 2004 presentation.PPT

    49/219

  • 8/10/2019 AC 2004 presentation.PPT

    50/219

  • 8/10/2019 AC 2004 presentation.PPT

    51/219

  • 8/10/2019 AC 2004 presentation.PPT

    52/219

    LEAK DETECTION

    Electronic leak detectors mustbe capable of detecting HFC

    gases. Halide torches detectchlorine and will not work withHFC refrigerants.

    Fluorescent dyes are notapproved for Trane equipment.

  • 8/10/2019 AC 2004 presentation.PPT

    53/219

  • 8/10/2019 AC 2004 presentation.PPT

    54/219

  • 8/10/2019 AC 2004 presentation.PPT

    55/219

    Installation Considerations:

    Airflow, Airflow, AirflowManual J

    Refrigerant linesOutdoor unitsIndoor units Back-up heat Accessories Controls

  • 8/10/2019 AC 2004 presentation.PPT

    56/219

    Installation Considerations:

    Check unit Is it the right one???i.e., correct size, voltage, etc.

    Check Product Data Sheets,Installation Guide, and/or ServiceFacts

    FCCV/TXV?Air Flow

  • 8/10/2019 AC 2004 presentation.PPT

    57/219

    Installation Considerations:

    Air, moisture, and dirt WILL cause afailure or problemsooner or later

    Replace liquid line drier anytime thesystem is opened after initial install

    Use oxy-acetylene for brazing

    Rap valves, etc with wet rag toprotect

  • 8/10/2019 AC 2004 presentation.PPT

    58/219

    Installation Considerations:

    Purge with Nitrogen when brazing

    Remove valve core

    Evacuate to 500 microns(MICRON GAUGE)

  • 8/10/2019 AC 2004 presentation.PPT

    59/219

    Micron Gage

  • 8/10/2019 AC 2004 presentation.PPT

    60/219

  • 8/10/2019 AC 2004 presentation.PPT

    61/219

  • 8/10/2019 AC 2004 presentation.PPT

    62/219

  • 8/10/2019 AC 2004 presentation.PPT

    63/219

  • 8/10/2019 AC 2004 presentation.PPT

    64/219

  • 8/10/2019 AC 2004 presentation.PPT

    65/219

  • 8/10/2019 AC 2004 presentation.PPT

    66/219

    (430-535F)

    (1190-1465F)

  • 8/10/2019 AC 2004 presentation.PPT

    67/219

  • 8/10/2019 AC 2004 presentation.PPT

    68/219

  • 8/10/2019 AC 2004 presentation.PPT

    69/219

  • 8/10/2019 AC 2004 presentation.PPT

    70/219

  • 8/10/2019 AC 2004 presentation.PPT

    71/219

  • 8/10/2019 AC 2004 presentation.PPT

    72/219

  • 8/10/2019 AC 2004 presentation.PPT

    73/219

  • 8/10/2019 AC 2004 presentation.PPT

    74/219

    Installation Considerations:

    High Side Change Outs: Capacity?

    Efficiency? Line Set?

    Condition of Evaporator Coil

    Oil Logged? Clean?

    Refrigeration Piping

  • 8/10/2019 AC 2004 presentation.PPT

    75/219

  • 8/10/2019 AC 2004 presentation.PPT

    76/219

    Refrigeration Piping

    Why This Is Important: Oil Return

    Suction Line Velocity Capacity Losses

    Flash Gas Liquid Line

    Flood Back - Compressor

  • 8/10/2019 AC 2004 presentation.PPT

    77/219

    Refrigeration Piping

    Points To Remember: OK up to 50 Ft

    Elbows add EQUIVALENT length >10 Ft rise CALL

    >50 Ft EQUIVALENT - CALL

  • 8/10/2019 AC 2004 presentation.PPT

    78/219

    When You Call

    What is the actual length?

    What size tubing or pipe

    How many elbows are expected?

    Long sweep or short?

    Is condenser above or belowevaporator?

    Air Flow

  • 8/10/2019 AC 2004 presentation.PPT

    79/219

    Air Flow

    Ai Fl

  • 8/10/2019 AC 2004 presentation.PPT

    80/219

    Air Flow

    Air is Invisible

    Everyone assumes adequate airflow

    Reality is Airflow is frequently 30-50% LOW

    Duct leakage or high static pressure

    Air properties MUST BE MEASURED

  • 8/10/2019 AC 2004 presentation.PPT

    81/219

  • 8/10/2019 AC 2004 presentation.PPT

    82/219

    Ai Fl

  • 8/10/2019 AC 2004 presentation.PPT

    83/219

    Air Flow

    The Equipment or the System???

