145
Profª Drª Glaucia Maria F. Pinto 1 Química Analítica Quantitativa PROFª. Drª. GLAUCIA MARIA F. PINTO 2005

apostila__quantitativa

Embed Size (px)

Citation preview

Page 1: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 1

Química Analítica Quantitativa

PROFª. Drª. GLAUCIA MARIA F. PINTO

2005

Page 2: apostila__quantitativa

.

Química Analítica Quantitativa

PROFª. Drª. GLAUCIA MARIA F. PINTO

.......

Atribuição-Uso Não-Comercial-Compatilhamento pela mesma licença 2.5 Brasil

Você pode:

copiar, distribuir, exibir e executar a obracriar obras derivadas

Sob as seguintes condições:

Atribuição. Você deve dar crédito ao autor original, da formaespecificada pelo autor ou licenciante.

Uso Não-Comercial. Você não pode utilizar esta obra com finalidadescomerciais.

Compartilhamento pela mesma Licença. Se você alterar, transformar,ou criar outra obra com base nesta, você somente poderá distribuir aobra resultante sob uma licença idêntica a esta.

Para cada novo uso ou distribuição, você deve deixar claro para outros os termosda licença desta obra.Qualquer uma destas condições podem ser renunciadas, desde que Você obtenhapermissão do autor.

Qualquer direito de uso legítimo (ou "fair use") concedido por lei, ou qualquer outrodireito protegido pela legislação local, não são em hipótese alguma afetados pelo

disposto acima.

Este é um sumário para leigos da Licença Jurídica.

http://creativecommons.org.br

Page 3: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 1

Química Analítica Quantitativa

PROFª. Drª. GLAUCIA MARIA F. PINTO

2005

Profª Drª Glaucia Maria F. Pinto 2

Índice

1- Introdução ----------------------------------------------------------------pag. 32- Amostragem ---------------------------------------------------------------pag. 83- Tratamento de dados ----------------------------------------------------pag. 234- Qualidade em química analítica (validação de métodos) ------ pag. 54 5- Gravimetria -----------------------------------------------------------------pag. 906- Volumetria ------------------------------------------------------------------pag. 1237- Volumetria ácido-base ---------------------------------------------------pag. 144 8- Volumetria de precipitação ---------------------------------------------pag. 201 9- Volumetria de complexação --------------------------------------------pag. 23010- Volumetria de óxido-redução -----------------------------------------pag. 267

Page 4: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 3

QUÍMICA ANALÍTICA

Química Analítica

Qualitativa (Qual?)

Quantitativa (Quanto?)

Química Analítica Quantitativa

Clássica

Instrumental

Química Analítica Quantitativa

Clássica

Gravimetria

Volumetria

Profª Drª Glaucia Maria F. Pinto 4

QUÍMICA ANALÍTICA

Química analítica quantitativa clássica: tem um desenvolvimento antigo (primeiras buretas no ano de 1806) mas são largamente utilizados até hoje devido a suas vantagens:

Rapidez, baixo custo, exatidão, possibilidade de automação, bom desempenho e facilidade de operação.

Quem é o químico analítico?

Um verdadeiro analista apresenta muitas características. Ele conhece os métodos e os instrumentos; ele entende os princípios da análise, a ponto de modificar o método para resolver um problema particular, se necessário; freqüentemente ele é um pesquisador que estuda a teoria dos processos analíticos e ou desenvolve completamente novos métodos de análise. Ele está longe de ser um técnico que aperta botões e segue um “livro de receitas”.

Page 5: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 5

QUÍMICA ANALÍTICA

Onde a química analítica é utilizada?

Relaciona composição química com propriedades físicas (eficiência de catalisador, combustível pode depender da composição química); controle de processos (qualidade de matérias primas, processos industriais, pureza final); determinação de quantidade de constituinte (proteína e gordura em alimentos); diagnóstico e pesquisa.

Quais os tipos de métodos?

São baseados em reações químicas ou em medidas de certas propriedades químicas e físicas.

Titulações: reações químicas, geralmente com mudanças físicas (mudanças de cor, precipitação)

Instrumentais: geralmente propriedades físicas (espectros)

Profª Drª Glaucia Maria F. Pinto 6

QUÍMICA ANALÍTICA

AMOSTRAGEM

Primeiro passo para obter bons resultados: garantir uma boa amostra

Amostra representativa: pequena porção da população que mantém as características da população

Material homogêneos: uniforme

=> geralmente líquidos e gases

Material heterogêneos: não uniforme

=> geralmente sólidos

Amostras líquidas

⇒ soluções. Não faz diferença o local da amostragem (homogênea)

⇒ Exemplo heterogêneo: amostragem de lago para determinação de DBO.

Page 6: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 7

QUÍMICA ANALÍTICA

AMOSTRAGEM

Amostras sólidas

⇒ quanto maiores as partículas maior heterogeneidade

⇒ Antes de amostras seria conveniente diminuir o tamanho das partículas e misturar.

⇒ Ex: Determinação da composição do solo de um campo de futebol.

⇒ Discussão: Qual o tamanho da amostra? Quantas amostras? Quantas determinações? Qual variabilidade é aceitável?

⇒ Uma alternativa é fazer quarteamento. Diminui a massa de amostra sistematicamente. Sedimentação ainda é problema

Profª Drª Glaucia Maria F. Pinto 8

AMOSTRAGEM

• Amostragem Probabilística ou Aleatória

• Amostragem Não Probabilística

POPULAÇÃO Amostra

Amostragem

Generalização

Page 7: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 9

Quando usar Amostragem?

Economia

Rapidez de processamento

Confiabilidade

Testes destrutivos

Profª Drª Glaucia Maria F. Pinto 10

Quando NÃO usar Amostragem?

População pequena

Característica de fácil mensuração

Necessidades políticas

Necessidade de alta precisão

Page 8: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 11

Condições para uso

Possibilidade de listarelementos da população

Amostra selecionada porsorteio NÃO VICIADO!

Todos na população têm chance de pertencer à amostra

Profª Drª Glaucia Maria F. Pinto 12

Sorteio não viciado

Amostragem aleatória simples

Amostra

População homogêneaem relação à variável

de interesse!

Existe listagem!

Números aleatórios ou pseudo-aleatórios

Page 9: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 13

1...k ...N

k k k

1 n

População

Amostra

Aumentar n para deixar k inteiro.

Descartar elementos da população por sorteio.

Amostragem sistemática

Profª Drª Glaucia Maria F. Pinto 14

Amostragem Estratificada Uniforme

Sorteio

Page 10: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 15

Amostragem Estratificada Proporcional

Sorteio

Profª Drª Glaucia Maria F. Pinto 16

Observar todos oselementos dosconglomeradossorteados.

Sortear algunselementos dosconglomeradossorteados.

Sorteiode

conglomerados

Page 11: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 17

Tamanho da amostra X Tamanho da População

Tamanhos mínimos de amostra: erro amostral de 3%

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000

Tamanho da população

Tam

an

ho

da a

mo

str

a

Para N = 200000n = 1105.Cerca de 0,55% dapopulação.

Profª Drª Glaucia Maria F. Pinto 18

Fontes de erro em levantamentos por amostragem

• População acessível diferente da população alvo.

• Falta de resposta: dados perdidos, dados censurados,

substituição.

• Erros de mensuração: problemas com o instrumento de

pesquisa; inserção de mecanismos de controle.

Page 12: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 19

QUÍMICA ANALÍTICA

ESTOCAGEM

Se entre a amostragem e a análise houver uma diferença de tempo é necessário estudar as condições corretas de estocagem

Podem ocorrer alterações nas características e composição original da amostra.

Perdas e contaminações

Podem ocorrer: lixiviação, degradação, adsorção, absorção, reações químicas, etc.

Amostras líquidas são mais sensíveis do que amostras sólidas

Exemplo: estocagem em vidro => contaminantes metálicos podem lixiviar do vidro para o líquido estocado e causando contaminação do mesmo

Profª Drª Glaucia Maria F. Pinto 20

QUÍMICA ANALÍTICA

ESTOCAGEM

É importante escolher adequadamente:

o material do frasco de amostragem e estocagem

a temperatura de estocagem (temperaturas de 4ºC diminuem os riscos de perdas na estocagem se comparado com temperatura ambiente)

verificar o tempo possível para a estocagem

estudar a adição de preservativos*

* Preservativos são substâncias adicionadas às amostras com a função de preservar a sua integridade (composição e concentração). Exemplo de preservativos: ácidos

Page 13: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 21

QUÍMICA ANALÍTICA

PRÉ-TRATAMENTO

Muitas vezes o único tratamento que a amostra precisa é de diluição (para atingir a concentração de análise adequada)

Porém, algumas vezes a amostra precisa ser tratada ou transformada antes da análise

Tratamentos adequados:

eliminação de umidade => secagem em estufa. Utilização de temperatura as vezes é desaconselhável

Abertura da amostra sólida => adição de ácidos e aquecimento

Eliminação de interferentes => algumas substâncias podem ser adicionadas para eliminar interferências

Profª Drª Glaucia Maria F. Pinto 22

QUÍMICA ANALÍTICA

PRÉ-TRATAMENTO

Tratamentos adequados (cont.):

Dissolução

Homogeneização

Redução das partículas => triturar

Eliminação de partículas => filtração

Pré-concentração => diminuição de volume

Troca de solventes

Extração da matriz => cartuchos, ultra-som

Separação

Exemplos: sangue, água de rio, liga metálica, leite, solo

Page 14: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 23

TRATAMENTO DE DADOS

Toda medida apresenta um certo grau de incerteza => resultado apresenta uma incerteza

Incerteza é aceitável ou não?

Depende do objetivo e das condições

Tratamento estatístico dos dados permite avaliar se os números expressos como resultados são adequados e qual a confiabilidade e aplicabilidade deles

O tratamento dos dados estabelece: algarismos significativos do resultado; os erros, o limite de confiança, a precisão, a exatidão, os desvios, a rejeição ou aceitabilidade dos resultados e a confiabilidade do método.

Profª Drª Glaucia Maria F. Pinto 24

TRATAMENTO DE DADOS

Quantos dígitos numéricos são necessários para expressar um resultado de modo que somente o último seja duvidoso?

Algarismos significativos não quer dizer decimais

Exemplos:

15,1321g = 15132,1 mg (6 algarismos significativos)

1516; 151,6; 1,516; 0,1516 => 4 algarismos significativos

2g obtida em balança com ± 0,1g de precisão => correto é2,0g ou 2,0x103 mg

ALGARISMOS SIGNIFICATIVOS

Page 15: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 25

TRATAMENTO DE DADOS

Operações matemáticas:

Adição e subtração: mesmo nº de casas decimais que o menor.

Exemplo: 2,2g + 0,1145g= 2,3g

Multiplicação e divisão: mesmo nº de algarismos significativos que o menor

Exemplo: 25,00 x 0,10000 = 2,500

Incerteza relativa as vezes muda a regra geral

Exemplo: (24,95 x 0,1000) / 25,05 =0,09960 (pela regra), mas incerteza está na 4ª casa então correto é 0,0996

Números exatos não contam.

Exemplo: 6 bolas x 3,375g= 20,25g

ALGARISMOS SIGNIFICATIVOS

Profª Drª Glaucia Maria F. Pinto 26

TRATAMENTO DE DADOS

Se X1, X2,, X3 ...XN é uma série finita de N medidas, média destas medidas é dada por:

= média da amostra

μ = média da população

Desvio (erro aparente)= diferença entre valor verdadeiro e média

DESVIOS E MÉDIA

∑=

=

=Ni

ixiN

x1

1

x - x id i =

x

Page 16: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 27

TRATAMENTO DE DADOS

Desvio padrão (σ)= desvio cujo quadrado é igual à média dos quadrados dos desvios:

Na prática N são pequenos e calcula-se a estimativa do desvio padrão (s):

Estimativa de desvio padrão relativo ou coeficiente de variação (adimensional):

DESVIOS

( )N

xi∑ −=

σ

( )1

2

−= ∑

N

xs xi

100 . x

sCV =

Profª Drª Glaucia Maria F. Pinto 28

Toda vez que realizamos uma medida existe um erro, que

pode ser calculado de duas formas:

Erro absoluto => E= X E= X -- XXvv

Erro relativo => EErr=(E =(E / X/ Xvv). 100). 100

Tipos de erros:

Determinados: apresenta um valor definido, pode ser

medido e computado

Indeterminados: não possuem valor definido, não

podem ser medidos

TRATAMENTO DE DADOS

ERROS

Page 17: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 29

Podem ser:

De método: associados a uma escolha incorreta do

método de análise. Ex: uso de indicador incorreto na

titulação; solvente que solubiliza o precipitado (gravimetria)

Operacionais: relacionado a capacidade técnica ou

imperícia do analista. Ex: não remover completamente o

precipitado; deixar béquer aberto, filtração incorreta, não

secar direito o sólido

TRATAMENTO DE DADOS

ERROS DETERMINADOS

Profª Drª Glaucia Maria F. Pinto 30

Podem ser:

Pessoais: associados a uma inaptidão ou limitação

pessoal. Ex: daltonismo, que dificulta a visualização da

viragem do indicador; pré-julgamento; pré-conceito.

Instrumentais ou de reagentes: relacionados aos

materiais e equipamentos utilizados na análise. Ex:

equipamento calibrado inadequadamente; impurezas de

reagentes

TRATAMENTO DE DADOS

ERROS DETERMINADOS

Page 18: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 31

Erros indeterminados: não podem ser localizados e corrigidos.

São pequenas alterações aleatórias que podem ser tratadas

estatisticamente (precisão e valor mais provável). Seguem a Lei de

Distribuição Normal (distribuição Gaussiana).

