24

BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

Embed Size (px)

Citation preview

Page 1: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY
Page 2: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY
Page 3: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

BORANG PENGESAHAN STATUS TESIS·

JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31

COMPOSITES WITH SHAPE MEMORY ALLOY LONG FIBERS

SESI PENGAJIAN : 200712008

Saya, MOHD NORIHAN BIN mRAHIM@TAMRIN

mengaku membenarkan Laporan Projek SlIIjana ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

I. Laporan Projek SlIIjana adalah hakmilik Universiti Tun Hussein Onn Malaysia. 2. Perpustakaan dibenarkan membuat salinan untuk tujuan peogajian sahaja. 3. Perpustakaan dibeoarkan membuat salinan tesis ini sebagai bahan pertukaran antara inslitusi

peogajian tinggi. 4. ** Sila tandakan (...J)

o

(TAND

Alamat Tetap :

SULIT

TERHAD

TIDAK TERHAD

(Meogandungi maklumat yang berdaJjah keselamatao atau kepeotingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Meogandungi maklumat TERHAD yang telah diteotukan oleh organisasilbadao di m oyelidikao dijalaokan

NO.6 TMN KENANGAN INDAH PM. DR. ING DARWIN SEBAYANG

Nama Penyelia 86400 PT. RAJA, BATU PAHAT, JOHOR

Tarikh:

CATATAN: • ..

30 APRIL 2008 Tarikh:

30 APRIL 2008

Potoog yang tidak berkenaan Jika Laporao Projek Saljana ini SULIT atau TERHAD. sila Iampirkan sural daripada pihak berkuasalorganisasi berkenaan dengan menyalakan sebli sebab dan tempoh iaporao ini perlu di kelaskao sebagai SULIT atau TERHAD. Tesis dimaksudkan sebagai tesis bagi Ij8Z3h Doktor Falsafah dan Sarjaoa secara penyelidikan, atau disertai bagi peogajian searl kerjalrursu.s dan penyelidikao. atau Laporao Projek Saljaoa Muda (PSM).

Page 4: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

"I declared that I had read this project report and according to my opinion, this

project report is qualified in term of scope and quality for purpose of awarding the

Master of Mechanical Engineering"

Signature

Supervisor

Date

Assoc. Professor Dr. 1ng Darwin Sebayang

30 APRIL 2008

Page 5: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

STIFFNESS AND VIBRATIONAL CHARACTERISTICS OF SMAffiER331

COMPOSITES WITH SHAPE MEMORY ALLOY LONG FIBERS

MOHD NORIHAN BIN IBRAHIM@TAMRIN

A project report submitted in partial

fulfillment of the requirement for the award of the

Degree of Master of Mechanical Engineering

Faculty of Mechanical and Manufacturing Engineering

Universiti Tun Hussein Onn Malaysia

APRIL,2008

Page 6: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

11

"I declare that this project report entitled "Stiffness and Vibrational Characteristics of

SMAlDER331 Composites with Shape Memory Alloy Long Fibers" is the result of

my own research except as cited in references."

Signature

Name of candidate

Date

....... 6 ....................... . MOHD NORIHAN BIN IBRAH1M@TAMRIN

30 APRIL 2008

Page 7: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

III

To my loving wife, Zulaika A. G. Khan,MNaseem Khan and M. Zarif Khan(sons),

Ainaa Syahirah(daughtel}, my mother and my father, my family and Illy supporting

ji-iends ...

"THANK YOU for your support"

Page 8: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

IV

ACKNOWLEDGEMENT

In the name of Allah, The Most Graciolls and The Most Merciful

I would like to take this opportunity to express my sincere appreciation to my

supervisor, Associate Professor Dr. Ing Darwin Sebayang for his thoughtful insights,

helpful suggestions and continued support in the form of knowledge, enthusiasm and

guidance during the course of this project.

My appreciation goes to Mr. Saifulnizan Jamian, co-supervisor ofthis

project from the Department of Engineering Mechanics, Faculty of Mechanical and

Manufacturing Engineering, UTHM for his advice and constructive support.

Grateful to the Head of Department and laboratory staff of Polymer Engineering

Department in UTM Skudai for their permission and technical support during

implementing related test progress. My gratitude also goes to our tec1mician

members Mr. Adam Masrom (Machining Laboratory), Mr. Fazlannuddin Hanur

Harith (Polymer Laboratory), Hj. Saifulazad Ahmad (Strength Laboratory) and

Mohd Zainorin Kasron (Vibration Laboratory) for their support and cooperation.