    Cannot get proper performance from

    equipment with CORRECT AIRFLOWCannot accurately charge a fixedorifice system without CORRECT

    AIRFLOWSo.What do we do?

    Ai Fl B i

  • 8/10/2019 AC 2004 presentation.PPT

    84/219

    Air Flow Basics

    Total Air Volume Cubic Feet Per Minute(CFM)

    Velocity Feet Per Minute (FPM)

    Static Pressure

    Velocity Pressure

    Total Pressure

    Converting Static Pressure into VelocityAir Movement

    Static Pressure

  • 8/10/2019 AC 2004 presentation.PPT

    85/219

    Velocity Pressure

    Total Pressure

  • 8/10/2019 AC 2004 presentation.PPT

    86/219

  • 8/10/2019 AC 2004 presentation.PPT

    87/219

    Duct Losses

    30% not uncommon!

    Fix duct losses and get more capacity!

    Return lossBottom pan

    Supply loss

    Leaking humidifier bypass damper

    Duct Leaks

  • 8/10/2019 AC 2004 presentation.PPT

    88/219

    Duct Leaks

    Leaks can cause dirty, unconditionedair to enter a residence.Leaks also contribute to loss inefficiency and capacity: 1% in totalairflow = 1% loss in capacity2.5 ton 30,000 BTUH 1000 CFM

    -3,000 BTUH -100 CFM*

    27,000 BTUH 900 CFM*10% loss in air and capacity

    Air Movement System

  • 8/10/2019 AC 2004 presentation.PPT

    89/219

    Air Movement System

    If any part of the distributionprocess is oversized or undersized,closed off or restricted, the entiresystem can be disrupted. This cancause: Comp. Flooding; Drafty rooms;Humidity problems; Mold/Mildew;Sweating ductwork; Motor wear;

    Noisy systems; Dust; Hear Exchangerfailure; Electrical problems; Positiveor Negative house pressure

  • 8/10/2019 AC 2004 presentation.PPT

    90/219

    Air Flow Measurements

  • 8/10/2019 AC 2004 presentation.PPT

    91/219

    Air Flow Measurements

    Total Static Pressure

    CFM Measurements:-Temperature Rise

    -Evaporator Pressure Drop

    -Air Velocity

    -Temperature Drop*

  • 8/10/2019 AC 2004 presentation.PPT

    92/219

    Static Pressure Measurement

    The key to system airflow diagnostics

    A companion to airflow measurement

    It takes less than 5 minutes tomeasure

    Similar to blood pressure diagnostics

  • 8/10/2019 AC 2004 presentation.PPT

    93/219

    Total Static Pressure

  • 8/10/2019 AC 2004 presentation.PPT

    94/219

    Total External Static

  • 8/10/2019 AC 2004 presentation.PPT

    95/219

    Total External Static

    Pressure

    +.65 (Supply side reading)

    -.45 (Return side reading)1.10 Total External Static Pressure

  • 8/10/2019 AC 2004 presentation.PPT

    96/219

  • 8/10/2019 AC 2004 presentation.PPT

    97/219

    Air Flow Measurement-

    Temperature Rise Methodto determine CFM

    Airflow Measurement

  • 8/10/2019 AC 2004 presentation.PPT

    98/219

    rf ow M asur m nt(Temperature Rise Method)

    (Red Book, Pg. 33)

    CFM By Temperature Rise

  • 8/10/2019 AC 2004 presentation.PPT

    99/219

    CFM By Temperature Rise

    BTUH OUTPUT

    T X 1.08*=CFM

    *1.08 = constant number for std air. Its acombination of a number of values that are in thecomplete equation. Std air is 70F, sea level

    CFM By Temperature Rise

  • 8/10/2019 AC 2004 presentation.PPT

    100/219

    CFM By Temperature Rise

    55,200 BTU output

    60 X 1.08=850 CFM

    64.8

    CFM Per Room?

  • 8/10/2019 AC 2004 presentation.PPT

    101/219

    CFM Per Room?