Lei de distribuição normal: os resultados podem assumir valores

de -∞ a + ∞ com probabilidade de acordo com a equação:

Y= probabilidade de ocorrência de um dado valor Xi da variável Xμ= média da população, σ= desvio padrãoσ2= variância

TRATAMENTO DE DADOS

ERROS INDETERMINADOS

( )⎥⎥⎦

⎢⎢⎣

⎡ −=

2

2

2

1exp

2

1

σμ

πσix

Y

Profª Drª Glaucia Maria F. Pinto 32

Distribuição gaussiana

Considerações:O valor mais provável é a média aritméticaDesvios positivos e negativos são igualmente prováveisDesvios pequenos são mais prováveis que desvios grandes

TRATAMENTO DE DADOS

ERROS INDETERMINADOS

Page 19: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 33

Distribuição gaussiana:

Na ausência de erros determinados e para nº infinitos de

medidas, a média da população (μ) coincide com o valor

verdadeiro (Xv)

Na presença de erro determinado a curva encontra-se

deslocada, afastando a média do valor verdadeiro

Tabela com valores de z e probabilidade de desvio maior que z

z= desvio em unidades:

TRATAMENTO DE DADOS

ERROS INDETERMINADOS

⎟⎠

⎞⎜⎝

⎛ −=

σμix

z

Profª Drª Glaucia Maria F. Pinto 34

Exemplos:

- integração da curva -1σ e +1σ (z=1) equivale a probabilidade de

68% (32% fica fora)

- integração da curva -2σ e +2σ (z=2) equivale a probabilidade de

95% (5% fica fora)

- integração da curva -3σ e +3σ (z=3) equivale a probabilidade de

99,7% (0,3% fica fora)

TRATAMENTO DE DADOS

ERROS INDETERMINADOS

Page 20: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 35

O meu resultado tem uma incerteza. Mas dentro de quais limiteso meu resultado se encontra?

Em química analítica analisamos duplicatas ou triplicatas => valores de e s estimam μ e σ

porém σ não é conhecido, só s, então z não pode ser usado, mas

sim t (t de Student, tabelado)

-Devo estabelecer o grau de confiança ou probabilidade (geralmente 95%)

N

stx ±=μ

TRATAMENTO DE DADOS

INTERVALO E LIMITES DE CONFIANÇA

x

Nzxσμ ±=

Intervalo de confiança

Profª Drª Glaucia Maria F. Pinto 36

Exemplo:

Um analista realizou 4 determinações de ferro, cuja média foi 31,40%, com uma estimativa de desvio padrão de 0,11%. Qual o intervalo em que deve estar a média da população, com um grau de confiança de 95%?

= média da amostra= 31,40%s= estimativa de desvio padrão= 0,11%N= 4Grau de confiança= 95%t= t Student (tabelado= 3,18)

=

μ= (31,40±0,17)%, limites: 31,23% e 31,57%

TRATAMENTO DE DADOSINTERVALO E LIMITES DE CONFIANÇA

x

N

stx ±=μ

4

11,018,340,31 ±

Page 21: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 37

PRECISÃO: é a concordância das medidas entre si e mede a

dispersão entre os resultados ( maior dispersão menor precisão).

Pode ser expressa numericamente pelo desvio médio, desvio

padrão ou desvio padrão relativo, avaliando a reprodutibilidade e/ou

repetitividade

EXATIDÃO: está relacionada com o erro absoluto, isto é, com a

proximidade do valor medido em relação ao valor verdadeiro da

grandeza. Mede a veracidade da medida.

Exatidão e precisão não implicam uns nos outros

TRATAMENTO DE DADOS

PRECISÃO E EXATIDÃO

Profª Drª Glaucia Maria F. Pinto 38

É usado para comparar conjunto de dados, através da razão de

variância de dois conjuntos e verifica se existe diferença estatística

significativa entre os dados.

sy2 <sx

2 (são variâncias

do conjunto de dados y

e x, respectivamente)

os valores de F calculados devem ser comparados com valores de F críticos (tabelados)

quando Fcal > Fcrit então existe diferença estatística significativa entre os dois conjuntos de dados (no nível de confiança).

TRATAMENTO DE DADOSTESTE F

s

sFy

x2

2=

Page 22: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 39

Exemplo: Um analista novo realizou 6 determinações e obteve

com média 35,25%, com s= 0,34%. Os resultados do analista mais

experiente eram de 35,35% (média), com N=5 e s= 0,25%.

Compare os resultados, com 95% de confiança.

= 1,85

F crítico= 6,26 (tabela, nível de confiança de 95%, graus de

liberdade do denominador 4 e numerador 5

como Fcal < Fcrit não existe diferença entre os dados

TRATAMENTO DE DADOS

TESTE F

2

2

25,0

34,0=F

Profª Drª Glaucia Maria F. Pinto 40

É utilizado para avaliar se alguns resultados devem ser eliminados do conjunto (critérios estatísticos de rejeição).

Procedimento:

1- colocar resultados em ordem crescente

2- Determinar diferença entre o maior e menor resultado

3- Determinar as diferenças entre o menor resultado e o mais próximo (módulo)

4- Dividir a diferença obtida em 3 pela faixa (obtida em 2)

5- Se Q > Qtab o menor valor é rejeitado

6- Se o menor valor for rejeitado, a faixa deve ser recalculada e o teste re-feito

7- Se o menor valor for aceito, testar o maior valor

TRATAMENTO DE DADOS

TESTE Q

Page 23: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 41

Exemplo:

A determinação de %Cu forneceu os seguintes resultados: 15,42%; 15,51%; 15,52%; 15,53%; 15,68%; 15,52%; 15,56%; 15,53%; 15,54% e 15,56%. Determine se todos os resultados devem ser considerados.

1- ordenar os resultados: 15,42; 15,51; 15,52; 15,52; 15,53; 15,53; 15,54; 15,56; 15,56; 15,68

2- menor valor= 15,42%

3- Faixa 15,68-15,42= 0,26

4- Diferença entre menor e mais próximo: |15,42-15,51|

5- Q= |15,42-15,51| / 15,68-15,42= 0,09 / 0,26= 0,35

TRATAMENTO DE DADOS

TESTE Q

Profª Drª Glaucia Maria F. Pinto 42

Exemplo (cont):

6- Qtab= 0,412, com 90% de confiança, N=10

7- Q < Qtab, então menor valor (15,42) é aceito

8- Testar maior valor

9- Estabelecer nova faixa

10- Testar menor valor de novo

11- Continuar até menor e maior valores serem aceitos

TRATAMENTO DE DADOS

TESTE Q

Page 24: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 43

TRATAMENTO DE DADOS

PROPAGAÇÃO DE ERROS

O resultado de uma análise é calculada a partir dos valores de outras grandezas medidas (cada uma apresenta o seu erro).

Definições:

A, B => são quantidades a partir das quais R é obtido

ER, EA, EB => erros determinados absolutos

ER/R, EA/A, EB/B => erros determinados relativos

sR, sA, sB => estimativas dos desvios padrões

sR /R, sA /A, sB /B => estimativas dos desvios padrão relativos

Profª Drª Glaucia Maria F. Pinto 44

TRATAMENTO DE DADOS

PROPAGAÇÃO DE ERROS

Quando o resultado (R) é obtido por soma ou subtração:

- Cálculo para R:

R= A+B-C

-Cálculo para erros determinados

ER= EA+EB-EC (soma ou subtração dos erros absolutos)

- Cálculo para erros indeterminados:

2C

2B

2AR ssss ++=

Page 25: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 45

TRATAMENTO DE DADOS

PROPAGAÇÃO DE ERROS

Quando o resultado (R) é obtido por divisão e multiplicação

- Cálculo para R:

R= A.B / C

-Cálculo para erros determinados

ER/R = EA/A + EB/B - EC/C (soma ou subtração dos erros relativos)

- Cálculo para erros indeterminados:

2C

2B

2AR

C

s

B

s

A

ss⎟⎠

⎞⎜⎝

⎛+⎟

⎞⎜⎝

⎛+⎟

⎞⎜⎝

⎛±=

R

Profª Drª Glaucia Maria F. Pinto 46

TRATAMENTO DE DADOS

PROPAGAÇÃO DE ERROS

Exemplo: Na determinação gravimétrica de ferro empregou-se uma pipeta afetada por +1%. O Fe2O3 precipitado retém 2% de água. Calcular o erro na concentração de ferro.

⇒Cfe (g.L-1)= mFe2O3/V

⇒ erros determinados, portanto: ER/R = EA/A - EB/B

⇒ EA/A= 2% (erro na massa)

⇒ EB/B= 1% (erro no volume)

⇒ ER/R= 2-1= 1%

Page 26: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 47

TRATAMENTO DE DADOS

GRÁFICOS DE CONTROLE

Os gráficos de controle são feitos para avaliar medidas e verificar se as mesmas se encontram dentro de limites adequados

Este gráfico apresenta 2 linhas limites, limites de controle superior e inferior, e uma linha central que é a média dos resultados

O desvio padrão (s estimando σ) deve ser conhecido e éutilizado para calcular os limites de controle

Deve-se distribuir os resultados no gráfico e observar. Se houver uma tendência na disposição dos pontos, podem estar ocorrendo erros determinados, se os pontos forem distribuídos aleatoriamente ao redor da linha média não devem haver erros determinados

Profª Drª Glaucia Maria F. Pinto 48

TRATAMENTO DE DADOS

GRÁFICOS DE CONTROLE

Exemplo:

Page 27: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 49

TRATAMENTO DE DADOS

TAMANHO DA AMOSTRA

Quanto mais amostras testamos mais próximos os resultados da média estarão da μ (ou valor real, sem erros determinados).

Quando se deseja obter resultados dentro de certos limites e com um desvio padrão (precisão) estabelecida, pode-se calcular quantas amostras deverão ser analisadas.

Existem algumas formas de fazer este cálculo, a mais comum é:

onde

= erro

2

22

δ

stn =

μδ −= x

Profª Drª Glaucia Maria F. Pinto 50

Valores de z

Page 28: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 51

Valores de t

Profª Drª Glaucia Maria F. Pinto 52

Valores de Fcrit

Page 29: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 53

Valores de Qtab

Profª Drª Glaucia Maria F. Pinto 54

VALIDAÇÃO

• O que é?

• No que consiste?

• Quando deve ser feita?

• Por que deve ser feita?

ValidaValidaçção de Mão de Méétodostodos

Page 30: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 55

• Mas por que validar?

– Laboratórios analíticos geram milhares de resultados, mas como confiar nos números?

– Métodos utilizados devem ter parâmetros estabelecidos que garantam a sua confiabilidade.

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 56

DefiniDefiniççãoão

Validar um método significa estabelecer qual o nível de desvios (qual a ordem de grandeza dos erros) que

ele pode gerar nos resultados e conhecer os parâmetros e as alterações dos parâmetros que podem modificar os resultados obtidos. Enfim,

significa dar garantias de que os resultados gerados pelo método cumprem o propósito para o qual se

destinam e são aceitáveis dentro de certos limites e se mantidas certas condições conhecidas.

ValidaValidaçção de Mão de Méétodostodos

Page 31: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 57

• Portanto, a validação de um método analítico está relacionada:

– Com a identificação de fontes potenciais de erros

– Com a quantificação dos erros potenciais no método

DefiniDefiniççãoão

Uma validação do método descreve, em termos matemáticos e quantitativos, as características de performance do método.

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 58

– Validação de método ≠ otimização ≠qualificação.

– Um método validado não é necessariamente um método “compacto”.

– Repetir uma determinação várias vezes não constitui uma validação.

Enganos ComunsEnganos Comuns

ValidaValidaçção de Mão de Méétodostodos

Page 32: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 59

Revalidação

Implementação

Validação

Pre-validação

Otimização

Desenvolvimento

EtapasEtapas

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 60

Validação de Método

Exatidão

Precisão

Linearidade/faixa

Limite de detecção

Limite de quantificação

Especificidade

Robustez/Rigidez

Adequação do sistema

ValidaValidaçção de Mão de Méétodostodos

Page 33: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 61

ValidaValidaçção de Mão de Méétodos Analtodos Analííticosticos

Profª Drª Glaucia Maria F. Pinto 62

Definição dos

Parâmetros de Validação

ValidaValidaçção de Mão de Méétodostodos

Page 34: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 63

• A concordância entre um resultado e o valor de referência aceito (valor real ou teórico), também é conhecida como acurácia.

• Ela geralmente requer a disponibilidade de um padrão de excelência ou um padrão de referência ou métodos oficiais com os quais os resultados podem ser comparados.

ExatidãoExatidão

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 64

• Determinação:– Após estabelecimento de linearidade e

especificidade• Exatidão= (valor obtido/valor real) x

100• Aceitação: 95-105%• Triplicata no valor baixo da faixa,

triplicata no médio e triplicata no alto => total de 9 determinações.

ExatidãoExatidão

ValidaValidaçção de Mão de Méétodostodos

Page 35: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 65

• Concordância entre os resultados de testes individuais, obtidos sob condições estipuladas.

• Repetitividade: precisão obtida sob condições repetitivas => resultados de testes independentes são obtidos com o mesmo método, com itens idênticos de teste, usando mesmo lab, operador, equipamento e em um intervalo de tempo pequeno.

PrecisãoPrecisão

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 66

• A repetitividade do método é verificada por, no mínimo, 9 (nove) determinações, contemplando o intervalo linear do método, ou seja, 3 (três) concentrações, baixa, média e alta, com 3 (três) réplicas cada ou míni-mo de 6 determinações a 100% da concentração do teste.

PrecisãoPrecisão

ValidaValidaçção de Mão de Méétodostodos

Page 36: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 67

• Repetitividade ou Precisão intra-dia ou intra-corrida: resultados obtidos no mesmo dia, com diferentes corridas, geralmente mesmo analista e equipamento;

• Precisão intermediária ou inter-dia ou inter-corrida: comparação entre os resultados obtidos no mesmo laboratório, em dias diferentes, diferentes analistas, pode haver variação de equipamento;

PrecisãoPrecisão

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 68

• Para a determinação da precisão intermediária recomenda-se um mínimo de 2 dias diferentes com

analistas diferentes.

PrecisãoPrecisão

ValidaValidaçção de Mão de Méétodostodos

Page 37: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 69

• Avaliação através do coeficiente de variação (CV) ou RSD (relative standard deviation), sendo:

C.V. = RSD = (s/ xm) 100

Onde s= estimativa de desvio padrão

s = {Σ(xi - xm)2/N-1}1/2

Xm= valor médio

PrecisãoPrecisão

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 70

• Reprodutibilidade (precisão inter-laboratorial): precisão sob condições reprodutíveis => os resultados de testes individuais são obtidos com mesmo método, com itens de teste idênticos, usando diferente lab, operador e equipamento.

PrecisãoPrecisão

ValidaValidaçção de Mão de Méétodostodos

Page 38: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 71

• O valor máximo aceitável deve ser definido de acordo com a metodologia empregada, a concentração do analitona amostra, o tipo de matriz e a finalidade do método.

PrecisãoPrecisão

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 72

• Estabelecimento do intervalo no qual o método fornece resultados matematicamente proporcionais a concentração do analito.

• Curva analítica: representação gráfica do relacionamento matemático entre concentração e resposta.