Not forgetting, thank you to my family, on whose constant encouragement

and love I have relied on throughout my studies. Lastly, thanks to all my friends

which directly and indirectly contribute to their ideas, motivation, involvement and

suppOIi during completing this study.

Page 9: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

v

ABSTRACT

SMA-composites are an adaptive composite in which SMA elements are

incorporated into fiber reinforced epoxy composites. Many researches have been

done on investigating the properties of shape memory effect and superelastic

influence in SMA composites. However, little information available on the effect of

different fiber volume fraction with continuous flexinol long wire to mechanical

strength and vibrational characteristics. This study is mainly focused on the

integration of shape memory alloy (SMA) elements with epoxy composites based on

different fiber volume fraction. The aim is to analyze and investigate static and

dynamic mechanical properties of SMAJDER331 by measuring the first vibration

mode of clamped cantilever beams, elastic strength and hysteresis behavior of SMA­

composites through monotonic tensile, cyclic and vibration analysis. This

observation indicates that the Young's modulus increases (1667.083MPa) at 2.4%

fiber volume fraction of flexinol wire of SMAJDER331 compared to matrix Young's

modulus (904.495MPa). The increase of temperature up to 75°C and 90°C lead to the

recovery of stress and strain and therefore closed hysteresis achieved. TIle

temperature dependency of vibration property is affected largely due to the addition

of SMA Flexinol long fibers. The vibrational characteristics of SMA composites can

be improved by the addition of certain amount of flexinol wire. The addition of 2.4%

fiber volume fraction offlexinol long fibers resulted in the highest natural frequency

with the value of 171 Hz at the temperature of 70° C.

Page 10: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

VI

ABSTRAK

Komposit aloi memori bentuk merupakan gabungan dimana elemen-elemen

aloi memori bentuk disatukan ke dalam bahan komposit. Terdapat banyak kajian

dijalankan berkenaan sifat dan kesan aloi memori bentuk dan sifat superelasticity.

Bagaimanapun, terdapat sedikit maklumat berhubung kesan kekuatan mekanikal dan

getaran. Kajian ini memberi tumpuan kepada pendekatan terhadap integrasi aloi

memori bentuk dengan komposit epmy berasaskan kepada perbezaan pecahan

isipadu serat. Objektifkajian ini adalah untuk menganalisa dan menyiasat ciri-ciri

mekanikal secara statik dan dinamik bagi integrasi (SMAJDER331) dengan

mengukur mod getaran asas bagi rasuk, kekuatan elastik dan sifat histerisis bagi

komposit aloi memori bentuk menerusi tegangan monotonik, kitaran dan analisis

getaran. Hasil kajian menunjukkan bahawa Young's modllius meningkat sebanyak

1667.083MPa pada 2.4% isipadu serat komposisi dawai flexinol bagi integrasi

(SMAJDER331) berbanding 904.495MPa bagi matrik. Peningkatan suhu sehingga

75°C dan 90°C pula menyebabkan kewujudan pengembalian terikan dan tegasan

pada stroktur dan histerisis lengkap juga dicapai. Sifat-sifat getaran dipengaruhi

secara nyata oleh peningkatan serat panjang aloi memori bentuk dan suhu. Ciri-ciri

getaran bagi komposit aloi memori bentuk boleh diperbaiki dengan penambahan

jumlah dawai flexinol pada kadar yang tertentu. Penambahan sebanyak 2.4%

pecahan isipadu serat bagi dawai flexinol menghasilkan frekuensi semulajadi yang

tertinggi sebanyak 171Hz pad a suhu 70° C.

Page 11: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

CHAPTER

CHAPTER I

CONTENTS

SUBJECT

TITLE

DECLARATION

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

ABSTRAK

CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF SYMBOLS

LIST OF APPENDIXES

INTRODUCTION

1.1 Introduction to Shape Memory Alloy (SMA)

1.1.1 General Principles of SMA

1.1.2 Hysteresis

1.1.3 Thermoelastic Martensitic

Transformation

1.1.4 Shape Memory Effect

VII

PAGE

II

111

IV

V

vi

vii

xv

xi

xvi

xxi

2

3

4

5

Page 12: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

CHAPTER II

CHAPTER III

1.1.5 Pseudoelasticity of SMA

1.2 Shape Memory Alloy Composites

1.3 Problem Background

1.4 Problem Statement

1.5 Objectives

1.6 Scopes

LITERATURE REVIEW

2.l Overview

2.2 Mechanical Behavior of SMA-Composites

2.2.1 Phase Transformation and

Reorientation

2.2.2 Mechanical Behavior Investigation

2.3 Thermomechanical Behavior of

SMA-Composites

2.3.l Phenomenology ofNitinol

2.3.2 Transformation Induced

Deformation

2.3.3 Theml0mechanical Behavior

Investigation

2.4 Vibration Analysis of SMA -Composites

2.5 Constitutive Model of Shape Memory

Alloys (SMAs)

