39
The Future of China’s Energy Market April 2013 Report for the IHEST 1 The Future of China’s Energy Market Foreword Introduction Energy is a recurrent topic in debates involving the population, politicians and scientists. There is growing concern about limited fossil fuel reserves and climate change. Society is divided over which solutions should be privileged. The accident in Fukushima in 2011 has relaunched the debate on the safety of nuclear energy. It is therefore natural that the IHEST has made energy one of its main topics, publishing online debates and reports on different aspects of this subject. Energy consumption and CO 2 emissions are relatively stable in the Western world, but increasing rapidly in many countries, including China. China’s size and growing economic weight mean that developments and trends in the energy sector have a global impact. This report first gives a short overview on China’s current energy situation before taking a closer look at its R&D activity in this field. The report then focuses on the current situation and likely technological developments in the fossil fuel, the nuclear and the renewable energy sectors. China’s energy policies and outlook are the topic of another IHEST report: “Energy Policies in China and Vietnam”. Abbreviations and technical terms used in this report AIS Accelerated Improvement Scenario in energy and carbon intensity. It assumes a much more aggressive trajectory toward current best practice and implementation of important alternative energy technologies. It includes measures that are currently not envisaged by the government (like an increase of nuclear energy beyond the one planned). Its aim is basically to come up with the “best possible case” scenario. It excludes, however, carbon capture and sequestration. BAU Baseline scenario In the International Energy Agency’s, “businessasusual” baseline scenario, government polices that have been enacted or adopted continue unchanged. The aim is to provide a baseline that shows how energy markets would evolve if underlying trends in energy demand and supply are not changed

China Energy

Embed Size (px)

Citation preview

Page 1: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     1 

TheFutureofChina’sEnergyMarket

Foreword

IntroductionEnergy is a recurrent topic in debates involving the population, politicians and scientists. There is 

growing concern about limited fossil fuel reserves and climate change. Society is divided over which 

solutions should be privileged. The accident in Fukushima in 2011 has re‐launched the debate on the 

safety of nuclear energy. 

It is therefore natural that the IHEST has made energy one of its main topics, publishing online debates 

and reports on different aspects of this subject. 

Energy consumption and CO2 emissions are relatively stable in the Western world, but increasing rapidly 

in many countries, including China. 

China’s size and growing economic weight mean that developments and trends in the energy sector have 

a global impact. 

This report first gives a short overview on China’s current energy situation before taking a closer look at 

its R&D activity in this field. 

The report then focuses on the current situation and likely technological developments in the fossil fuel, 

the nuclear and the renewable energy sectors. 

China’s energy policies and outlook are the topic of another IHEST report: “Energy Policies in China and 

Vietnam”. 

AbbreviationsandtechnicaltermsusedinthisreportAIS 

Accelerated Improvement Scenario in energy and carbon intensity. It assumes a much more aggressive 

trajectory toward current best practice and implementation of important alternative energy 

technologies. It includes measures that are currently not envisaged by the government (like an increase 

of nuclear energy beyond the one planned). Its aim is basically to come up with the “best possible case” 

scenario. It excludes, however, carbon capture and sequestration. 

BAU Baseline scenario 

In the International Energy Agency’s, “business‐as‐usual” baseline scenario, government polices that 

have been enacted or adopted continue unchanged. The aim is to provide a baseline that shows how 

energy markets would evolve if underlying trends in energy demand and supply are not changed 

Page 2: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     2 

Biomass 

In the context of energy, biomass is fuel, heat, or electricity produced from organic materials such as 

plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, 

urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops. 

Biomass energy takes many forms and can have a wide variety of applications ranging from direct firing 

to produce electricity or heat, gasification for heat and power to conversion into liquid fuels. 

Carbon intensity 

The CO2 emissions divided by the production of a company (or the GDP of a country). 

CIS 

Continued Improvement Scenario in energy and carbon intensity. It assumes that the economy will 

continue on a path of lowering its energy intensity as a function of GDP. The ERI Baseline scenario, issued 

by the Energy Research Institute in Beijing, is based on similar assumptions. 

GDP 

Gross domestic product. The value of all final goods and services produced in a country in one year. GDP 

can be measured by adding up all of an economy's incomes‐ wages, interest, profits, and rents. 