Linearidade/FaixaLinearidade/Faixa

ValidaValidaçção de Mão de Méétodostodos

Page 39: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 73

• y= a+bx

a= coeficiente linear

b= coeficiente angular

r= coeficiente de correlação

Linearidade/FaixaLinearidade/Faixa

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 74

• a = intersecção da reta no eixo y (teoricamente conc.= zero, y= zero) => indica erro.

b = inclinação => indicativa de sensibilidade.

r = indica qualidade da regressão, r>0,99.

Programa matemático: Origin (sugestão).

Linearidade/FaixaLinearidade/Faixa

ValidaValidaçção de Mão de Méétodostodos

Page 40: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 75

• O intervalo especificado é a faixa entre os limites de quantificação superior e inferior de um método analítico. Normalmente é derivado do estudo de linearidade e depende da aplicação pretendida do método. É estabelecido pela confirmação de que o método apresenta exatidão, precisão e linearidade adequados quando aplicados a amostras contendo quantidades de substâncias dentro do intervalo especificado.

• No mínimo 5 pontos, triplicata em cada ponto.

Linearidade/FaixaLinearidade/Faixa

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 76

• Limite de detecção é a menor quantidade do analito presente em uma amostra que pode ser detectado, porém não necessariamente quantificado, sob as condições experimentais estabelecidas.

Limite de DetecLimite de Detecççãoão

ValidaValidaçção de Mão de Méétodostodos

Page 41: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 77

• O limite de detecção é estabelecido por meio da análise de soluções de concentrações conhecidas e decrescentes do analito, até o menor nível detectável;

Limite de DetecLimite de Detecççãoão

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 78

• No caso de métodos não instrumentais (CCD, titulação, comparação de cor), esta determinação pode ser feita visualmente, onde o limite de detecção é o menor valor de concentração capaz de produzir o efeito esperado (mudança de cor, turvação, etc).

Limite de DetecLimite de Detecççãoão

ValidaValidaçção de Mão de Méétodostodos

Page 42: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 79

• Determinação:

• Três vezes o ruído da linha de base

• LD= 3 sa/ b,

• Opções para sa:

• sa= desvio do coeficiente linear obtido pelas três curvas, ou desvio do branco

• b= inclinação da curva (coeficiente angular)

Limite de DetecLimite de Detecççãoão

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 80

• É a menor quantidade do analito em uma amostra que pode ser determinada com precisão e exatidão aceitáveis sob as condições experimentais estabelecidas.

Limite de QuantificaLimite de Quantificaççãoão

ValidaValidaçção de Mão de Méétodostodos

Page 43: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 81

• O limite de quantificação é estabelecido por meio da análise de soluções contendo concentrações decrescentes do analito atéo menor nível determinável com precisão e exatidão aceitáveis.

Limite de QuantificaLimite de Quantificaççãoão

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 82

• Determinação: sinal deve ser 10 vezes o ruído

• LQ= 10 sa/ b

•sa= desvio do coeficiente linear obtido pelas três curvas, ou desvio do branco

• b= inclinação da curva (coeficiente angular)

Limite de QuantificaLimite de Quantificaççãoão

ValidaValidaçção de Mão de Méétodostodos

Page 44: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 83

• É a capacidade que o método possui de medir exatamente um composto em presença de outros componentes tais como impurezas, pro-dutos de degradação e componentes da matriz.

Especificidade/Seletividade Especificidade/Seletividade

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 84

• É a medida da capacidade do método em resistir a pequenas e deliberadas variações dos parâmetros analíticos. Indica sua confiança durante o uso normal.

• Durante o desenvolvimento da metodologia, deve-se considerar a avaliação da robustez. Constatando-se a susceptibilidade do método àvariações nas condições analíticas, estas deverão ser controladas e precauções devem ser incluídas no procedimento.

Robustez Robustez

ValidaValidaçção de Mão de Méétodostodos

Page 45: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 85

• Robustez => Robustness

• Rigidez => Ruggedness

Robustez X Rigidez Robustez X Rigidez

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 86

• Rigidez => variações nas condições otimizadas, variabilidades do analista, variabilidades instrumentais, variáveis da matriz, organização dos experimentos.

Robustez X Rigidez Robustez X Rigidez

ValidaValidaçção de Mão de Méétodostodos

Page 46: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 87

• Robustez => Influências operacionais e variações ambientais afetando o método analítico; medida da reprodutibilidade do resultado do teste em condições normais, condições operacionais de um laboratório para outro e de um analista para outro.

Robustez X Rigidez Robustez X Rigidez

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 88

• Importante determinar => estárelacionado com o tempo disponível para realizar as análises das amostras.

• Estabilidade do analito no solvente de análise (diluente ou fase móvel).

• Estabilidade do analito na matriz.

Estabilidade da SoluEstabilidade da Soluçção ão

ValidaValidaçção de Mão de Méétodostodos

Page 47: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 89

• Documentação: relatórios, protocolos

• Análise estatística

ValidaValidaçção de Mão de Méétodostodos

Profª Drª Glaucia Maria F. Pinto 90

GRAVIMETRIA

Técnica analítica mais antiga

Muitas vantagens:RápidaExataSeletivaPoucos materiais para execuçãoPode ser utilizada para validar métodos

Permite a determinação através de uma medida de massa

Gravimetria:De precipitaçãoEletrogravimetriaParticuladaDe Volatilização

Page 48: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 91

GRAVIMETRIA

Eletrogravimetria: envolve célula eletroquímica e elemento presente na solução na forma de íons é depositado em eletrodo na forma de metal. Massa pode ser medida, elemento pode ser quantificado.

Gravimetria de volatilização: pode envolver energia térmica ou química que quando aplicadas à amostra fazem com que ela perca massa, através de uma alteração de composição. Por exemplo: perda de água e de gás carbônico. A diferença de massa é determinada. (termogravimetria)

Gravimetria particulada: geralmente aplicável a sólidos suspensos. A amostra é filtrada ou ocorre uma extração da matriz e a massa de sólido é obtida, permitindo a quantificação.

Profª Drª Glaucia Maria F. Pinto 92

GRAVIMETRIA

Gravimetria de precipitação (é a mais utilizada): elemento presente na solução, na forma de íons, reage com reagente precipitante formando um sólido que é separado da solução, seco ou calcinado e pesado. Massa do sólido obtido é proporcional ao elemento de interesse.

Requisitos de utilização, precipitado deve ter:

baixa solubilidade

alta pureza

composição conhecida (estequiometria de reação)

facilidade de separação

precipitação completa

Page 49: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 93

Produto de solubilidade: governa a formação de sólidos em solução contendo íons.

Quando uma substância tem solubilidade limitada e ela éexcedida, os íons da porção dissolvida existem em equilíbrio com o material sólido (precipitado). Compostos insolúveis.

Exemplo: AgCl Ag+ + Cl-

a constante envolvida no equilíbrio de solubilidade é o produto de solubilidade, obtido pelo produto iônico:Kps= [Ag+ ].[Cl-]= s.s=s2

Exemplo: Ag2CrO4 2Ag+ + CrO42-

Kps= [Ag+]2.[CrO42-]= (2s)2.s = 4s3

s= solubilidade

GRAVIMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 94

Precipitação só ocorre quando Kps é excedido: [Ag+ ].[Cl-] > kps, se o produto iônico é igual ao kps os íons permanecem em solução

Efeito do íon comum diminui a solubilidade. Por exemplo, adição de Cl- no equilíbrio de formação de AgCl. Porém, excesso não pode ser muito grande pois outras espécies solúveis podem ser formadas (como cloro complexos solúveis: AgCl2-, AgCl3-.

Kps depende da temperatura, do solvente e as vezes o equilíbrio éinfluenciado pelo pH do meio.

Exemplo: PbI2 Pb2+ + 2I-

s s 2s

Kps= [Pb2+].[I-]2= 7,1x10-9 => s.(2s)2= 4s3 => s= 1,2x10-3M

GRAVIMETRIA DE PRECIPITAÇÃO

Page 50: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 95

Etapas da análise gravimétrica por precipitação:

1) Preparação da solução

2) Precipitação

3) Digestão

4) Filtração

5) Lavagem

6) Secagem ou calcinação

7) Pesagem

8) Cálculos

GRAVIMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 96

Preparação da solução: etapa necessária para ajustar as

condições apropriadas para determinar o analito. Pode

significar separar interferentes, ajustes para diminuir a

solubilidades do precipitado, forma do sólido para filtração.

Condições a serem ajustadas: volume de solução,

concentração, presença e concentração de outros

constituintes, temperatura e pH. Exemplo: oxalato de cálcio é

insolúvel em meio básico, mas diminuindo o pH o oxalato se

liga a H+, formando 8-hidroxiquinolina, que precipita com

diferentes compostos.

GRAVIMETRIA DE PRECIPITAÇÃO

Page 51: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 97

Precipitação: a precipitação deve acontecer de maneira controlada, e o precipitado formado deve ser suficientemente insolúvel, formar cristais grandes, deve ser lavável e sem impurezas.

Formação do precipitado: ocorre em duas etapas

1º Passo: formação de partículas finas (núcleo) => processo de nucleação

2º Passo: Crescimento dos cristais

Tipos de precipitados;

cristalino (partículas de 0,1-1,0 µ). Ex: sulfato de bário

coagulado. Ex: cloreto de prata

gelatinoso (partículas de 0,02 µ ou menos). Ex: óxido de ferro

GRAVIMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 98

Precipitação

GRAVIMETRIA DE PRECIPITAÇÃO

Esquema: temos a formação de solução supersaturada, em temperatura constante, e forçamos a precipitação do excesso do soluto até atingir o estado de equilíbrio (solução saturada).

Os núcleos não são estáveis e crescem até atingirem o tamanho das partículas coloidais e então, ou param (caso de AgCl e Fe(OH)3) ou crescem até formarem cristais grandes (caso do BaSO4).

A nucleação pode ser espontânea ou forçada. Forçada: raspar as paredes do frasco, colocar grãos de cristais (não em quantitativa), etc.

Page 52: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 99

Diagrama de formação de precipitado

Íons em solução supersaturada (diâmetro 0,0001-0,001 µm)

Núcleos não filtráveis

Partículas coloidáis não filtráveis em filtros comuns (0,001-0,1 µm)

Cristais pequenos, filtráveis (0,1-10 µm)

Cristais grandes filtráveis (>10 µm)

Agregados cristalinos

Agregados coloidais

Colóide estabilizado

Profª Drª Glaucia Maria F. Pinto 100

Von Weimarn descobriu que o tamanho das partículas éinversamente proporcional a supersaturação relativa da solução durante o processo de precipitação:

Supersaturação relativa=

Grau de dispersão=

Q= conc. dos íons em solução no instante anterior a precip.S= solubilidade do prec. no estado de equilíbrioK= constante (depende da natureza do prec., temp. e viscosidade)Q-S= grau de supersaturação

Precipitação

GRAVIMETRIA DE PRECIPITAÇÃO

S

SQ −

S

Sk.Q −

Page 53: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 101

Quanto maior a conc. dos reagentes, maior grau de dispersão e menor tamanho das partículas

maior supersaturação relativa => muitos cristais pequenos

menor supersaturação relativa => poucos cristais grandes

São recomendados Q e S , pois soluções diluídas permitem obter cristais grandes

Os núcleos são agregados de íons ou moléculas.

A nucleação pode ser homogênea ou heterogênea.

O tempo entre nucleação e crescimento pode ser rápido ou não.

Precipitação

GRAVIMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 102

Condições favoráveis:

Precipitação de soluções diluídas

Adição lenta de reagentes diluídos, com agitação efetiva. Q permanece baixo e não há locais mais concentrados.

Precipitação de soluções quentes. Isto aumenta S. A solubilidade não deve ser muito grande ou o precipitado não équantitativo. Utiliza solução quente e depois resfria.

Precipitar em pH baixo (se possível). Muitos precipitados são mais solúveis em meios ácidos.

A solubilidade alta evita a supersaturação mas durante a precipitação as condições devem mudar para não perder precipitado.

Precipitação

GRAVIMETRIA DE PRECIPITAÇÃO

Page 54: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 103

Se o reagente não é gerado “in situ” a precipitação éheterogênea

O reagente é adicionado e forma-se uma interface, com íons que passam de uma para outra camada

Ocorre uma precipitação local no início

GRAVIMETRIA DE PRECIPITAÇÃO

Precipitação heterogênea

Profª Drª Glaucia Maria F. Pinto 104

Melhores condições de obtenção de bom precipitado: soluções diluídas, adição lenta de reagentes, não haver supersaturação, não haver concentração local de reagente e agitação.

Boa alternativa é precipitação homogênea. Nesta técnica o reagente é gerado “in situ” por uma reação química que ocorre uniformemente na solução

Exemplos: hidrólise da uréia (NH2CONH2) através da reação em solução aquosa em ebulição, gerando NH3: NH2CONH2 NH3 + CO2 (amônia é lentamente liberada e aumenta pH da solução uniformemente fazendo com que os íons metálicos formem óxidos insolúveis e pptem).

GRAVIMETRIA DE PRECIPITAÇÃO

Precipitação homogênea

Page 55: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 105

Hidrólise de esteres diminuem homogeneamente o pH. Ex: hidrólise do dimetil-sulfato gerando ácido sulfúrico

Obtenção de sulfetos a partir da hidrólise da tioacetamida.

CH3CSNH2 + H2O CH3CONH2 + H2S

Precipitação homogênea é utilizada para melhorar as separações, estudar e reduzir co-precipitações, formar partículas cristalinas grandes e para produzir precipitados mais puros e fáceis de filtrar

GRAVIMETRIA DE PRECIPITAÇÃO

Precipitação homogênea

Profª Drª Glaucia Maria F. Pinto 106

Quando o precipitado permanece na presença da solução mãe

formam-se grandes precipitados a partir dos pequenos

(envelhecimento do precipitado).

A digestão pode ocorrer em temperatura ambiente ou

temperatura elevada.

Pequenas partículas se dissolvem e partículas maiores

precipitam.

Também ocorre de partículas se aglomerarem

A adsorção superficial e oclusão de impurezas são minimizadas.

Digestão

GRAVIMETRIA DE PRECIPITAÇÃO

Page 56: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 107

A camada externa do precipitado tende a ter íons adsorvidos,

formando uma dupla camada elétrica

Excesso de íons do reagente e contra-íons na solução

favorecem a dupla camada.

Adsorção diminui com o aquecimento ou adição de eletrólitos

A lavagem pode quebrar as partículas agregadas =>

peptização

Lavar com solvente quente e com eletrólitos corretos.