2.6 Literature Summary

PROJECT METHODOLOGY

3.1

3.2

3.3

3.4

Introduction

Project Outline

Mould Design and Fabrication

Specimen Preparation

VlIl

7

7

8

10

10

II

12

13

l3

15

21

21

23

25

26

28

32

35

36

38

43

Page 13: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

CHAPTER IV

3.4.1 Materials

3.4.1.1 SMA Flexinol

Actuator Wire

3.4.1.2 DER 331 Epoxy Resin

3.4.2 Material Overview

3.4.3 Specimen Fabrication - Monotonic

Tensile and Cyclic Testing

3.4.4 Specimen Fabrication - Vibration

Test

3.5 Experimental Test

3.5.1 Measurement of Phase

Transformation in SMA Fiber

3.5.2 Monotonic Tensile Test

3.5.3 Cyclic Testing

3.5.4 Vibration Testing

3.5.4.1 Vibration Properties

Measurement

3.5.4.2 Vibration Approach

RESUL TS AND DISCUSSIONS

4.1

4.2

4.3

4.4

Introduction

Phase Transfomlation of SMA

Flexinol Wire

Monotonic Tensile Test Result

Cyclic Test Result

4.4.1 Load Cases 1 - Cyclic at

Different Displacement, x

4.4.1.1 Stress Versus Strain

4.4.2 Load Cases 2 - Shape Memory

Effect

4.4.3 Load Cases 3 - Pseudoelasticity

Effect

43

43

44

44

45

48

49

49

51

53

55

55

57

59

60

61

65

65

70

72

79

IX

Page 14: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

CHAPTER V

REFERENCES

APPENDIXES

A

B

C

D

4.5 Vibration Testing Result

4.5.1 Natural Frequency of

Reference Sample

4.5.2 Natural Frequency of

Matrix Sample

4.5.3. Reinforced Composites

(SMAlDER331 )

4.5.3.1 Natural Frequency

Characteristics

4.5.3.2 Damping Characteristics

4.6 Results Summary

CONCLUSIONS AND RECOMMENDATIONS

5.1

5.2

5.3

Conclusions

Project Contributions

Future Wark Recommendations

One Dimensional Constitutive Equation

Of SMA

Material Models of Fiber and Matrix

Illustration of Mould

Illustration of Tested Specimen

84

84

86

88

88

92

95

96

99

99

102

107

109

113

116

x

Page 15: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

Xl

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 (a) Martensitic transformation and hysteresis. 3

(b) Stress-strain behavior of different phases of

NiTi at constant temperature

1.2 Schematic of pseudo elasticity and shape memory 6

effect behavior (D.S Burton, et.al, 2006)

1.3 Schematic of shape memory effect 7

(Wayman and Duerig, 1990)

2.1 Pseudoelasticity of SMA 14

2.2 Stress-strain curves ofNiTi deformed in pseudoelasticity 16

(Yinong and Hong, 1998)

2.3 Strengthening mechanisms of SMA-based MMCs 17

(D.Yang,2000)

2.4 Volume element loaded in 1 or X direction 19

2.5 Decomposition of Austenite to Martensite and 22

Martensite to Austenite (Miyazaki et.al 1981)

2.6 Thermal history ofNiTi 24

2.7 Three-dimensional stress-strain temperature diagram 31

showing deformation and shape memory behavior

of NiTi shape memory alloy.

3.1 Methodology overview of project 37

3.2 Illustration of the schematic drawing of mould 38

Page 16: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

XII

3.3 Schematic diagram of plate layout of mould 40

(a,c,e - side view) and (b,d,f - front view).

3.4 Mould fabrication 42

3.5 Specimen preparation flow 46

3.6 Monotonic tensile and cyclic test specimen 46

3.7 Illustration of SMAlDER331 composites according to 47

different fiber volume fraction

3.8 Illustration of specimens for the vibrational testing 48

3.9 Diagram of a power compensated differential 50

scanning calorimeter

3.10 Illustration on the sequences of monotonic tensile test 52

3.11 Equipment for monotonic and cyclic tensile testing 52

3.12 Illustration on the implementation sequences of cyclic 54

test for the case of shape memory effect

3.13 Illustration on the implementation sequences of 55

cyclic test for the case of pseudo elasticity effect

3.14 Illustration of the specimen fixation for vibration testing 56

3.15 Equipment set-up and testing 57

3.16 Illustration of specimen fixation and heat supply 57

4.1 Phase transformation of SMA flexinol wire ( 00.51 mm) 60

4.2 Stress versus strain for SMA composites with 62

flexinol wire and matrix ofDER 331

4.3 Variation on the strength of SMA composites and 63

comparison on the theoretical and experimental result.

