10
 a)Espaço da Coluna de A e B: C(A)={(1,1,3 ), (1,3,1), (0,1,-1)} L2-L1  L3-(3xL1)  L3-(-L2)  Colunas Pivot Base {(1,0,0), (0,1,0)} Dim R² = 2 (DIMENSÃO 2) C(B)={(1,0, 0), (1,2,0), (0,1,0)} = 1 1 0 1 3 1 3 1 -1 1 1 0 0 2 1 3 1 -1 1 1 0 0 2 1 0 -2 -1 1 1 0 0 2 1 0 0 0

Ad1-2014 Algebra Linear

Embed Size (px)

Citation preview

  • 5/20/2018 Ad1-2014 Algebra Linear

    1/10

    a)Espao da Coluna de A e B:

    C(A)={(1,1,3), (1,3,1), (0,1,-1)}

    L2-L1 L3-(3xL1)

    L3-(-L2)

    Colunas Pivot

    Base {(1,0,0), (0,1,0)} Dim R = 2 (DIMENSO 2)

    C(B)={(1,0,0), (1,2,0), (0,1,0)} =

    1 1 0

    1 3 1

    3 1 -1

    1 1 0

    0 2 1

    3 1 -1

    1 1 0

    0 2 1

    0 -2 -1

    1 1 0

    0 2 1

    0 0 0

  • 5/20/2018 Ad1-2014 Algebra Linear

    2/10

    Colunas Pivot

    Base {(1,0,0), (0,1,0)} Dim R = 2 (DIMENSO 2)

    B)Espao da Linha de A e B:

    L(A)={(1,1,0), (1,3,1), (3,1,-1)}

    L2-L1 L3-(3xL1)

    L3-(-L2)

    Base {(1,1,0), (0,2,1)} Dim R = 2 (DIMENSO 2)

    L(B)={(1,1,0), (0,2,1), (0,0,0)}

    Base {(1,1,0), (0,2,1)} Dim R = 2 (DIMENSO 2)

    c) Os espaos da colunas de A e de B so iguais e Os espaos da LINHA de A e de B so iguais.

    1 1 0

    0 2 1

    0 0 0

    1 1 0

    1 3 1

    3 1 -1

    1 1 0

    0 2 1

    3 1 -1

    1 1 0

    0 2 1

    0 -2 -1

    1 1 0

    0 2 1

    0 0 0

    1 1 0

    0 2 1

    0 0 0

  • 5/20/2018 Ad1-2014 Algebra Linear

    3/10

    C(A){(1,0,0), (0,1,0)} = C(B) {(1,0,0), (0,1,0)}

    L(A){(1,1,0), (0,2,1)}= L(B){(1,1,0), (0,2,1)}

    C1(A)=(1,1,3)

    L2(A)=(1,3,1)

    d(C1(A), L2(A)) = | (1,1,3)- (1,3,1)|

    d(C1(A), L2(A)) =

    d(C1(A), L2(A)) =

    d(C1(A), L2(A)) =

    Logo d(C1(A), L2(A)) =

    Cos = C1(A) . L2(A)

    |C1(A)| . |L2(A)|

    C1(A) . L2(A) = (1,1,3) . (1,3,1)

    C1(A) . L2(A) = (1.1 + 1.3 + 3.1)= 1 + 3 + 3 =

    C1(A) . L2(A) = 7 (Produto Interno)

    |C1(A)| = = =

    |L2(A)| = = = =

    Cos = 7 = 7 = 7 = 0,63 51

    . 11

  • 5/20/2018 Ad1-2014 Algebra Linear

    4/10

    proj(C1(A),C2(A))L2(A)= projC1(A)L2(A)+projC2(A)L2(A)

    Sendo assim:

    proj(C1(A),C2(A))L2(A)= proj(1,1,3)(1,3,1)+proj(1,3,1)(1,3,1)=

    =((1,3,1).(1,1,3)). (1,1,3) + ((1,3,1).(1,3,1)). (1,3,1) =1 + 1 + 3 1 + 3 + 1

    = 1+3+3 . (1,1,3) + 1+9+1 .(1,3,1) = 7(1,1,3) + 11(1,3,1)=11 11 11 11

    = (7, 7, 21) + (11, 33, 11) = 18 , 40, 3211 11 11 11 11

    Logo:proj(C1(A),C2(A))L2(A)= 18 , 40 , 32

    11 11 11

    Conforme verificado no exerccio 1 na letra a base gerada foi:

    Base {(1,0,0), (0,1,0)} Dim R = 2

    (1,0,0) . (0,1,0) = 0+0+0 = 0Uma base ortogonal quando dois a dois vetores so ortogonais, se o produto interno deles = 0