Digestão

GRAVIMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 108

GRAVIMETRIA DE PRECIPITAÇÃO

Page 57: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 109

Impurezas dos precipitados:

Como na solução existem outros constituintes, o pptado pode arrastar impurezas:

soluções sólidas => oclusão

adsorção na superfície

pós-precipitação

GRAVIMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 110

Na oclusão os íons de impurezas são aprisionados dentro do

cristal em formação. Íons parecidos podem ser substituídos no

arranjo cristalino, formando parte do retículo. Deve-se então retirar

os íons parecidos.

Adsorção na superfície ocorre quando íons em excesso da

solução ficam adsorvidos no precipitado em formação. Quando o

precipitado cresce os íons adsorvidos podem ser retidos

Pós precipitação ocorre quando o precipitado permanece em

contato com a solução mãe e uma segunda substância lentamente

forma outro precipitado com o reagente. Exemplo: oxalato de

cálcio (ppt de interesse), magnésio também ppt.

GRAVIMETRIA DE PRECIPITAÇÃO

Page 58: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 111

Deve-se verificar a forma correta de filtração, de acordo com o tamanho das partículas formadas. Geralmente pode ser filtro de papel ou vidro sinterizado (tipo Gooch)

As filtrações podem ser feitas à vácuo ou pela gravidade

Deve-se transferir primeiro o sobrenadante e por último o sólido, para evitar obstruções e lentidão

Os filtros de vidro são classificados de acordo com a porosidade: grosso (retém partículas > 40-60 μm), médio (retém partículas > 10-15 μm) e fino (retém partículas > 4-5,5 μm)

GRAVIMETRIA DE PRECIPITAÇÃO

Filtração

Profª Drª Glaucia Maria F. Pinto 112

Os papéis de filtro também apresentam diferentes classificações, sendo chamados de rápidos (retém partículas> 20-25 μm), médio rápidos (retém partículas> 16 μm), médios (retém partículas> 8 μm) e lentos (retém partículas> 2-3 μm),

Filtros de papel podem ser qualitativos ou quantitativos. A diferença é que o quantitativo apresenta menos de 0,010% m/m de cinzas e o qualitativo tem um máximo de 0,060% m/m de cinzas.

Se for realizada a calcinação, a interferência das cinzas do papel devem ser evitadas.

Pode-se tratar previamente o papel de filtro, para remover materiais inorgânicos, através de lavagens com HCl e HF

GRAVIMETRIA DE PRECIPITAÇÃO

Filtração

Page 59: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 113

O objetivo é retirar impurezas

Alguns precipitados não podem ser lavados com água porque

pode ocorrer peptização (reverso da coagulação)

Solução ou solvente de lavagem deve ser volátil para ser

removido na secagem ou calcinação

Quando uma lavagem é feita, deve-se testar se foi completa.

Testar filtrado para presença de reagente precipitante. Ex: para

AgCl lavagem pode ser feita com HNO3 e o teste de lavagem

completa deve verificar a presença de Ag+ no filtrado com HCl ou

NaCl.

GRAVIMETRIA DE PRECIPITAÇÃO

Lavagem

Profª Drª Glaucia Maria F. Pinto 114

Se o precipitado formado já se encontra na forma correta, só énecessário secar para retirar água ou eletrólitos adsorvidos: temperatura de 110-120°C, por 1 ou 2h

A calcinação é realizada para converter o precipitado na forma mais adequada para pesar. Temperatura de 900-1000°C (aproximadamente).

Exemplos: pptaddo de MgNH4PO4 Mg2P2O7, Fe2O3.xH2O Fe2O3 e muitos metais precipitados com hidroxiquinolina devem ser transformados em óxidos.

GRAVIMETRIA DE PRECIPITAÇÃO

Secando ou calcinado

Page 60: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 115

Calcinação pode ser feita em chama ou mufla (cadinho de porcelana ou platina)

Carbono do papel de filtro ou gases redutores podem reagir mudando o sólido.

Ex: Fe2O3 (s) + 3C 2Fe° + 3CO (com aquecimento)

Deve-se deixar a porta aberta ( no caso da mufla) até queimar todo o papel (condições oxidantes)

GRAVIMETRIA DE PRECIPITAÇÃO

Secando ou calcinado

Profª Drª Glaucia Maria F. Pinto 116

Depois do precipitado ter sido seco ou calcinado e ter esfriado em dessecador, o mesmo pode ser pesado com precisão

Através da estequiometria da reação de formação do precipitado a partir do íon em solução e da massa resultante, a quantidade do elemento em análise pode ser determinada

Geralmente o resultado é expresso em porcentagem

GRAVIMETRIA DE PRECIPITAÇÃO

Pesando e calculando

Page 61: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 117

Um minério contendo magnetita (Fe3O4) foi analisado dissolvendo-se 1,5419g da amostra em HCl conc., dando uma mistura de Fe+2 e Fe+3. Todo o Fe+2 foi oxidado com HNO3 e a solução foi precipitada em Fe(OH)3, pela adição de NH3. Depois de filtrar e lavar, o resíduo foi calcinado e pesado, sendo a massa de 0,8525g de Fe2O3. Calcule a % m/m de Fe3O4 na amostra.

3 mols de Fe3O4 = 2 mols Fe2O3 (conservação de massa para Fe)

PM Fe3O4= 231,54 g/mol PM Fe2O3= 159,69 g/mol

159,69 ---- 231,54

2x 0,8525 ---- 3x x= 0,8240g de Fe3O4

1,5419g total de amostra, 0,8240g= 53,44% de Fe3O4 na amostra

GRAVIMETRIA DE PRECIPITAÇÃO

Exemplo

Profª Drª Glaucia Maria F. Pinto 118

Fator gravimétrico:

a/b é a relação estequiométrica entre o elemento de interesse na subs. de origem e subs. Final

% subs. origem:

GRAVIMETRIA DE PRECIPITAÇÃO

b

ax

final) (subs.molecular peso

origem) de (subs.molecular pesocogravimétriFator =

Cálculos

100amostra peso

cogravimétrifator x oprecipitad pesoorigem %subs.de x=

Page 62: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 119

GRAVIMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 120

GRAVIMETRIA DE PRECIPITAÇÃO

Page 63: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 121

GRAVIMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 122

GRAVIMETRIA DE PRECIPITAÇÃO

Page 64: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 123

• Química analítica quantitativa: desafio édeterminar a quantidade de uma certa substância presente em uma amostra

• Métodos volumétricos: envolvem a determinação da concentração de um analito mediante a medida do volume gasto de reagente

VOLUMETRIA

Profª Drª Glaucia Maria F. Pinto 124

• Tem um desenvolvimento antigo (primeiras buretas no ano de 1806) mas é muito utilizada até hoje devido a suas vantagens:

– Rapidez, baixo custo, exatidão, possibilidade de automação, bom desempenho e facilidade de

operação.

VOLUMETRIA

Page 65: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 125

• Métodos volumétricos envolvem titulação

• Titulação é um procedimento no qual nós adicionamos incrementos de uma solução de concentração conhecida (soluções padrão) a uma amostra contendo o analito em estudo, atéque a reação entre o reagente e o analito seja completa.

VOLUMETRIA

Profª Drª Glaucia Maria F. Pinto 126

Titulante é o reagente sendo adicionado e que tem concentração conhecida (vamos medir seu volume total gasto)

eTitulado é o constituinte em solução com concentração a ser determinada e que foi adicionado em um volume fixo no início da procedimento

VOLUMETRIA

Page 66: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 127

• Figuras: como já foi um dia...

VOLUMETRIA

Profª Drª Glaucia Maria F. Pinto 128

• Figuras: como é hoje!

VOLUMETRIA

Page 67: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 129

• Condições de utilização de titulação:

– A reação entre titulante e titulado deve ser estequiométrica, bem definida e conhecida.

– A reação deve ser rápida

– Não deverão ocorrer reações paralelas ( a reação deve ser específica). Se houverem substâncias interferentes elas devem ser eliminadas

VOLUMETRIA

Profª Drª Glaucia Maria F. Pinto 130

• Condições de utilização de titulação:

– Deverá ocorrer uma alteração marcante em uma propriedade da solução quando a reação se completar. Pode ser mudança de cor, propriedades químicas e físicas, pH. Pode-se utilizar indicadores.

– O ponto final e o ponto de equivalência(estequiométrico) devem ser o mais próximospossíveis ou deve haver um intervalo reprodutível.

VOLUMETRIA

Page 68: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 131

• Condições de utilização de titulação:

– A reação deve ser quantitativa. Isto é, o equilíbrio da reação deve estar deslocado para direita. Isto garante que uma mudança brusca ocorra no ponto final e permita obter a exatidão desejada. Se o equilíbrio não for deslocado para direita a mudança serágradual, e será difícil detectar o ponto final.

VOLUMETRIA

Profª Drª Glaucia Maria F. Pinto 132

• Teoricamente o final da titulação irá acontecer no ponto de equivalência, isto é, o ponto no qual eu tenho uma quantidade equivalente do meu reagente adicionado em relação a substância em análise

• Na prática o final da titulação será determinado por uma indicação visual do final da reação entre o reagente e o analito, o que é chamado de ponto final da titulação.

• Erro da titulação: diferença entre o ponto final e o ponto de equivalência

VOLUMETRIA

Page 69: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 133

• Soluções padrão:– São preparadas pela dissolução de uma massa exata

de um material altamente puro, chamado padrão primário, em um diluente com volume exatamente conhecido (frasco volumétrico)

– Se o material disponível não é suficientemente puro, uma alternativa é preparar uma solução de concentração conhecida e padronizá-la. Assim seráobtido o padrão secundário.

– A padronização é realizada titulando-se o padrão secundário contra um padrão primário de massa conhecida.

VOLUMETRIA

Profª Drª Glaucia Maria F. Pinto 134

• Padrão primário:– Deve ser 100,00% puro, embora 0,01 -0,02%

de impurezas sejam toleráveis se exatamente conhecidas

– Deve ser estável a temperaturas de secagem, e deve ser estável indefinidaemnte em Tamb. Todo padrão primário é seco antes da utilização.

– Deve ser facilmente disponível

VOLUMETRIA

Page 70: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 135

• Padrão primário:– É desejável que tenha uma alto peso molecular,

pois isto diminui os erros de pesagem pois são envolvidas massas maiores.

– Se ele será utilizada em uma titulação, o padrão primário deve ter condições de ser titulado(condições de titulação). Em particular o equilíbrio deve ser deslocado para direita para se obter um bom ponto final.

VOLUMETRIA

Profª Drª Glaucia Maria F. Pinto 136

• Tipo de volumetria:

• Volumetria ácido-base: é apropriada para a determinação de ácidos ou bases naturais ou sintéticas ou substâncias que possam ser transformadas em ácidos ou bases

• Volumetria de complexação: o titulante é um reagente complexante e forma um complexo solúvel em água com o analito (que é um íon metálico)

VOLUMETRIA

Page 71: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 137

• Tipo de volumetria:

• Volumetria de oxi-redução: envolve a titulação de uma gente oxidante com um agente redutor, ou vice-versa; o agente oxidante ganha elétrons e o agente redutor perde elétrons, na reação entre eles.

• Volumetria de precipitação: o titulante forma um produto insolúvel com o analito, sendo titulado

VOLUMETRIA

Profª Drª Glaucia Maria F. Pinto 138

• Formas de volumetria:

– Titulação direta: titulante é adicionado ao titulado

– Titulação indireta (ou retrotitulação, backtitration): ocorre quando uma quantidade de reagente é adicionada em excesso em relação ao analito e o excesso é então titulado. Apresenta vantagens quando o ponto final da titulação direta é difícil de ser obtida

VOLUMETRIA

Page 72: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 139

• Formas de volumetria:

– Titulação de deslocamento: ocorre quando o analito em análise desloca uma espécie, usualmente em um complexo, e a quantidade da espécie deslocada é então determinada por titulação.

VOLUMETRIA

Profª Drª Glaucia Maria F. Pinto 140

• Após titulação posso estar analisando os resultados através de um gráfico: curvas de titulação

• Curvas de titulação: permitem visualizar e interpretar como a titulação ocorre e onde ocorre o ponto de equivalência.

• São gráficos de pH (ou outra alteração observável, como potencial, temperatura, pCl, etc) x volume de titulante

VOLUMETRIA

Page 73: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 141

VOLUMETRIA

Profª Drª Glaucia Maria F. Pinto 142

VOLUMETRIA

Page 74: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 143

• Cálculos em volumetria:

• O número de moles e a molaridade são as ferramentas mais comuns a serem usadas em cálculos volumétricos.

• Deve-se balancear as reações e definir a estequiometria: quantos nº moles titulante reagem com quantos nº de moles do titulado

• As diluições devem ser consideradas

VOLUMETRIA

Profª Drª Glaucia Maria F. Pinto 144

• Volumetria ácido-base: é apropriada para a determinação de ácidos ou bases naturais ou sintéticas ou substâncias que possam ser transformadas em ácidos ou bases

• Na volumetria ácido-base o reagente deve ser um ácido forte ou fraco e o analito deve ser uma base forte ou fraca (ou vice-versa).

• O reagente deve ter a concentração o mais conhecida possível, pois da certeza desta concentração é que consequentemente se determina a exatidão da concentração do analito

VOLUMETRIA ÁCIDO-BASE

Page 75: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 145

• O reagente deve ser uma solução de padrão ou uma solução padronizada

• A titulação irá terminar quando eu verificar a reação completa entre o reagente e o analito

• Requisitos importantes para aplicação da volumetria ácido-base com bons resultados:– A reação entre reagente e analito deve ser completa– A reação deve ser rápida

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 146

• Solução de padrão ou solução padronizada:• NaOH: não é padrão primário pois contem água e

carbonato de sódio• NaOH pode ser padronizado contra uma padrão primário

=> é padrão secundário• Padrão primário: ftalato ácido de potássio, ácido fraco,

que padroniza satisfatoriamente o NaOH• sal ácido de cadmio de Versenol (CdC10H16N2O7) também

é um bom padrão primário

VOLUMETRIA ÁCIDO-BASE

Page 76: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 147

• Solução de padrão ou solução padronizada:• HCl: não é padrão primário, deve ser padronizado contra

uma padrão primário ou secundário• Tris(hidroximetil)aminometano (HOCH2)3CNH2 é um bom

padrão primário• Na2CO3 é freqüentemente usado para padronizar HCl• NaOH padronizado pode padronizar HCl

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 148

• Teoricamente o final da titulação irá acontecer no ponto de equivalência, isto é, o ponto no qual eu tenho uma quantidade equivalente do meu reagente adicionado em relação a substância em análise

• Na prática o final da titulação será determinado por uma indicação visual do final da reação entre o reagente e o analito, o que é chamado de ponto final da titulação.