    -7,500 BTUH Heat Loss

    -Room temperature = 72 F

    -Supply air = 125F

    -How many CFMs required?

    CFM Per Room?

  • 8/10/2019 AC 2004 presentation.PPT

    102/219

    CFM Per Room?

    -Use formula: CFM= BTUH

    T X 1.08

    -CFM = 7500 BTUH

    (125-72F) X 1.08

    -CFM = 131

    BTUH Per Room?

  • 8/10/2019 AC 2004 presentation.PPT

    103/219

    BTUH Per Room?

    -Air delivered to room = 131 CFM

    -Room temperature = 72F

    -Supply air = 125F

    -How many BTUs delivered?

    BTUH Per Room?

  • 8/10/2019 AC 2004 presentation.PPT

    104/219

    BTUH Per Room?

    -Use formula:

    BTUH = CFM X T X 1.08

    -BTUH = 131 CFM X (125-72F) X

    1.08

    -BTUH = 131 X 53 X 1.08

    -BTUH = 7,498

  • 8/10/2019 AC 2004 presentation.PPT

    105/219

    CFMBy EvaporatorPressure Drop

  • 8/10/2019 AC 2004 presentation.PPT

    106/219

  • 8/10/2019 AC 2004 presentation.PPT

    107/219

  • 8/10/2019 AC 2004 presentation.PPT

    108/219

  • 8/10/2019 AC 2004 presentation.PPT

    109/219

  • 8/10/2019 AC 2004 presentation.PPT

    110/219

    Velocity

  • 8/10/2019 AC 2004 presentation.PPT

    111/219

    Velocity

    Velocity = FPM

    CFM= FPM X Area in Square Feet

    Free Area

    Measuring Air Velocity

  • 8/10/2019 AC 2004 presentation.PPT

    112/219

    M asur ng r V oc ty

    Measuring Air Velocity

  • 8/10/2019 AC 2004 presentation.PPT

    113/219

    g y

    Measuring Air Velocity

  • 8/10/2019 AC 2004 presentation.PPT

    114/219

    g y

    Measuring Air Velocity

  • 8/10/2019 AC 2004 presentation.PPT

    115/219

    Measuring Air Velocity

  • 8/10/2019 AC 2004 presentation.PPT

    116/219

    g y

    CFM By Temperature Drop*

  • 8/10/2019 AC 2004 presentation.PPT

    117/219

    CFM By Temperature Drop

    It can vary depending on outsidetemperature and indoor wet-bulb

    What if the system is undercharged,overcharged or dirty condenser?

    What if its too cold outside?

    Have you ever seen a manufacturerswritten specification for it?

    Humid Air

  • 8/10/2019 AC 2004 presentation.PPT

    118/219

    Dry Air

    Fan Speed Taps

  • 8/10/2019 AC 2004 presentation.PPT

    119/219

    Fan Speed Taps

    Check Service Facts for proper air

    speed tap to use

    Match tap to size (BTUH) of unit

  • 8/10/2019 AC 2004 presentation.PPT

    120/219

    Blower should always be on high speed?

  • 8/10/2019 AC 2004 presentation.PPT

    121/219

    y g p

    2 TON800 CFM

  • 8/10/2019 AC 2004 presentation.PPT

    122/219

  • 8/10/2019 AC 2004 presentation.PPT

    123/219

    Break-timeBe

    Back in 10minutes

  • 8/10/2019 AC 2004 presentation.PPT

    124/219

    Time Remaining

    10 Minutes

  • 8/10/2019 AC 2004 presentation.PPT

    125/219

    Time Remaining

    9 Minutes

  • 8/10/2019 AC 2004 presentation.PPT

    126/219

  • 8/10/2019 AC 2004 presentation.PPT

    127/219

    Time Remaining

    7 Minutes

  • 8/10/2019 AC 2004 presentation.PPT

    128/219

  • 8/10/2019 AC 2004 presentation.PPT

    129/219

  • 8/10/2019 AC 2004 presentation.PPT

    130/219

    Time Remaining

    4 Minutes

    Time Remaining

  • 8/10/2019 AC 2004 presentation.PPT

    131/219

    3 Minutes

  • 8/10/2019 AC 2004 presentation.PPT

    132/219

    Time Remaining2 Minutes

    Time Remaining

  • 8/10/2019 AC 2004 presentation.PPT

    133/219

    1 Minute

    Time Remaining

  • 8/10/2019 AC 2004 presentation.PPT

    134/219

    15 Seconds

  • 8/10/2019 AC 2004 presentation.PPT

    135/219

    OK, Times Up!