4.4 Theoretical results of tensile modulus of elasticity 64

versus fiber volume fraction

4.5 Result of loading and unloading test for matrix based on 67

single cyclic. (a) Young's modulus as function of

displacement. (b) maximum stress-strain according

to displacement rate

4.6 Result ofloading and unloading tensile test for Rei 68

based on single cyclic. (a) Young's modulus as

function of displacement. (b) maximum stress-strain

according to displacement rate

Page 17: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

XIII

4.7 Result ofloading and unloading test for RC2 69

based on single cyclic. (a) Young's modulus

as function of displacement. (b) maximum stress-strain

according to displacement rate

4.8 Result of loading and unloading test for RC3 based on 69

single cyclic. (a) Young's modulus as function of

displacement. (b) maximum stress-strain according

to displacement rate

4.9 Stress versus strain of matrix DER331 and 71

flexinol SMA composites RC2 (1.6% fiber volume

fraction) with displacement rate, X = 3mm

4.10 Variation of stress versus strain for the matrix 74

DER 331 specimen with respect to the different temperature

4.11 Variation of stress versus strain for the SMA 74

composites, RCI specimens with respect to the

different temperature

4.12 Illustration of the structure/specimen deformation for 75

RCI subject to the variation oftemperature

exposure during unloading

4.13 Variation of stress versus strain for the SMA composites, 76

RC2 specimens with respect to the different temperature

4.14 Variation of stress versus strain for the SMA composites, 77

RC3 specimens with respect to the different temperature

4.15 Stress versus strain of matrix DER 331 Epoxy Resin 80

4.16 Stress versus strain of SMAIDER 331 with the fiber 81

volume fraction of 0.80% (RCl)

4.17 Illustration of the structure/specimens profile after 82

tested at temperature of 90°C

4.18 Stress versus strain of SMAIDER 331 with the fiber 83

volume fraction of 1.60% (RC2)

4.19 Stress versus strain of SMAIDER 331 with the fiber 83

volume fraction of2.40% (RC3)

4.20 Real and imaginary as a function of frequency 85

4.21 Log magnitude as function of frequency 85

Page 18: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

XlY

4.22 Bode diagram plots the FRFs phase and log 87

magnitude as function of frequency

4.23 The imaginary and real as function of frequency 88

4.24 Variation of natural frequency with temperature 89

for different SMA flexinol fiber content

4.25 Variation of SMA composites for different fiber 90

content heated at temperature 70°C.

4.26 Damping response for the acceleration response 92

as function of time

4.27 Variation of damping behavior with temperature 93

for different SMA flexinol fiber content

Page 19: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

xv

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Literature summary 33

3.1 Material properties of SMA Flexinol Wire and DER 331 45

3.2 Common beam boundary condition, frequency equation, 58

kl values for beam with uniform cross section

4.1 Result on the tensile testing conducted by means of 61

Universal Testing Machine at room temperature ( ",,30°C)

4.2 Theoretical results on the longitudinal modulus of 64

elasticity based on the fiber and matrix volume fraction

4.3 Cyclic test of specimen SMAJDER 331 66

(a) matrix DER 331 (b) Reinforce composite, RC2 (1.6%);

(c) Reinforce composite, RC3 (2.4%)

Cd) Reinforce composite, RCI (0.8%)

4.4 First and second natural frequency of aluminium (AI) 86

and matrix(MX) specimen.

4.5 Result of vibrational testing for different fiber 89

volume fraction of flexinol wire.

4.6 Result of damping of SMA composites for 93

different fiber volume fraction offlexinol wire

4.7 Summary of results 95

Page 20: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

A

As

A~

Aj

AD f

A-phase

Al

ell

Dm

E

G

I

LIST OF SYMBOLS & ABBREVIATIONS

Cross-sectional area

Austenite start temperature

Austenite start temperature (stress -free value)

Austenite finish temperature

Austenite finish temperature (stress -free value)

Austenite phase

Aluminium

Material constant in tem1S of transition temperature

As, A;; Ms, Mr Copper

SMA material constant related to stress-induced

phase transformation

Young's modulus

Young's modulus for the SMA 100% martensite

Young's modulus for the SMA 100% austenite

Modulus of elasticitylY oung's modulus

Young's modulus in lIor x direction

Young's modulus for an isotropic fiber.