• Erro da titulação: diferença entre o ponto final e o ponto de equivalência

VOLUMETRIA ÁCIDO-BASE

Page 77: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 149

• O ponto final pode ser determinado adicionando-se indicadores, que são compostos que mudam ou adquirem cores diferentes em diferentes situações químicas.

• No caso da volumetria ácido-base os indicadores mais comuns são aqueles que mudam ou adquirem colorações diferentes de acordo com o pH do meio.

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 150

• Na volumetria ácido-base acompanhamos a reação entre um ácido e uma base (o ácido pode ser o titulante e a base o titulado ou vice-versa)

• Portanto, conforme a reação acontece o pH do meio vai mudando gradativamente, até dar um salto ao redor do ponto de equivalência

VOLUMETRIA ÁCIDO-BASE

Page 78: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 151

• Esta alteração é importante não só para facilitar a determinação do ponto final, com também para permitir acompanhar a titulação através da construção de curvas de titulação.

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 152

• A água apresenta-se fracamente dissociada:

H2O ⇄ H+ + OH-

• A 25°C a constante desta dissociação é:

KH2O= [H+ ] . [OH-] = 1,0x 10 -14

• A água pura apresenta [H+ ] = [OH-] =1,0x10-7

VOLUMETRIA ÁCIDO-BASE

Page 79: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 153

• Sabendo que pH= -log [H+ ] , para a água pura (ou quando [H+ ] = [OH-]) pH=7

• Quando houver um excesso de [H+ ] ou [OH-] o pH será < ou > 7, respectivamente.

[H+ ] > [OH-] , pH < 7

[H+ ] < [OH-], pH > 7

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 154

• Curvas de titulação: permitem acompanhar a variação de pH em função do volume de titulante acrescentado

• O ponto de equivalência da titulação se encontra no ponto de inflexão desta curva

• O pka do ácido titulado ou o pkb da base titulada pode ser encontrado através da curva de titulação, no pH que coincide com a metade do volume do titulante no ponto de equivalência

VOLUMETRIA ÁCIDO-BASE

Page 80: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 155

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 156

VOLUMETRIA ÁCIDO-BASE

Page 81: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 157

• Quando a reação acontece entre um ácido fraco e base forte ou entre base fraca e ácido forte no ponto de equivalência o pH édiferente de 7

• Com ácidos ou bases fracas eu tenho dissociações parciais e ocorre a formação do sal do ácido ou da base fraca

=> formação de tampões

• Ocorrem hidrólises dos sais e o pH se modifica, em relação ao esperado

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 158

• Exemplo para ácido fraco:

HA ⇄ H+ + A- (dissociação de acordo com o Ka)

A- + B+ ⇄ BA

Neste caso pH= pKa + log [A-] / [HA]

VOLUMETRIA ÁCIDO-BASE

Page 82: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 159

• Diferença entre as curvas de titulação de ácidos fortes e fracos:

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 160

• Diferença entre as curvas de titulação de bases fortes e fracas:

VOLUMETRIA ÁCIDO-BASE

Page 83: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 161

• Ácidos polipróticos:

• será que os H+ podem ser todos analisados?

• Será que podem ser analisados separadamente?

• Se Ka1/Ka2 ~1x104 pode-se determinar os H+

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 162

• Exemplos de ácidos polipróticos:

4,5x10-13

-

-

-

Ka3

1,2x1056,2x10-87,5x10-3fosfórico

1,1x1035,2x10-55,6x10-2oxálico

8,2x1035,6x10-114,6x10-7carbônico

5,8x1042,6x10-71,5x10-2malêico

Ka1/Ka2Ka2Ka1ácido

VOLUMETRIA ÁCIDO-BASE

Page 84: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 163

• Exemplos de ácidos polipróticos:

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 164

• Exemplos de ácidos polipróticos:

• Ácido carbônico: é possível titular separadamente os dois hidrogênios pois Ka1/Ka2 é ~ 104, mas a titulação do segundo hidrogênio não fornece bons resultados pois Ka2 émuito pequeno

• Ácido malêico: é possível titular separadamente os dois hidrogênios

• Ácido oxálico: Ka1/Ka2 = 1,1x103, o que indica que a variação de pH é pequena nas proximidades do primeiro ponto de viragem, sendo possível titular somente o segundo hidrogênio ionizável

VOLUMETRIA ÁCIDO-BASE

Page 85: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 165

• Exemplos de ácidos polipróticos:

• Ácido fosfórico (ácido triprótico): Ka1/Ka2 e Ka2/Ka3 são maiores que 104, portanto seria possível determinar os 3 hidrogênios ionizáveis separadamente, porém Ka3 émuito baixo e torna difícil a visualização do ponto final.

• Somente dois hidrogênios podem ser titulados em meio aquoso

• Soluções que apresentam misturas de ácidos se comportam como ácidos polipróticos.

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 166

• Escolha do indicador:• Ponto final da titulação pode ser detectado com o uso de

indicadores• Em titulações ácido-base os indicadores são ácidos ou

bases orgânicas (fracos) que apresentam colorações diferentes, dependendo da forma em solução.

HIn H+ + In-

cor da forma ácida (A) cor da forma básica (B)constante de dissociação: K= [H+].[In-]/ [HIn]

substituindo: K / [H+] = [In-] / [HIn]= cor (A)/ cor (B)

VOLUMETRIA ÁCIDO-BASE

Page 86: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 167

• Escolha do indicador:

• A cor resultante da solução será determinada pela dissociação do indicador:

– Se [HIn] / [In-] = 10 (forma ácida sobre forma básica ) então [H+] / K= 10, então:

pH= pK-1, cor ácida do indicador

– Se [In-] / [HIn] = 10 (forma básica sobre forma ácida ) então K / [H+]= 10, então:

pH= pK+1, cor básica do indicador

– Portanto, o indicador terá alteração de cor na faixa de pH= pK ± 1 (aproximadamente)

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 168

• Exemplos de indicadores:

• Três grupos principais:

– ftaleínas (ex: fenolftaleína, pKIn= 9,6, faixa de 8,3 a 10,0)

– sulfoftaleínas (ex: vermelho de fenol, pKIn= 1,5 e 7,9; faixa de 0,5 a 2,5 e 6,8 a 8,4)

– azo compostos (ex: alaranjado de metila, pKIn= 3,7; faixa de 3,1 a 4,4)

VOLUMETRIA ÁCIDO-BASE

Page 87: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 169

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 170

• Escolha

do

indicador:

VOLUMETRIA ÁCIDO-BASE

Page 88: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 171

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 172

• Escolha de indicadores:

• erros no uso de indicadores ocorrem devido a viragem ser gradual a se dar em certo intervalo de pH.

• Quanto mais a curva de titulação se afastar da perpendicularidade ao redor do ponto de equivalência, mais gradual será a mudança de cor do indicador => erro determinado, difícil decidir quando a viragem ocorre

• Se a viragem do indicador ocorrer em pH diferente do pH do ponto de equivalência => erro determinado => erro da titulação:

VOLUMETRIA ÁCIDO-BASE

Page 89: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 173

Erro da titulação = (VPF-VPE / VPE) x 100

VPF= volume do ponto final

VPE= volume do ponto de equivalência

Exemplo: Um volume de 50,00 mL de HCl 1,000x10-1molL-1 étitulado com NaOH e uma solução de vermelho de metila éusada como indicador. Calcular o erro da titulação admitindo-se pH= 5,00 no ponto final.

[H+]= (Va.Ca-VPF.Cb) / Va+VPF

VPF= 50,00-1,0x10-2 => VPF= 49,99 mL => Erro= -0,02%

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 174

•• TitulaTitulaçção em meio não aquoso:ão em meio não aquoso:

• Quando o interesse é determinar ácidos ou bases muito fracos, quando comparados com a água (Ka < 10-7) deve-se utilizar uma meio que não seja aquoso, mas sim um ácido mais fraco

• quando não há solubilidade satisfatória em água pode-se utilizar outro solvente

• Bom solvente é ácido acético: é auto-ionizáveis (como água), bases orgânicas podem ser tituladas neste solvente

VOLUMETRIA ÁCIDO-BASE

Page 90: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 175

• Dioxano também pode ser usado com solvente: énão ionizável

• Ácidos fortes devem ser usados como titulantes de bases fracas: ácido perclórico é mais forte do que ácido clorídrico em ácido acético

• Bom indicador em ácido acético é violeta de metila=> mudança de azul para azul-esverdeado

• Alaranjado de metila e vermelho de metilamodificados são usados na titulação de bases fracas em dioxano.

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 176

• Com dioxano a condutância elétrica é muito baixa para permitir titulações potenciométricas.

• Com ácido acético o ponto final da titulação também pode ser determinado potenciometricamente => com pHmetro.

• Os eletrodos de vidro e calomelano são os mesmos usados em titulações aquosas, porém tem como solvente metanol

VOLUMETRIA ÁCIDO-BASE

Page 91: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 177

• Ácidos fracos como carboxílicos, fenóis, enois e outros podem ser titulados em meios não aquosos utilizando metóxido de sódio em benzeno-metil álcool ou hidróxido de tetrabutilamonio em benzeno-metil álcool com titulação potenciométrica.

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 178

• Cálculos: Ácido forte titulado com base forte

• Antes da adição da base: o pH é calculado através da concentração do ácido

• Depois da adição da base, mas antes do ponto de equivalência: o pH é calculado através da conc. de H+ em excesso

• No ponto de equivalência não há H+ ou OH- em excesso. O pH é calculado pela dissociação da água

• Após o ponto de equivalência: o pH é calculado através da conc. de OH- em excesso

VOLUMETRIA ÁCIDO-BASE

Page 92: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 179

• Cálculos: Ácido fraco titulado com base forte

• Antes da adição da base: o pH é calculado através da conc. de H+ obtida pelo Ka do ácido

• Depois da adição da base, mas antes do ponto de equivalência: o pH é calculado através do tampão formado (pH= pKa +log [A-]/[HA])

• No ponto de equivalência: o pH é calculado pela reação de hidrólise (Kh)

• Após o ponto de equivalência: o pH é calculado através da conc. de OH- em excesso

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 180

• Cálculos: Base fraca titulada com ácido forte

• Antes da adição do ácido: o pH é calculado através da [H+] obtida pela [OH-] obtido através de Kb da base

• Depois da adição do ácido, mas antes do ponto de equivalência: o pH é calculado através do pOHobtido pelo tampão formado (pOH= pKb +log[B+]/[BOH])

• No ponto de equivalência: o pH é calculado pela reação de hidrólise (Kh)

• Após o ponto de equivalência: o pH é calculado através da conc. de H+ em excesso

VOLUMETRIA ÁCIDO-BASE

Page 93: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 181

• Cálculos, exemplos e desenvolvimento na aula!

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 182

• Titulação de carbonato de sódio e misturas– Na2CO3 Na+ + CO3

-2

– CO3-2 + H2O HCO3

- + OH-

– HCO3- +H2O H2CO3 + OH-

– Kb1= [HCO3- ].[OH-] / [CO3

-2 ]= 2,09x10-4

pkb1= 3,68– Kb2= [H2CO3].[OH-] / [HCO3

-]= 2,34x10-8

pkb2= 7,63

VOLUMETRIA ÁCIDO-BASE

Page 94: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 183

• Titulação de carbonato de sódio e misturas

– H2CO3 H+ + HCO3- pka1= 6,37

– HCO3- H+ + CO3

-2 pka2= 10,32

– HCO3- é base conjugada de H2CO3

– CO3-2 é base conjugada de HCO3

-

– Então pka1+pkb2= 14 e pka2 + pkb1= 14

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 184

• Titulação de carbonato de sódio e misturas

– Titulante é ácido forte

– CO3-2 + H+ HCO3

-

– HCO3- + H+ H2CO3

– Na2CO3 é base forte, pkb1= 3,68; pkb2= 7,63

– NaHCO3é base fraca, pkb= 7,63

VOLUMETRIA ÁCIDO-BASE

Page 95: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 185

• Titulação de carbonato de sódio e misturas– CO3

-2 + H+ HCO3- titulante HCl, indicador fenolftaleína

(magente para incolor)– HCO3

- + H+ H2CO3 titulante HCl, indicador alaranjado de metila ou vermelho de metila (amarelo para pink)

– Os pontos finais são difíceis de definir, pode-se utilizar no segundo vermelho de metila, aquecer à ebulição por 1 min, esfriar e titular de amarelo para pink

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 186

VOLUMETRIA ÁCIDO-BASE

Page 96: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 187

• Titulação de carbonato de sódio e misturas– Exemplo: Uma mistura de carbonato de sódio e bicarbonato

de sódio foram titulados com HCl 0,100M. O ponto final utilizando fenolftaleína gastou 12,0 mL e o ponto final usando alaranjado de metila gastou 34,0mL. Determine os moles de cada espécie presente.

– Ponto final com fenolftaleína: titulação de carbonato a bicarbonato => 12,0 mL

– Para neutralizar o bicarbonato é necessário 12,0mL também– 34,0mL com alaranjado de metila – 24,0mL (12,0+12,0) =

10,0mL para o bicarbonato original – Então 12,0 mL x 0,100M= 1,2 mmols de CO3

-

10,0mL x 0,100M= 1,0 mmols de HCO3-

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 188

• Titulação de NaOH + Na2CO3

– Primeiro ponto final: titulação de OH- e CO32-

– Entre o primeiro e segundo ponto ocorre a titulação do HCO3

- formado pelo carbonato

– Exemplo: Se a leitura da bureta no primeiro ponto final é30,0mL e no segundo é gasto 42,0mL, determine o volume gasto com cada espécie.

– 42,0-30,0 mL = 12,0 mL para carbonato, então 12,0mL para bicarbonato

– 42,0-24,0 mL= 18,0 mL de HCl para NaOH

VOLUMETRIA ÁCIDO-BASE

Page 97: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 189

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 190

• Método Kjeldahl (para amostras orgânicas contendo N)– Etapa 1: Pré-redução – N de amina e amida. Redução prévia

é requerida para compostos inorgânicos (nitratos) e para comp. orgânicos nitro e azo.

– Etapa 2: Digestão – H2SO4 a quente. Matéria orgânica éoxidada a CO2 e H2O. N é convertido para hidrogenio sulfato de amônio.