  • 5/20/2018 Ad1-2014 Algebra Linear

    5/10

    X1= 2X4

    X1 X2 X3 X4

    2X4 Incgnita Incgnita Incgnita

    (X1,X2,X3, X4) =(2X4, X2, X3, X4)

    Temos ento a Dimenso 3

    (X1,X2,X3, X4) =X1( 0,0,0,0) + X2( 0,1,0,0) + X3( 0,0,1,0) + X4( 2,0,0,1)

    (X1,X2,X3, X4) =X2( 0,1,0,0) + X3( 0,0,1,0) + X4( 2,0,0,1)

    B={ ( 0,1,0,0), ( 0,0,1,0), ( 2,0,0,1)}

    u e v so Linearmente Independente se:

    u v = 0

    Ou seja:

    a( 0,1,0,0)+b(0,0,1,0) +c(2,0,0,1)=

    2c=0

    a=0b=0

    c=0

    Logo = ( 0,1,0,0), ( 0,0,1,0), ( 2,0,0,1) so LI

    X1+ X2+ X3= 0

    X1 = -X2- X3

    X3+ X4= 0

    X3 = -X4

    X1 X2 X3 X4

    -X2-X3 Incgnita -X4 Incgnita

    (X1,X2,X3, X4) =(-X2-X3, X2, -X4, X4)

  • 5/20/2018 Ad1-2014 Algebra Linear

    6/10

    Temos ento a Dimenso 3 pois:

    (X1,X2,X3, X4) =X1( 0,0,0,0) + X2( -1,1,0,0) + X3( -1,0,0,0) + X4( 0,0,-1,1)

    (X1,X2,X3, X4) =X2( -1,1,0,0) + X3( -1,0,0,0) + X4( 0,0,-1,1)

    B={( -1,1,0,0) ,( -1,0,0,0) ,( 0,0,-1,1)}

    u e v so Linearmente Independente se:

    u v = 0

    Ou seja:

    a( -1,1,0,0)+b( -1,0,0,0) +c( 0,0,-1,1)=

    -a-b=0

    a=0

    -c=0c=0

    Logo =( -1,1,0,0) ,( -1,0,0,0) ,( 0,0,-1,1) so LI

    (1,1,1,1),(1,2,3,4),(2,3,4,5)

    Sejam a; b; Consideremos

    a(1,1,1,1) + b(1,2,3,4) + c(2,3,4,5)= (a+b+2c, a+2b+3c, a+3b+4c, a+4b+5c) = (x,y,z,w)

    a+ b+ 2c=x (I)

    a+2b+3c=y (II)

    a+3b+4c=z (III)

    a+4b+5c=w (IV)

    L2L2-L1 (II)a+2b+3c=y

    -a -b -2c =-x

    b+c=-x+y

    L4L4-L1 (IV)a+4b+5c=w

    -a -b -2c =-x

    3b+3c=-x+w

    L3L3-L1 (III)

    a+3b+4c=z

    -a -b -2c =-x

    2b+2c=-x+z

    Novo Sistema:

    a+ b+ 2c=x (I)b+c=-x+y (II)

    2b+2c=-x+z (III)3b+3c=-x+w (IV)

  • 5/20/2018 Ad1-2014 Algebra Linear

    7/10

    Sistema II:

    a+ b+ 2c=x (I)

    b+c=-x+y (II)2b+2c=-x+z (III)3b+3c=-x+w (IV)

    L3L3-2L2 (III)

    2b+2c=-x+z-2b-2c=+2x-2y

    0+0=x-2y+z

    L4L4-3L2 (III)

    3b+3c=-x+w-3b-3c= 3x-3y

    0+0=2x-3y+w

    Sistema III:

    a+ b+ 2c=x (I)b+c=-x+y (II)0+0=x-2y+z(III)0+0=2x-3y+w(IV)

    Logo vimos por L4 que x=3y-w e em L3 que x=2y-z.Igualando-as temos:2

    3y-w=2y-z2

    3y-w=4y-2z

    2z-w=4y-3y

    2z-w=y

    -y+2z-w=x

    x=-y+2z-w

    x=-y+2z-w. Logo S={(x,y,w,z) 4| x=-y+2z-w} ou seja (-y+2z-w,y,z,w)

    Temos ento a Dimenso 3 pois:

    (x,y,z,w ) =x( 0,0,0,0) + y( -1,1,0,0) + z( 2,0,1,0) + w( -1,0,0,1)

    (x,y,z,w ) =y( -1,1,0,0) + z( 2,0,1,0) + w( -1,0,0,1)