    Let get the show on the road!!!

    Basic Tasks-Spring Tune-Up

  • 8/10/2019 AC 2004 presentation.PPT

    136/219

    Wash Condenser Check for clean filters and evaporator

    Service blower

    Check drainage

    Check controls

    Check refrigerant charge

    Check overall Performance

  • 8/10/2019 AC 2004 presentation.PPT

    137/219

    System Charge Airflow!

  • 8/10/2019 AC 2004 presentation.PPT

    138/219

    System Charge Airflow!

    Correct starting point for ANYrefrigeration system diagnostics

    Validate proper airflowGauge pressure reads low, but is lowcharge the real problem?

    Dont automatically add gas.

  • 8/10/2019 AC 2004 presentation.PPT

    139/219

  • 8/10/2019 AC 2004 presentation.PPT

    140/219

  • 8/10/2019 AC 2004 presentation.PPT

    141/219

    Beer Can Cold andSweaty

    How do I know what I have?

  • 8/10/2019 AC 2004 presentation.PPT

    142/219

    How do I know what I have?

    What kind of metering device?

    Remember, TXVs may be built with

    evaporator and not apparent.

    Bl k d s i t is h d

  • 8/10/2019 AC 2004 presentation.PPT

    143/219

    Block condenser air to raise head

    pressure Piston/cap tube - gage pressures

    will rise at a fairly even rate TXV will tend to keep suction

    pressure stable as head pressure

    increases

    SYSTEM CHARGING(SC)Using the Charging Chart TXV

  • 8/10/2019 AC 2004 presentation.PPT

    144/219

    Using the Charging Chart-TXV

    Measure temperature and pressure atliquid line.

    Use line length & lift to choose which curveto use.Plot the intersection of temp. & pressure.

    If above the curve, remove refrigerant.

    If below, add refrigerantWait 20 minutes to stabilize.

    Sub-Cooling Calculation

  • 8/10/2019 AC 2004 presentation.PPT

    145/219

    g

    Low Sub-Cooling indicates LOWchargeHigh Sub-Cooling indicates OVERcharge ( or possible liquid linerestriction)Rule of thumb = 10 - 15 degrees of

    sub-cooling Manufactures usuallydesign to 10 degrees

  • 8/10/2019 AC 2004 presentation.PPT

    146/219

  • 8/10/2019 AC 2004 presentation.PPT

    147/219

    (390 PSIG & 115 F)

    SYSTEM CHARGING(SH)Using the Charging Chart-Fixed Orifice

  • 8/10/2019 AC 2004 presentation.PPT

    148/219

    Using the Charging Chart Fixed Orifice

    Measure indoor dry bulb* (R/A)Measure outdoor dry bulb (at unit)Measure suction pressure

    Measure suction temperature, beforesuction service valveUse chart to determine SHAbove 5 F above, add. If 5 F below,

    remove.If below 5 F limit line, DO NOT ADD.*If RH >70% or

  • 8/10/2019 AC 2004 presentation.PPT

    149/219

    Superheatindicates that completevaporization of liquid refrigerant in theevaporator coil has taken place

    Low Superheatmeans liquid refrigerant is

    present at or near the outlet of theevaporator - compressor damage isimmanent

    High Superheatmeans liquid is boiling off

    too soon and could mean evaporator isstarved

  • 8/10/2019 AC 2004 presentation.PPT

    150/219

  • 8/10/2019 AC 2004 presentation.PPT

    151/219

  • 8/10/2019 AC 2004 presentation.PPT

    152/219

    As Little As...

    As Much As...

  • 8/10/2019 AC 2004 presentation.PPT

    153/219

    Sub-cooling andSuperheat

    SL Temperature

    SL Pres. To Saturation

    equals =S h t

    minus -Sub-cooling & Superheat

    Calculation Explained55

    10

    45

  • 8/10/2019 AC 2004 presentation.PPT

    154/219

    Indoor Coil Outdoor Coil

    High Pressure,High Temperature

    Vapor

    SaturatedVapor

    High Pressure,Sub-cooled Liquid

    Low Pres.Liquid

    Saturated

    Vapor

    Superheated

    Vapor

    minus -

    LL Pres. to Saturation

    LL Temperature

    equals =Sub-cooling

    Basic Refrigeration CircuitProperly Charged Unit

    equalsSuperheat

    Sensible

    Latent

    Sensible

    Sensible

    Latent

    10

    76#

    98

    10

    220#

    108

    What Happen If ?