C,H,N orgânico CO2 + H2O + NH4HSO4

Catalisadores de mercúrio, cobre e selênio

O

SOH 42

VOLUMETRIA ÁCIDO-BASE

Page 98: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 191

• Método Kjeldahl (para amostras orgânicas contendo N)

– Etapa 3: Destilação – Esfriar solução e adicionar solução

aquosa conc. de NaOH => formação de 2 camadas (NaOH

em cima, sulfúrico em baixo). Destilação, agitação das

camadas e NaOH neutraliza H2SO4 formando NH3

2OH- + NH4HSO4 NH3 (g) + H2O + SO4-2

Recolhido em HCl ou H3BO3 para neutralizar NH3

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 192

• Método Kjeldahl (para amostras orgânicas contendo N)

– Etapa 4: Titulação – HCl é adicionado em excesso:

H+ + NH3 NH4+

Excesso de HCl é titulado com NaOH padronizado. Quantidade de NH3 (~N na amostra) é calculada pela diferença entre HCl adicionado e NaOH gasto na retro-titulação do excesso de HCl.

VOLUMETRIA ÁCIDO-BASE

Page 99: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 193

• Método Kjeldahl (para amostras orgânicas contendo N)

– Etapa 4: Titulação –

A modificação com H3BO3 requer 1 solução padrão, émais direta. Ácido bórico é ácido fraco (Ka= 10-9):

NH3 + H3BO3 NH4+ + H2BO3

-

(base conjugada)

Borato é titulado com HCl:

H+ + H2BO3- H3BO3

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 194

1. Uma série de amostras pode conter NaOH, Na2CO3 e NaHCO3 ou uma mistura destes. A partir dos dados abaixo decida qual são os compostos presentes.

Amostra Ponto final com fenolftaleína

Ponto final com vermelho de metila

1 21,4 30,6 2 19,8 39,6 3 15,0 36,3 4 0,0 18,8

VOLUMETRIA ÁCIDO-BASE

Page 100: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 195

• Titulação de carbonato de sódio e misturas

– Na2CO3 Na+ + CO3-2

– CO3-2 + H2O HCO3

- + OH-

– HCO3- +H2O H2CO3 + OH-

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 196

• Titulação de carbonato de sódio e misturas

– H2CO3 H+ + HCO3- pka1= 6,37

– HCO3- H+ + CO3

-2 pka2= 10,32

– HCO3- é base conjugada de H2CO3

– CO3-2 é base conjugada de HCO3

-

VOLUMETRIA ÁCIDO-BASE

Page 101: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 197

• Titulação de carbonato de sódio e misturas

– Titulante é ácido forte

– CO3-2 + H+ HCO3

-

– HCO3- + H+ H2CO3

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 198

• Titulação de carbonato de sódio e misturas

– CO3-2 + H+ HCO3

- titulante HCl, indicador fenolftaleína(magenta para incolor)

– HCO3- + H+ H2CO3 titulante HCl, indicador alaranjado de

metila ou vermelho de metila (amarelo para pink)

VOLUMETRIA ÁCIDO-BASE

Page 102: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 199

• Titulação de NaOH + Na2CO3

– Primeiro ponto final: titulação de OH- e CO32-

– Entre o primeiro e segundo ponto ocorre a titulação do HCO3- formado

pelo carbonato

VOLUMETRIA ÁCIDO-BASE

Profª Drª Glaucia Maria F. Pinto 200

2. Uma amostra de 2,00 mL de plasma foi analisada pelo método de Kjeldahl, sendo digerida e a amônia destilada em ácido bórico. 15,0 mL de HCl padronizado foi utilizado para titular o borato de amônio. O HCl foi padronizado com 0,330g de (NH4)2SO4. Se 33,3 mL de ácido foram gastos na padronização, qual a concentração de proteína no plasma em % (m/v)?

VOLUMETRIA ÁCIDO-BASE

Page 103: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 201

• Métodos baseados em reações nas quais titulante e titulado formam um precipitado insolúvel

• Uma das primeiras titulações de precipitação desenvolvida ocorreu no final do século dezoito com o método para análise de K2CO3 e K2SO4 em potassa (uma mistura de sais de potássio como carbonato, usado em fertilizantes, sabões e vidro). Nesta análise Ca(NO3)2 era usado com titulante formando precipitados de CaCO3 e CaSO4

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 202

• A importância dos métodos de volumetria de precipitação como método analítico aumentou no século 19, quando métodos foram desenvolvidos para análise de Ag+ e íons haleto.

• Curva de titulação é obtida traçando pAg ou pX versus Volume de titulante:

pAg= -log [Ag+]

pX= -log [X]

VOLUMETRIA DE PRECIPITAÇÃO

Page 104: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 203

• Curva de titulação:• Exemplo: análise de 50,00 mL íons cloro (CI-) 0,0500M utilizando

íons prata como titulante (Ag+) 0,100M. Ag+ (aq) + Cl- (aq) AgCI (s) reação 1

• A constante de equilíbrio de reação é o inverso do Kps (produto de solubilidade do sólido)

• Kps=> AgCI (s) Ag+ (aq) + Cl- (aq) • Kps= [Ag+] . [Cl-] = 1,8 x 10-10

K (reação 1) = (Kps)-1 = (1,8 x 10-10)-1= 5,6 x109

• Como o valor de K é grande, considera-se que a reação ocorre completamente

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 204

• Curva de titulação:

• Ponto de equivalência: nº mols de Ag+ = nº mols de Cl-

( Conc. Molar Ag+) . V Ag+ = (conc. Molar Cl-). V Cl-

• Resolvendo para encontrar o volume de titulante:

• V Ag+= (0,0500M).(50,00mL) / 0,100M = 25,00 mL

• Portanto, o volume de equivalência é 25,00mL de Ag+

VOLUMETRIA DE PRECIPITAÇÃO

Page 105: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 205

• Curva de titulação:

• Antes do ponto de equivalência: excesso de Cl-, adição de 10,00 mL de Ag+

[Cl-]=

• Substituindo: [Cl-] = 2,50x10-2M

pCl= -log[Cl-]= -log2,5x10-2 = 1,60

• Se for desejável conhecer a [Ag+]:

Kps= [Ag+]. [Cl-]= 1,8x10-10 =>

[Ag+]= 1,8x10-10 / 2,5x10-2 => [Ag+]= 7,2x10-9

VOLUMETRIA DE PRECIPITAÇÃO

AgCl

AgAgClCl-

VV

VMVM

total volume

excesso em Cl mols

+−

=

Profª Drª Glaucia Maria F. Pinto 206

• Curva de titulação:

• No ponto de equivalência: [Cl-] = [Ag+]

Kps= [Ag+]. [Cl-]= 1,8x10-10 => [Ag+]=[Cl-]=x2

X=[Ag+]= [Cl-]= (1,8x10-10)1/2= 1,3x10-5

• Portanto pAg e pCl= 4,89 no ponto de equivalência

VOLUMETRIA DE PRECIPITAÇÃO

Page 106: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 207

• Curva de titulação:• Após ponto de equivalência: [Ag+] em excesso (V=35mL)

[ Ag+]=

• Substituindo: [Ag+] = 1,18x10-2MpAg= -log[Ag+]= -log1,18x10-2 = 1,93

• Se for desejável conhecer a [Ag+]:

Kps= [Ag+]. [Cl-]= 1,8x10-10 =>[Cl-]= 1,8x10-10 / 1,18x10-2 => [Cl-]= 1,5x10-8

pCl= 7,82

VOLUMETRIA DE PRECIPITAÇÃO

AgCl

ClClAgAg

VV

VMVM

total volume

excesso em Agmols

+−

=+

Profª Drª Glaucia Maria F. Pinto 208

• Curva de titulação:

VOLUMETRIA DE PRECIPITAÇÃO

a) pCl x Vtitulante

b) pAg x Vtitulante

Page 107: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 209

• Selecionando e avaliando o ponto final:

• Volumetria de precipitação teve seu desenvolvimento retardado devido a dificuldade de detecção do ponto final

• Encontrar o ponto final observando a primeira adição de titulante que não causa precipitação adicional não é o melhor

• A utilização da volumetria de precipitação aumentou com o desenvolvimento de indicadores visuais e eletrodos seletivos (detecção potenciométrica)

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 210

• Encontrando o ponto final potenciometricamente

• O ponto final da titulação pode ser determinado monitorando uma mudança na concentração do analito ou titulante utilizando um eletrodo íon-seletivo

• Por exemplo, eletrodo de prata

• O potencial do eletrodo de prata é função da concentração de íons prata na solução com a qual o eletrodo está em contato

• O potencial do eletrodo de prata em volts é dado pela equação:

E= 0,800 + 0,059.log aAg+ ≈ 0,800 + 0,059 log [Ag+]

VOLUMETRIA DE PRECIPITAÇÃO

Page 108: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 211

• Encontrando o ponto final potenciometricamente

• aAg+= atividade de prata

• Na titulação potenciométrica mede-se a diferença de potencial entre o eletrodo indicador de prata e um eletrodo de referência

• O eletrodo de referência tem potencial constante que não éafetado pela composição da solução titulada

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 212

• Encontrando o ponto final com indicador visual

• Primeiro método desenvolvido foi o Método de Mohr para Cl-

usando Ag+ como titulante:

• Uma pequena quantidade de K2CrO4 é adicionado na solução contendo o analito e forma-se um precipitado marrom-avermelhado de Ag2CrO4 indicando o ponto final

• Como o K2CrO4 torna a solução amarela, pode encobrir o ponto final

• A concentração de CrO4-2 adicionado deve ser pequena e o ponto

final é encontrado sempre após o ponto de equivalência

VOLUMETRIA DE PRECIPITAÇÃO

Page 109: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 213

• Para compensar o erro positivo determinado aconselha-se a fazer um branco, com uma amostra sem o analito para determinar o volume de titulante necessário para afetar a mudança na cor do indicador

• O volume gasto na titulação do branco deve ser subtraído no volume gasto com a amostra para encontrar o ponto final verdadeiro

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 214

• CrO4-2 é uma base fraca, portanto a solução a ser titulada é

mantida em pH fracamente básico

• Se o pH for ácido o cromato será presente como HCrO4-2 e o

ponto final terá um erro

• O pH também não deve ser muito alcalino (pH abaixo de 10) para evitar que se forme um precipitado de hidróxido de prata

• pH ideal: 8

VOLUMETRIA DE PRECIPITAÇÃO

Page 110: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 215

• Exemplo Método de Mohr

• Titulação de nitrato de prata com solução-padrão de cloreto de sódio 0,1N (padrão primário), usando solução de cromato de potássio como indicador.

• Quando todos os íons Ag+ tiverem se depositado sob a forma de AgCl, haverá a precipitação de cromato de prata (Ag2CrO4) de coloração marrom-avermelhada.

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 216

• Exemplo Método de Mohr

• Procedimento:

– Transferir 25,00ml da solução-padrão 0,1004M de NaClpara um erlenmeyer de 250ml, junto com 50ml de água destilada e 1ml de solução indicadora de K2CrO4.

– Titular com a solução de nitrato de prata a ser padronizada, até o aparecimento de uma coloração marrom-avermelhada de cromato de prata.

– Titular branco

VOLUMETRIA DE PRECIPITAÇÃO

Page 111: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 217

• Exemplo Método de Mohr

• Procedimento:

– Resultado: volume de cloreto de sódio gasto para a amostra 25,55 mL, volume gasto com branco 0,58mL

– Qual a concentração de Ag+ na amostra?

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 218

• Exemplo Método de Mohr• REAÇÃO:

• NaCl + AgNO3 AgCl (s) + NaNO3

• 2 AgNO3 + K2CrO4 -> Ag2CrO4(s) + KNO3

• Cálculos:

• n Ag+= n Cl-

• CAg+.VAg+ = CCl-.VCl-

• volume de Ag+ gasto real= volume gasto com amostra -volume gasto com branco= 25,55 - 0,58mL = 24,97mL

VOLUMETRIA DE PRECIPITAÇÃO

Page 112: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 219

• Exemplo Método de Mohr

• Cálculos:

• n Ag+= n Cl-

• CAg+.VAg+ = CCl-.VCl-

• CAg+= 0,1004.25,00 / 24,97

• CAg+= 0,1005 mol/L

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 220

• Método de Volhard

• Utiliza uma solução de prata com uma solução padrão de tiocianatode potássio

• É um método indireto para a determinação de haletos ou de outros ânions que possam precipitar quantitativamente com nitrato de prata

• Prata reage com tiocianato formando sólido branco

• Utiliza indicador de Fe (III) que forma um complexo solúvel vermelho com o tiocianato (primeira gota de excesso)

VOLUMETRIA DE PRECIPITAÇÃO

Page 113: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 221

• Método de Volhard

• No procedimento uma solução de nitrato de prata éadicionada em excesso à amostra contendo o haleto e ocorrem as seguintes reações:

Ag+ + X- + AgX (s) + Ag+ (excesso) (titulação)

SCN- + Ag+ (excesso) AgSCN (s) (retro-titulação)

SCN- + Fe+3 Fe(SCN)+2 (ponto final )

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 222

• Método de Volhard

• Este método deve ser realizado em meio ácido

• Se o haleto em análise formar um sólido mais solúvel do que tiocianato de prata o excesso de prata precisa ser removido

• Assim, se o haleto for cloreto o precipitado formado (cloreto de prata) deve ser removido por filtração

• Outra possibilidade é adicionar nitrobenzeno que forma duas fases, ficando o precipitado na fase orgânica isolada da fase aquosa onde continua a titulação

VOLUMETRIA DE PRECIPITAÇÃO

Page 114: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 223

• Indicadores de adsorção (Método de Fajans)

• Com indicadores de adsorção a reação de ponto final ocorre na superfície do precipitado formado, sendo o indicador um ânion colorido

• Reações:Ag+ + X- + AgX (s) (titulação)

AgX (s) + Ag+ + Indic- AgX:Ag+¦ Indic- (s) (ponto final)

• No início da precipitação o sólido tem dupla camada negativadevido ao excesso de ânions do haleto

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 224

• Indicadores de adsorção (Método de Fajans)• No ponto final a dupla camada apresenta excesso de cátions prata

e portanto é positiva (o titulante é prata)• Quando o indicador é adsorvido no precipitado ocorre também uma

mudança de cor• Alguns fatores afetam o método de indicadores de adsorção:

1- a intensidade da mudança da cor dependendo no nº de moléculas do indicador e da área superficial

2- o ânion do indicador não deve substituir o ânion primário adsorvido durante a titulação (X-), mas deve adsorvido no ponto final

VOLUMETRIA DE PRECIPITAÇÃO

Page 115: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 225

• Indicadores de adsorção (Método de Fajans)3- o pH não deve ser muito baixo durante a titulação, se não o

equilíbrio do indicador se deslocará no sentido de HIndic (conc. de Indic- diminui)

4- Um grande força iônica (alta conc. De NaNO3, NaClO4, etc.) pode favorecer a ionização do par iônico formado (Ag+Indic-) e alterar o ponto final

5- Uma área superficial grande aumenta a probabilidade de fotodecomposição maciça de cloreto de prata, o uso de luz difusa pode ser necessário

Exemplos de indicadores: fluoresceína, diclorofluoresceínaeritrosina e eosina

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 226

• Aplicações de volumetria de precipitação

VOLUMETRIA DE PRECIPITAÇÃO

Page 116: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 227

• Exercícios:

• 10g de uma amostra salina necessitou de 15,78 mL de nitrato de prata 0,1000M em um titulação utilizando método de Mohr. O volume do branco foi de 0,08 mL. Calcule a porcentagem de cloreto de sódio na amostra.