Young's modulus for an isotropic matrix

Fourth order elastic tensor of SMA

Fourth order elastic tensor of matrix

Shear modulus ofthe material

Second order identity tensor

XVI

Page 21: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

J

Mj

MO f

M-phase

NiTi

T

v T'j

VIII

x x

c

d

d'

f h

k

k

kl

Area moment of inertia

Second invariant of the deviatoric tensor

Third invariant ofthe deviatoric tensor

Martensite start temperature

Martensite start temperature(stress -free value)

Martensite finish temperature

Martensite finish temperature(stress -free value)

Martensite phase

Nickel-Titanium

Temperature

Reference temperature

Temperature above which yield strength of A-phase lower

than stress required to induce A -M transformation

Volume

Volume of fibers / Total volume of composite material

Volume of matrix / Total volume of composite material

Thermodynamic force

Inclusion volume

Damping

Critical damping

Deviatoric strain

Transformation strain

Natural frequency

Material parameter indicate the slope of the linear

stress transfomlation

Stiffness

Bulk modulus of the material

Versor in the direction of fiber

Versor in the direction of fiber

XVll

Standard kJ value based on common beam boundary condition

Page 22: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

p

s

vs

wI

x

(J"

U cq

; e 0(;)

a (e)

(fixed -free)

Length

Volumetric stress

Deviatoric stress

Versus

Weight

Displacement

Stress

Equivalent stress

Stress tensor of matrix

Stress tensor of SMA

Uniaxial critical stress in tension

Uniaxial critical stress in compression

Strain

Recovery strain limit/Maximum recoverable strain

Total strain of matrix

Total strain of SMA

Martensite fraction

Thermoelastic tensor

Transformation tensor

Elastic strain of matrix

Inelastic strain of matrix

Expansion coefficient

Elastic strain of SMA

Inelastic strain of SMA

Coordinate system

Expansion coefficient of SMA

Possible pre-strain

Material parameter of the maximum transformation strain

Volumetric strain

Scalar product

xviii

Page 23: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

a

fJ

OJ"

c;

p

>

<

°C

°C /min

GPa

Hz

K

kg/m3

mg

111111

MPa

mPa.s

N

%

ASTM

CNC

DER

D-MX-90

D-RCl-90

D-RC2-90

D-RC3-90

Back stress

Material parameter linked to the dependence of the

critical stress on the temperature

Plastic multiplier

Natural frequency for free oscillation

Damping ratio/ damping factor

Density

Greater than

Lower than

Degree Celsius

Degree Celsius per minute

Giga Pascal

Hertz

Kelvin

Kilogram per cubic meter

Milligram

Millimeter

Mega Pascal

Milli pascal second

Newton

Percentage

American Society for Testing and Materials

Computer numerical control

Liquid epoxy resin by DOW

Pseudo elasticity test for MX at temperature of 90°C

Pseudoelasticity test for RC 1 at temperature of 90°C

Pseudoelasticity test for RC2 at temperature of 90°C

Pseudoelasticity test for RC3 at temperature of 90°C

XIX

Page 24: BORANG PENGESAHAN STATUS TESIS· TUN HUSSEIN ONN MALAYSIA BORANG PENGESAHAN STATUS TESIS· JUDUL: STIFFNESS AND VIBRATIONAL CHARAcrERISTICS OF SMA!DERJ31 COMPOSITES WITH SHAPE MEMORY

DSC

M

MX

RCI

RC2

RC3

MX-30C,45C,

60C, etc

RCI-30C,45C,

60C, etc

RC2-30C,45C,

60C, etc

RC3-30C,45C,

60C, etc

ROM

RYE

SMA

SME

Differential Scanning Calorimetry

Matrix material

Matrix

Reinforced composites with fiber volume fraction of

0.8% ( 3 wires)

Reinforced composites with fiber volume fraction of

1.6% (6 wires)

Reinforced composites with fiber volume fraction of

2.4% (9 wires)

Matrix specimen tested at temperature of30°C,45°C,

60°C, etc.

RCI specimen tested at temperature of30°C,45°C,

60°C, etc.

RC2 specimen tested at temperature of 30°C,45°C,

60°C, etc.

RC3 specimen tested at temperature of 30°C,45°C,

60°C, etc.

Rules of mixtures

Representative volume element

Shape memory alloy

Shape memory effect

xx