  • 8/10/2019 AC 2004 presentation.PPT

    155/219

    What Happen If?

    Over-Charged System

    versusUnder-Charged System

    Over-Charged System

  • 8/10/2019 AC 2004 presentation.PPT

    156/219

    High Sub-Coolingreading indicates excessiveamount of refrigerant in the condenser coil Head pressure reading will be high Saturation temperature will be high

    Liquid line temperature at or near ambient Unit will use excessive wattage to do the same

    amount of work

    If TXV is working properly, work at indoor coil willbe basically the same as properly charged systemand Superheatwill be normal

    SL Temperature

    SL Pres. To Saturation

    equals = Superheat

    minus -Sub-cooling & Superheat

    Calculation Explained55

    10

    45

  • 8/10/2019 AC 2004 presentation.PPT

    157/219

    Indoor Coil Outdoor Coil

    High Pressure,High Temperature

    Vapor

    SaturatedVapor

    High Pressure,Sub-cooled Liquid

    Low Pres.Liquid

    Saturated

    Vapor

    Superheated

    Vapor

    minus -

    LL Press. to Saturation

    LL Temperature

    equals =Sub-cooling

    Basic Refrigeration CircuitOver Charged Unit

    q Superheat

    Sensible

    Latent

    Sensible

    Sensible

    Latent

    10

    76#

    118

    17

    316#

    135

    Under-Charged System

  • 8/10/2019 AC 2004 presentation.PPT

    158/219

    -Low Sub-Coolingreading indicates lack ofrefrigerant in the condenser coil.-Head pressure reading will be low-Saturation temperature will be low

    -Liquid line temperature will be high-Unit will use excessive wattage due to doextended run times to do the same work

    -TXV will not work properly, due to lack of liquidseal resulting in capacity loss

    -Superheatwill be high - coil starved.

    SL Temperature

    SL Pres. To Saturation

    equals =Superheat

    minus -Sub-cooling & Superheat

    Calculation Explained68

    42

    26

  • 8/10/2019 AC 2004 presentation.PPT

    159/219

    Indoor Coil Outdoor Coil

    High Pressure,High Temperature

    Vapor

    SaturatedVapor

    High Pressure,Sub-cooled Liquid

    Low Pres.Liquid

    Saturated

    Vapor

    Superheated

    Vapor

    minus-

    LL Press. to Saturation

    LL Temperature

    equals =Sub-cooling

    Basic Refrigeration CircuitUnder Charged Unit

    Superheat

    Sensible

    Latent

    Sensible

    Sensible

    Latent

    42

    50#

    95

    0

    182#

    95

  • 8/10/2019 AC 2004 presentation.PPT

    160/219

    Mechanicalversus

    Air Flow

    Troubleshooting

    Proper Tools

  • 8/10/2019 AC 2004 presentation.PPT

    161/219

    -Gauges

    -Amp Probe

    -Digital Thermometer-Sling Psychrometer

    -V-O-M

    -Magnehelic

    -Paperwork

    Troubleshooting.

  • 8/10/2019 AC 2004 presentation.PPT

    162/219

    Verify AIR FLOW is proper

    Identify problem

    Observe and record operation ofequipment BEFORE adding gas!

    When in doubt call for assistance

    75 IDB

    63 IWB

  • 8/10/2019 AC 2004 presentation.PPT

    163/219

    Slightly

    Or Normal

    95 OAT

    75#

    237#

    5 DEG SH

    8-13 SUB

  • 8/10/2019 AC 2004 presentation.PPT

    164/219

  • 8/10/2019 AC 2004 presentation.PPT

    165/219

  • 8/10/2019 AC 2004 presentation.PPT

    166/219

  • 8/10/2019 AC 2004 presentation.PPT

    167/219

  • 8/10/2019 AC 2004 presentation.PPT

    168/219

    Base Line Data

    Customer Complaint:

  • 8/10/2019 AC 2004 presentation.PPT

    169/219

    System does not cool like it beforewhen it was new

    What do you do?