• Resp.: 0,91%de NaCl

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 228

• Exercícios:• Uma amostra contendo cloreto foi analisada pelo método de

Volhard. A partir dos dados calcule a porcentagem de cloreto.– Peso da amostra= 330,0 mg– Nitrato de prata adicionado= 40,00 mL de 0,1234M– Ticianato em retro-titulação= 12,20 mL de 0,0930M

• Resp. 40,32%

VOLUMETRIA DE PRECIPITAÇÃO

Page 117: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 229

• Exercícios:• Um composto orgânico puro tem a fórmula C4H8SOx. Uma amostra

deste composto foi decomposta e o enxofre foi convertido em sulfato e titulado em uma versão modificada do procedimento de indicador de adsorção. Utilizando os seguintes dados calcule a fórmula correta do composto. – Massa da amostra= 12,64 mg– Ba(ClO4)2 necessário na titulação=10,60 mL 0,0100M

– Resp. MM= 119, x= 2 => C4H8SO2

VOLUMETRIA DE PRECIPITAÇÃO

Profª Drª Glaucia Maria F. Pinto 230

• FORMAÇÃO DE COMPLEXOS:– Os íons metálicos podem formar complexos

coordenados com certos íons ou moléculas– as substâncias que complexam com os metais são

chamadas de ligantes– Formam-se ligações covalentes entre o íon metálico

central e os ligantes– Os elétrons da ligação são fornecidos pelo ligante– O ligante é um doador de pares de elétrons e o íon

metálico é um receptor de elétrons

VOLUMETRIA DE COMPLEXAÇÃO

Page 118: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 231

• FORMAÇÃO DE COMPLEXOS– Exemplos: F-, Cl-, Br-, I-, -OH, NH3, -COOH– Muitos ligantes tem mais do que um grupo de

coordenação • Unidentados: um único ponto de coordenação• bidentados: dois pontos de coordenação• multidentado: ligantes que formam anéis quelantesExemplos:

VOLUMETRIA DE COMPLEXAÇÃO

Profª Drª Glaucia Maria F. Pinto 232

• FORMAÇÃO DE COMPLEXOS– Bidentados

VOLUMETRIA DE COMPLEXAÇÃO

Page 119: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 233

• FORMAÇÃO DE COMPLEXOS– Tridentados - Tetradentados

VOLUMETRIA DE COMPLEXAÇÃO

Profª Drª Glaucia Maria F. Pinto 234

• FORMAÇÃO DE COMPLEXOS

– Ligantes macrocíclicos: porfirina (1) e seus derivados, ftalocianina (2) e outras (3)

VOLUMETRIA DE COMPLEXAÇÃO

Page 120: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 235

• FORMAÇÃO DE COMPLEXOS– EDTA

VOLUMETRIA DE COMPLEXAÇÃO

Profª Drª Glaucia Maria F. Pinto 236

• FORMAÇÃO DE COMPLEXOS– A formação dos complexos metálicos podem ser

descritas por uma constante chamada constante de formação (Kf).

– Exemplo:

VOLUMETRIA DE COMPLEXAÇÃO

Page 121: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 237

• Muitos íons metálicos podem ser determinados analiticamente por titulação de complexação

• A solução a ser titulada teve ter um pH adequado (adição de tampão), um indicador deve ser adicionado e então o íon metálico é titulado com a solução padrão do agente complexante.

• Ocorre uma mudança de cor indicando o ponto final

• Aplicações: determinação de cátions metálicos (com exceção dos metais alcalinos)

VOLUMETRIA DE COMPLEXAÇÃO

Profª Drª Glaucia Maria F. Pinto 238

• A escolha do titulante (agente complexante) irá depender da Kf, que deve ser grande, para garantir que a reação de titulação irá ser estequiométrica e quantitativa

• O agente complexante mais utilizado é o EDTA (ácido etileno diamino tetra acético), que é um ligante multidentado que forma fortes complexos com um grande número de íons metálicos

• Os íons metálicos reagem com EDTA na proporção de 1:1 e todos os complexos formados são solúveis em água

VOLUMETRIA DE COMPLEXAÇÃO

Page 122: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 239

• O EDTA é freqüentemente representado por H4Y, sendo que o H representa o hidrogênio ácido e Y o restante da molécula.

• H4Y é neutralizado em etapas, por bases fortes: H3Y-, H2Y-2, HY-3 e Y-4 são formados

• EDTA também pode ser encontrado na forma de sal sódico, por exemplo Na2H2Y.

• Em uma titulação de íons metálicos os H do EDTA são liberados.

• Devido aos H liberados o pH muda durante a titulação e um tampão deve ser adicionado

VOLUMETRIA DE COMPLEXAÇÃO

Profª Drª Glaucia Maria F. Pinto 240

• EDTA é ácido fraco:

VOLUMETRIA DE COMPLEXAÇÃO

Page 123: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 241

• Curva de titulação: Uso de constante condicional

– A força ou estabilidade de complexos com EDTA édiferente para diferentes íons metálicos.

– A constante de formação (chamada de constante de estabilidade) é a medida da força do complexo

– Exemplo

VOLUMETRIA DE COMPLEXAÇÃO

Profª Drª Glaucia Maria F. Pinto 242

Tabela de constante de formação de alguns complexos

VOLUMETRIA DE COMPLEXAÇÃO

Page 124: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 243

• As curvas de titulação com EDTA não podem ser obtidas experimentalmente (exceto para alguns métodos indiretos)

• As curvas de titulação são geralmente de pM (pM= -log[M], M= metal) x V EDTA (ou % de titulação)

• Quanto maior a constante de formação, maior o salto na curva no ponto de equivalência

• O efeito dos íons H no equilíbrio podem ser calculado através de αY (fração de todas as formas de EDTA não complexado presente como Y-4)

VOLUMETRIA DE COMPLEXAÇÃO

Profª Drª Glaucia Maria F. Pinto 244

VOLUMETRIA DE COMPLEXAÇÃO

Os valores de αY-4

mudam de acordo com o pH

Page 125: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 245

VOLUMETRIA DE COMPLEXAÇÃO

• A constante de formação condicional (Kf’) depende do pH

• A Kf’ torna-se menor e o complexo menos estável em pH mais baixos

Profª Drª Glaucia Maria F. Pinto 246

VOLUMETRIA DE COMPLEXAÇÃO

Kf’ em diferentes valores de pH

Page 126: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 247

VOLUMETRIA DE COMPLEXAÇÃO

• Exemplo de curva de titulação:• Para 50,00mL de Cd+2 5,00x10-3M titulado com EDTA

0,0100M, em pH=10, sendo a Kf para Cd+2-EDTA= 2,9x1016

– Cálculo da constante de formação condicional:• Em pH 10 muito EDTA está presente na forma de Y-4

(verificar na tabela αY-4 = 0,35, pH=10)

• Portanto: Kf’= 2,9x1016 . 0,35= 1,0x1016

Profª Drª Glaucia Maria F. Pinto 248

VOLUMETRIA DE COMPLEXAÇÃO

• Exemplo de curva de titulação:

– No início da titulação:

• [Cd+2]= 5,00x10-3M

• Portanto: pCd= -log[Cd=2] = 2,30

– Volume do ponto de equivalência

• 0,0100.VEDTA = 5,00x10-3 . 50,00

• VEDTA= 25,00 mL (no p.e.)

Page 127: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 249

VOLUMETRIA DE COMPLEXAÇÃO

• Exemplo de curva de titulação:

– Após adição de 5,00 mL de EDTA (titulante):

• [Cd+2] em excesso

• [Cd+2] = (MCd.VCd – MEDTA.VEDTA) / Vtotal

• [Cd+2] = (5,00x10-3.50,00 -0,0100.5) / 55

• [Cd+2] = 3,64x10-3M

• pCd= -log(3,64x10-3) = 2,44

Profª Drª Glaucia Maria F. Pinto 250

VOLUMETRIA DE COMPLEXAÇÃO

• Exemplo de curva de titulação:

– No ponto de equivalência:

• [CdY-2] = [Cd+2] inicial . VCd / Vtotal

• [CdY-2] = 5,00x10-3. 50,00 / 50,00+25,00

• [CdY-2] = 3,33x10-3 M

• KCd’= 3,33x10-3 / x.x = 1,0x1016

• x= 5,77x10-10 = [Cd+2] = CEDTA

• pCd= 9,24

Page 128: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 251

VOLUMETRIA DE COMPLEXAÇÃO

• Exemplo de curva de titulação:

– Após adição 30,00 mL de EDTA:

• [CdY-2] = [Cd+2] inicial . VCd / Vtotal

• [CdY-2] = 5,00x10-3. 50,00 / 50,00+30,00= 3,13x10-3 M

• CEDTA= mols EDTA excesso/Vtotal= (CEDTA.VEDTA – CCd.VCd) / Vtotal= (0,0100.30,00 – 5,00x10-3.50,00) / 80,00

• CEDTA= 6,25x10-4 M

• KCd’= 3,13x10-3 / 6,25x10-4.x = 1,0x1016

• x= 5,0x10-16 = [Cd+2]

• pCd= 15,30

Profª Drª Glaucia Maria F. Pinto 252

VOLUMETRIA DE COMPLEXAÇÃO

• Exemplo de curva de titulação

Page 129: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 253

VOLUMETRIA DE COMPLEXAÇÃO

• Interferências• Exemplo: Para ajustar o pH adequado para a complexação

de Cd-EDTA (pH=10) adiciona-se uma tampão amônia, porém NH3 também é um ligante que pode formar complexos com Cd+2 e portanto modifica a estabilidade do complexo Cd-EDTA, alterando a constante de formação condicional (Kf’)

• Quanto maior a concentração de NH3 adicionado maior a interferência

• Neste caso deve-se incluir nos cálculos a fração de Cd+2

que não se encontra complexado com o interferente (αCd)

Profª Drª Glaucia Maria F. Pinto 254

VOLUMETRIA DE COMPLEXAÇÃO

• Interferências

• Valores de αM para diferentes metais e conc. NH3

Page 130: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 255

VOLUMETRIA DE COMPLEXAÇÃO

Influência do pH e adição de NH3 na curva de titulação

a) NH3 0,0100 Mb) NH3 0,100M

Profª Drª Glaucia Maria F. Pinto 256

VOLUMETRIA DE COMPLEXAÇÃO

• Interferências

• Diferentes inflexões da curva de titulação de acordo com o pH e conc. NH3

Efeito do pH e [NH3] na curva de titulação de 50,0 mL de Cd2+ 5,00x10–3 M com EDTA 0,0100 M (a) pH = 10, [NH3] = 0; (b) pH = 7, [NH3] = 0; (c) pH = 10, [NH3] = 0,5 M.

Page 131: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 257

VOLUMETRIA DE COMPLEXAÇÃO

• Agentes mascarantes

• O EDTA complexa muitos metais

• Se na solução em análise houver outros metais eles funcionariam como interferentes

• Para minimizar este problema, algumas substâncias são adicionadas para “mascarar” a interferência

• Por exemplo: Se Zn+2 e Mg+2 estiverem presentes em uma solução ambos complexarão com EDTA. Porém, a interferência do Zn+2 pode ser eliminada pela adição de CN-

(na forma de cianeto de potássio ou sódio), uma vez que Zn-CN é um bom complexo

Profª Drª Glaucia Maria F. Pinto 258

VOLUMETRIA DE COMPLEXAÇÃO

• Determinando o ponto final da titulação

– Sensores (p.ex. eletrodo íon-seletivo)

– Indicadores visuais: indicadores metalocrômicos

• Indicadores metalocrômicos: são compostos orgânicos que formam complexos estáveis com íons metálicos

• Estes indicadores adquirem uma cor diferente quando complexados, em relação a cor não complexada

Page 132: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 259

VOLUMETRIA DE COMPLEXAÇÃO

• Indicadores metalocrômicos

• O uso dos indicadores dependem da faixa de pH e do metal em análise

Profª Drª Glaucia Maria F. Pinto 260

VOLUMETRIA DE COMPLEXAÇÃO

• Indicadores metalocrômicos

• Exemplos:

• Erio T (negro de eriocromo T)

Page 133: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 261

VOLUMETRIA DE COMPLEXAÇÃO

• Indicadores metalocrômicos

• Exemplos:

• Calcon (azul de erocromo R)

Profª Drª Glaucia Maria F. Pinto 262

VOLUMETRIA DE COMPLEXAÇÃO

• Indicadores metalocrômicos

• Exemplos:

• Calmagita

Page 134: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 263

• Exemplos de quantificação:

• A concentração de uma solução de EDTA foi determinada a partir da padronização da mesma com uma solução ce Ca2+, preparada com o padrão primário CaCO3. Uma massa de 0,4071g de CaCO3 foi transferido para um balão volumétrico de 500,0 mL e o padrão foi dissolvido com HCl6M e o volume foi completado com água. Uma alíquota de 50,00mL desta solução foi transferida para erlen e o pH foi ajustado para 10 com tampão NH3/NH4Cl, contendo uma pequena quantidade de Mg2+ -EDTA. Depois da adição do indicador calmagita a solução foi titulada com EDTA e requereu 42,63mL para atingir o ponto final. Encontre a concentração molar do EDTA.