    B={ ( -1,1,0,0),( 2,0,1,0),( -1,0,0,1) }

    u e v so Linearmente Independente se:

    u v = 0

  • 5/20/2018 Ad1-2014 Algebra Linear

    8/10

    Ou seja:

    a( -1,1,0,0)+b(2,0,1,0) +c(-1,0,0,1)=

    -a+2b-c=0

    a=0

    b=0c=0

    Logo = ( -1,1,0,0),( 2,0,1,0),( -1,0,0,1) so LI

    Tambm podemos olhar no sistema III novamente e enxergar de outra forma:

    Sistema III:

    a+ b+ 2c=x (I)b+c=-x+y (II)

    0+0=x-2y+z(III)0+0=2x-3y+w(IV)

    Em L3 z=-x+2y e em L4 que w=-2x+3y.Igualando-as temos:

    Logo S={(x,y,w,z) 4| z=-x+2y;w=-2x+3y} ou seja (x,y,-x+2y,-2x+3y)

    Temos ento a Dimenso 2 pois:

    (x,y,z,w ) =x( 1,0,-1,-2) + y( 0,1,2,3) + z( 0,0,0,0) + w( 0,0,0,0)

    (x,y,z,w ) =x( 1,0,-1,-2) + y( 0,1,2,3)

    B={ ( 1,0,-1,-2), ( 0,1,2,3) }

    u e v so Linearmente Independente se:

    u v = 0

    Ou seja:

    a( 1,0,-1,-2)+b( 0,1,2,3) =

    a=0

    b=0

    -a+2b=0

    -2a+3b=0

    Logo ( 1,0,-1,-2),( 0,1,2,3) so LI

  • 5/20/2018 Ad1-2014 Algebra Linear

    9/10

    Uma base ortogonal quando dois a dois vetores so ortogonais, se o produtointerno deles = 0.

    Dizemos que v e w so ortogonais se = 0.

    Por exemplo v=(1, 0, 1, 0, 1, 0), w= (0, 1, 0, 1, 0, 1)

    Soluo: De fato, (1, 0, 1, 0, 1, 0) .(0, 1, 0, 1, 0, 1) = 1(0)+0(1)+1(0)+0(1)+1(0)+0(1) =0

    O vetor nulo o mesmo em W e V, isto , V=W=, assim VW no vazio.

    Exemplo: Sejam V e W subespaos vetoriais de R, definidos por:

    V= = {(x,y,0): xR, yR }W= = {(0,0,z): zR }

    O conjunto VW um subespao de R e observamos que V W ={} o subespao nulo.

    O ngulo de 90 logo a base ortogonal.

    Dois vetores, ve w, pertencentes ao espao vetorial Vcom produto interno, so vetores

    ortogonaisse, e somente se, seu produto interno nulo, ou seja, w,v=0.

    X1+ 2X2-2X3= b1 (I)

    2X1+ 5X2-4X3= b2 (II)

    4X1+ 9X2-8X3= b3(III)

    (II) L2L2-(2L1)

    2X1+ 5X2-4X3= b2-2X1- 4X2+4X3= - 2b1

    X

    2

    = - 2

    1

    2

    1 2 -2 b1

    2 5 -4 b24 9 -5 b3

    1 2 -2 b1

    0 1 0 -2b1+b2

    4 9 -5 b3

  • 5/20/2018 Ad1-2014 Algebra Linear

    10/10

    (III) L3L3-(4L1)

    4X1+ 9X2-8X3= b3-4X1- 8X2+8X3= - 4b1

    X

    2

    = - 4

    1

    3

    Ento temos:

    X1+ 2X2-2X3= b1 (I)

    X2 = - 2b1 +b2 (II)X2 = - 4b1 +b3(III)

    Por L3 temos que X2 = - 4b1 +b3e por L2 temos

    que X2 = - 2b1 +b2 .

    Igualando esses dois valore de X2temos:

    - 2 1 + 2 = - 4 1 + 3 == - 2 1 + 4 1= - 2 + 3 == 2 1= - 2 + 3

    1= - 2 + 32

    Logo : 1= - 2 + 32

    Sendo assim este um Sistema Possvel Indeterminado (SPI)

    1 2 -2 b1

    0 1 0 -2b1 +b2

    0 1 0 -4b1+b3

    L3L3-L2

    1 2 -2 b1

    0 1 0 -2b1 +b2

    0 0 0 2b1-b2+ b3

    Sem < n o sistema nunca pode

    ter soluo nica.

    Ou seja:

    Sistema Possvel Indeterminado