    + Check the Enthalpy of the EvaporatorCoil to verify system capacity

    Use the Formula:

  • 8/10/2019 AC 2004 presentation.PPT

    170/219

    Total Heat Removed =CFM X4.5 X Change inEnthalpy (Heat

    Content)

    Enthalpy

  • 8/10/2019 AC 2004 presentation.PPT

    171/219

    Same as TOTAL HEATThe sum of sensible heat and latentheat

    Wheres the 4.5 come from?

    Its how many BTUs are in onepound of DRY air (0%Rh)

  • 8/10/2019 AC 2004 presentation.PPT

    172/219

    Total Heat =CFM X4.5 XEnthalpy Change

  • 8/10/2019 AC 2004 presentation.PPT

    173/219

    69 WB=33.25

    60 WB=26.46

    Difference = 6.79

    800 X 4.5 X 6.79

    = 24,444 BTUH !

    The 10% Rule

  • 8/10/2019 AC 2004 presentation.PPT

    174/219

    It is difficult to duplicate theaccuracy of factory laboratories

    But, field results within 10% aregenerally adequate.

  • 8/10/2019 AC 2004 presentation.PPT

    175/219

    Wall of Shame

  • 8/10/2019 AC 2004 presentation.PPT

    176/219

  • 8/10/2019 AC 2004 presentation.PPT

    177/219

  • 8/10/2019 AC 2004 presentation.PPT

    178/219

  • 8/10/2019 AC 2004 presentation.PPT

    179/219

  • 8/10/2019 AC 2004 presentation.PPT

    180/219

  • 8/10/2019 AC 2004 presentation.PPT

    181/219

  • 8/10/2019 AC 2004 presentation.PPT

    182/219

  • 8/10/2019 AC 2004 presentation.PPT

    183/219

  • 8/10/2019 AC 2004 presentation.PPT

    184/219

  • 8/10/2019 AC 2004 presentation.PPT

    185/219

  • 8/10/2019 AC 2004 presentation.PPT

    186/219

  • 8/10/2019 AC 2004 presentation.PPT

    187/219

  • 8/10/2019 AC 2004 presentation.PPT

    188/219

  • 8/10/2019 AC 2004 presentation.PPT

    189/219

  • 8/10/2019 AC 2004 presentation.PPT

    190/219

  • 8/10/2019 AC 2004 presentation.PPT

    191/219

  • 8/10/2019 AC 2004 presentation.PPT

    192/219

  • 8/10/2019 AC 2004 presentation.PPT

    193/219

  • 8/10/2019 AC 2004 presentation.PPT

    194/219

  • 8/10/2019 AC 2004 presentation.PPT

    195/219

  • 8/10/2019 AC 2004 presentation.PPT

    196/219

  • 8/10/2019 AC 2004 presentation.PPT

    197/219

  • 8/10/2019 AC 2004 presentation.PPT

    198/219

  • 8/10/2019 AC 2004 presentation.PPT

    199/219

  • 8/10/2019 AC 2004 presentation.PPT

    200/219

  • 8/10/2019 AC 2004 presentation.PPT

    201/219

  • 8/10/2019 AC 2004 presentation.PPT

    202/219

  • 8/10/2019 AC 2004 presentation.PPT

    203/219

  • 8/10/2019 AC 2004 presentation.PPT

    204/219

  • 8/10/2019 AC 2004 presentation.PPT

    205/219

  • 8/10/2019 AC 2004 presentation.PPT

    206/219

  • 8/10/2019 AC 2004 presentation.PPT

    207/219

  • 8/10/2019 AC 2004 presentation.PPT

    208/219

  • 8/10/2019 AC 2004 presentation.PPT

    209/219

  • 8/10/2019 AC 2004 presentation.PPT

    210/219

  • 8/10/2019 AC 2004 presentation.PPT

    211/219

  • 8/10/2019 AC 2004 presentation.PPT

    212/219

  • 8/10/2019 AC 2004 presentation.PPT

    213/219

  • 8/10/2019 AC 2004 presentation.PPT

    214/219

  • 8/10/2019 AC 2004 presentation.PPT

    215/219

  • 8/10/2019 AC 2004 presentation.PPT

    216/219

  • 8/10/2019 AC 2004 presentation.PPT

    217/219

  • 8/10/2019 AC 2004 presentation.PPT

    218/219

  • 8/10/2019 AC 2004 presentation.PPT

    219/219