• Resp.: 9,541x10-3 M

VOLUMETRIA DE COMPLEXAÇÃO

Profª Drª Glaucia Maria F. Pinto 264

• Exemplos de quantificação:• Uma liga metálica contendo Ni, Fe e Cr foi analisada por titulação de

complexação usando EDTA como titulante. Uma massa de 0,7176g de amostra foi dissolvida em HNO3 e diluída em balão volumétrico de 250,00 mL. Uma alíquota de 50,00 mL de amostra, tratada com pirofosfato para mascarar o Fe e o Cr, gastou 26,14 mL de EDTA 0,05831M para atingir o p.f. com indicador murexida. Uma outra alíquota de 50,00 mL de amostra foi tratada com hexametilenetetramina para mascarar o Cr. A titulação com EDTA 0,05831M gastou 35,43 mL de titulante para tingir o p.f. com indicador murexida. Uma terceira alíquota de 50,00 mL foi tratada com 50,00 mL de EDTA 0,05831M e a retro-titulação com Cu2+ 0,06316M requereu 6,21mL. Encontre as porcentagens em massa de Ni, Fe e Cr presentes na liga.

• Resp.: 62,33% (m/m) de Ni; 21,08% (m/m) de Fe; 16,57% (m/m) de Cr

VOLUMETRIA DE COMPLEXAÇÃO

Page 135: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 265

• Exemplos de quantificação:

• A concentração de uma solução de EDTA foi determinada a partir da padronização da mesma com uma solução ce Ca2+, preparada com o padrão primário CaCO3. Uma massa de 0,4071g de CaCO3 foi transferido para um balão volumétrico de 500,0 mL e o padrão foi dissolvido com HCl6M e o volume foi completado com água. Uma alíquota de 50,00mL desta solução foi transferida para erlen e o pH foi ajustado para 10 com tampão NH3/NH4Cl, contendo uma pequena quantidade de Mg2+ -EDTA. Depois da adição do indicador calmagita a solução foi titulada com EDTA e requereu 42,63mL para atingir o ponto final. Encontre a concentração molar do EDTA.

• Resp.: 9,541x10-3 M

VOLUMETRIA DE COMPLEXAÇÃO

Profª Drª Glaucia Maria F. Pinto 266

• Exemplos de quantificação:• Uma liga metálica contendo Ni, Fe e Cr foi analisada por titulação de

complexação usando EDTA como titulante. Uma massa de 0,7176g de amostra foi dissolvida em HNO3 e diluída em balão volumétrico de 250,00 mL. Uma alíquota de 50,00 mL de amostra, tratada com pirofosfato para mascarar o Fe e o Cr, gastou 26,14 mL de EDTA 0,05831M para atingir o p.f. com indicador murexida. Uma outra alíquota de 50,00 mL de amostra foi tratada com hexametilenetetramina para mascarar o Cr. A titulação com EDTA 0,05831M gastou 35,43 mL de titulante para tingir o p.f. com indicador murexida. Uma terceira alíquota de 50,00 mL foi tratada com 50,00 mL de EDTA 0,05831M e a retro-titulação com Cu2+ 0,06316M requereu 6,21mL. Encontre as porcentagens em massa de Ni, Fe e Cr presentes na liga.

• Resp.: 62,33% (m/m) de Ni; 21,08% (m/m) de Fe; 16,57% (m/m) de Cr

VOLUMETRIA DE COMPLEXAÇÃO

Page 136: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 267

REAÇÕES DE ÓXIDO-REDUÇÃO

• São reações químicas que ocorrem com transferência de elétrons e portanto com alteração no nº de oxidação dos elementos

• Redução: o elemento ganha elétrons (nº de oxidação diminui) => agente oxidante

• Oxidação: o elemento perde elétrons (nº de oxidação aumenta) => agente redutor

• Exemplo:

• A eq. final é balanceada em massa e carga.

semi reações

Profª Drª Glaucia Maria F. Pinto 268

REAÇÕES DE ÓXIDO-REDUÇÃO

Para O= -2 e para H= +1 (geralmente)

Exemplos:Exemplos:

2 H2(g) + O2(g) 2 H2O(liq)

Mg(s) + 2 HCl(aq) MgCl2(aq) + H2(g)

2 Al(s) + 3 Cu2+(aq) 2 Al3+(aq) + 3 Cu(s)

Fe2O3(s) + 2 Al(s) 2 Fe(s) + Al2O3(s)

Cu(s) + 2 Ag+(aq) Cu2+(aq) + 2 Ag(s)

2 Al(s) + 3 Cu2+(aq) 2 Al3+(aq) + 3 Cu(s)2 Al + 3 Br2 Al2Br6

NÚMEROS DE OXIDAÇÃONNÚÚMEROS DE OXIDAMEROS DE OXIDAÇÇÃOÃO

é um número relativo que indica a quantidade de elétrons que um

determinado elemento perde ou ganha em uma reação.

éé um num núúmero relativo que indica a mero relativo que indica a quantidade de elquantidade de eléétrons que um trons que um

determinado elemento perde ou ganha determinado elemento perde ou ganha em uma reaem uma reaççãoão..

Page 137: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 269

REAÇÕES DE ÓXIDO-REDUÇÃO

Pilha de Daniell (célula galvânica)

Reações oxidação-redução (redox) Dois eletrodos:

Cu2+ (aq) + 2e- Cu (s) (meia-reação de redução)

Zn (s) Zn2+ (aq) + 2e- (meia-reação de oxidação)

Cu2+ (aq) + Zn (s) Cu (s) + Zn2+ (aq) (reação completa)

Profª Drª Glaucia Maria F. Pinto 270

REAÇÕES DE ÓXIDO-REDUÇÃO

• O Zn perdeu 2 elétrons, aumentando o seu estado de oxidação de 0 para +2 sofrendo, portanto, o fenômeno da oxidação.

• O reagente responsável pela oxidação é denominado agente redutor ou simplesmente redutor que, no caso, é o CuSO4.

• O ganho de elétrons por uma espécie química é denominado redução.

• Nas pilhas existem dois eletrodos. O eletrodo onde ocorre a oxidação échamado de ânodo (-) e o eletrodo onde ocorre a redução é chamado de cátodo (+).

• Existe uma diferença de potencial entre eletrodo e sua solução da meia-reação.

• Os potenciais das semi-reações são medidos em relação ao potencial do eletrodo padrão de hidrogênio (EPH) que é zero (0) V.

• A diferença entre o potencial medido para a meia-reação e o EPH é o potencial padrão do eletrodo E°

Page 138: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 271

REAÇÕES DE ÓXIDO-REDUÇÃO

• Potencial padrão de redução

• Elemento com maior E0 reduz => direção espontânea da pilha

• Neste caso Cu2+ reduz a Cu

2

E o (V)

Cu 2+ + 2e- Cu +0.34

2 H + + 2e- H 0.00

Zn 2+ + 2e- Zn -0.76

Poder oxidantedo íon

Poder redutordo elemento

Profª Drª Glaucia Maria F. Pinto 272

REAÇÕES DE ÓXIDO-REDUÇÃO

• Reação redox completa (calculo do potencial da pilha):

EE°°total = Etotal = E°°catodo catodo -- EE°°anodoanodo

• Et°= E° (cátodo) - E° (ânodo) = 0,34 – (-0,76)= 1,10 V

• Sentido correto para descrever a pilha

• Ânodo/Solução do ânodo//Solução do cátodo/Cátodo (IUPAC)

• Zn/Zn2+ // Cu2+/Cu

Zn(s) ---> Zn2+(aq) + 2e-Cu2+(aq) + 2e- ---> Cu(s)--------------------------------------------Cu2+(aq) + Zn(s) ---> Zn2+(aq) + Cu(s)

Zn(s) Zn(s) ------> Zn> Zn2+2+(aq) + 2e(aq) + 2e--CuCu2+2+(aq) + 2e(aq) + 2e-- ------> Cu(s)> Cu(s)----------------------------------------------------------------------------------------CuCu2+2+(aq) + Zn(s) (aq) + Zn(s) ------> Zn> Zn2+2+(aq) + Cu(s)(aq) + Cu(s)

E°= 0,34 VE°= - 0,76 V

Er°= 1,10 V

Page 139: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 273

REAÇÕES DE ÓXIDO-REDUÇÃO

∆∆GGoo = = -- n F n F EEoo (F= constante de (F= constante de FaradayFaraday= 96,485C)= 96,485C)Para uma reaPara uma reaçção ão produtoproduto--favorecidafavorecida

Reagentes Reagentes ProdutosProdutos

∆∆GGo o < 0 e portanto < 0 e portanto EEoo > 0> 0

EEoo éé positivopositivo

Para uma reaPara uma reaçção ão reagentereagente--favorecidafavorecida

Reagentes Reagentes ProdutosProdutos

∆∆GGo o > 0 e portanto > 0 e portanto EEoo < 0< 0

EEoo éé negativonegativo

EquaEquaçção de ão de NerstNerst

ou

E= E° - 0,05916/n logQ

E= potencial em condições não padrão

][Reagentes

Produtos][ln

n

0257,0E E o −=

Profª Drª Glaucia Maria F. Pinto 274

VOLUMETRIA DE ÓXIDO-REDUÇÃO

• Determinação volumétrica na qual a reação entre o titulante e o titulado é de óxido-redução

• Curvas de titulação: acompanha-se a mudança de potencial versus a adição de volume de titulante

• Exemplo: titulação de 50,00 mL de Fe2+ 0,100M com Ce4+ 0,100 M, em HClO4 1M.

• No ponto de equivalência : nº moles Fe2+ = nº moles Ce4+

0,100.50,00 = 0,100. Vpe => Vpe= 50,00mL

Page 140: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 275

VOLUMETRIA DE ÓXIDO-REDUÇÃO

• Antes do ponto de equivalência: adição de 5,00 mL de titulante– O potencial é determinado pela equação de Nerst encontrando-se [Fe2+]

(não reagiu) e [Fe3+] que se formou:

– [Fe2+] = = 0,100.50,00 – 0,100.5,00 / 55,00

[Fe2+] = 8,18x10-2M

– [Fe3+] = = 0,100.5,00/ 55,00

[Fe3+]= 9,09x10-3M

– E= E°Fe3+/Fe2+ - 0,05916 log [Fe2+]/[Fe3+]

E = =0,767 – 0,05916 log 8,18x102- / 9,09x10-3

E= +0,711 V

total volume

4Ce de molesnº +

++

++++

+−

4Ce

2Fe

4Ce

4Ce

2Fe

2Fe

VV

.VC.VC

Profª Drª Glaucia Maria F. Pinto 276

VOLUMETRIA DE ÓXIDO-REDUÇÃO

• No ponto de equivalência: adição de 50,00 mL de titulante– Utilizamos a equação de Nerst para calcular o potencial de cada semi-

reação

– oxidação Fe2+ => E= E°red -0,05916log [Fe2+] /[Fe3+]

– redução Ce4+ => E= E°red -0,05916log [Ce3+] /[Ce4+]

no p.e.: n°moles Fe2+= n° moles Ce4+

n° moles Fe3+= n° moles Ce3+

– Portanto,

E= E°Fe + E°Ce / 2

E= (+ 0,767 + +1,70) / 2= +1,23

Page 141: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 277

VOLUMETRIA DE ÓXIDO-REDUÇÃO

• Após o ponto de equivalência: adição de 60,00 mL de titulante

– O potencial é calculado pela equação de Nerst, através da semi-reação do

Ce

– O Ce4+ foi adicionado em excesso

– [Ce4+]=

– [Ce4+] = 9,09x103- M

– [Ce3+]= CFe2+.VFe2+ / VT = 0,100. 50,00 / 50,00+ 60,00

– [Ce3+] = 4,55x102- M

– Portanto,

E= E°red -0,05916log [Ce3+] /[Ce4+]

E= 1,66V

++

++++

+−

4Ce

2Fe

2Fe

3Fe

3Ce

4Ce

VV

.VC.VC

Profª Drª Glaucia Maria F. Pinto 278

VOLUMETRIA DE ÓXIDO-REDUÇÃO

Page 142: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 279

VOLUMETRIA DE ÓXIDO-REDUÇÃO

• Se a estequiometria da reação redox é simétrica (1 mol de titulante para 1 mol de titulado) o ponto final está localizado no meio da inflexão da curva de titulação

• Se a estequiometria da reação não é simétrica o ponto de equivalência não estará no centro da inflexão

Profª Drª Glaucia Maria F. Pinto 280

VOLUMETRIA DE ÓXIDO-REDUÇÃO

• Exemplo

Semi reações

Page 143: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 281

VOLUMETRIA DE ÓXIDO-REDUÇÃO

• Detecção do ponto final da titulação:

– Potenciometricamente

– Visualmente, sem indicador: mudança de cor das espécies presentes. Ex: MnO4

-

– Visualmente, com indicador

• Indicador específico: amido em reações envolvendo I2/ I3- forma complexo azul escuro no ponto final

• Indicador gerais: são sistemas de óxido-redução que dependem do potencial do meio para mudarem de cor

Profª Drª Glaucia Maria F. Pinto 282

VOLUMETRIA DE ÓXIDO-REDUÇÃO

• Indicadores gerais

Page 144: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 283

VOLUMETRIA DE ÓXIDO-REDUÇÃO

• Indicadores gerais

Difenilbenzidina

incolor (reduzida) violeta (oxidada)

Profª Drª Glaucia Maria F. Pinto 284

VOLUMETRIA DE ÓXIDO-REDUÇÃO

• Exemplo:

• A quantidade de Fe em uma amostra de 0,4891g de liga foi determinada por titulação redox com K2Cr2O7. A amostra foi dissolvida em HCl e o ferro foi reduzido a Fe2+ com o redutor de Jones. A titulação requereu 36,92 mL de titulante 0,02153M utilizando ácido difenilamine sulfônico com indicador. Calcule a %(m/m) de Fe2O3 na amostra.

• Resp.: 77,86% (m/m) de Fe2O3

Page 145: apostila__quantitativa

Profª Drª Glaucia Maria F. Pinto 285

VOLUMETRIA DE ÓXIDO-REDUÇÃO

• Exemplo:

• Uma amostra de alvejante de 25,00mL foi diluída a 1000,00 mL em balão volumétrico. Uma alíquota de 25,00mL de amostra diluída foi transferida para erlen, tratada com excesso de KI, oxidando –OCl- a Cl- e produzindo I3-. O I3-

foi titulado com Na2S2O3 0,09892M, tendo gasto 8,96mLpara atingir o ponto final com indicador amido. Calcule a % (m/V) de NaOCl na amostra.

• Resp.: 5,28% (m/V) de NaOCl