Primary energy consumption 

Primary energy consumption is the amount of fossil and renewable fuels directly consumed by either 

one of the four major end‐use sectors (transportation, industry, residential building and commercial 

buildings) or by the electric power sector. 

Renewable Energy 

Is defined as electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, 

wave, current, and thermal), geothermal, municipal solid waste, or new hydroelectric generation 

capacity achieved from increased efficiency or additions of new capacity at an existing hydroelectric 

project. 

The definition generally does not include non‐commercial biomass, although it does represent an 

important source of energy in poor countries. 

R&D 

Research and Development. R&D includes: 

Page 3: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     3 

Basic research, defined as a systematic study directed toward fuller knowledge or understanding of the 

fundamental aspects of phenomena and of observable facts without specific applications towards 

processes or products in mind. 

Applied research, defined as a systematic study to gain knowledge or understanding necessary to 

determine the means by which a recognized and specific need may be met. 

Development, defined as a systematic application of knowledge or understanding directed toward the 

production of useful materials, devices, and systems or methods, including design, development and 

improvement of prototypes and new processes to meet specific requirements. 

Tertiary sector 

The tertiary sector is the sector of the economy that concerns services. It is distinct from the secondary 

sector (manufacturing) and the primary sector (which concerns extraction such as mining, agriculture 

and fishing).  

toe 

tonne of oil equivalent is a measurement of energy consumption. One toe is the energy released by 

burning one tonne of crude oil (about 42 GJ (giga Joule) or 11.7 MWh (mega Watt‐hours)). 

 

Page 4: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     4 

 

Foreword ...................................................................................................................................................... 1 

Introduction .............................................................................................................................................. 1 

Abbreviations and technical terms used in this report ............................................................................. 1 

China’s Energy Situation in a Nutshell ..................................................................................................... 7 

How has China’s energy consumption evolved in recent years? ............................................................. 7 

Can China meet the increasing energy demand? ..................................................................................... 7 

Are China’s primary energy resources close to its great economic centres? ........................................... 8 

What are the likely trends for China’s energy mix? ............................................................................... 10 

What are China’s targets for the reduction of its CO2 emissions? ......................................................... 10 

What actions have been taken to reach those targets?............................................................................ 11 

China’s R&D on Clean Energies .............................................................................................................. 12 

What is China’s role in the global research on clean energies? ............................................................. 12 

Which clean energy technologies are being tested in China? ................................................................ 13 

How is the R&D on renewable energies evolving in China? ................................................................. 14 

Is there a pattern in the innovation process in China? ............................................................................ 15 

How is China’s renewable energy market organized? ........................................................................... 16 

Does China encourage the development of renewable energy financially? ........................................... 16 

What is the US-China Clean Energy Research Center (CERC)? ........................................................... 17 

Fossil Fuel Technology in China- Present and Future .......................................................................... 18 

Which are the most efficient coal-fired powered plants? ....................................................................... 18 

Is the efficiency of China’s coal-fired plants increasing rapidly? .......................................................... 18 

Which have been the main steps in improving the coal-fired power plants in China? .......................... 19 

Will China resort to carbon capture and storage in its coal-fired power plants? .................................... 20 

What about coal conversion in China? ................................................................................................... 21 

What is China doing to reduce air pollution caused by fossil fuel? ....................................................... 22 

Will China start exploiting non-conventional gas reserves? .................................................................. 22 

Nuclear Energy in China – Present and Future ...................................................................................... 23 

Page 5: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     5 

Which have been the milestones in China’s civilian nuclear programme? ............................................ 23 

What are the particularities of the governmental and regulatory framework on nuclear energy? .......... 24 

What is China’s nuclear technology know-how? ................................................................................... 25 

What are the characteristics of China’s nuclear fuel cycle? ................................................................... 25 

What has China’s nuclear policy been after the Fukushima accident in Japan? .................................... 26 

China’s Renewable Energies – Present and Future .............................................................................. 26 

What are China’s renewable energy resources for the production of electricity? .................................. 26 

What are China’s geothermal energy sources? ...................................................................................... 27 

Will biomass play an important role in China’s energy policies? .......................................................... 28 

Will China meet its targets for renewable energies? .............................................................................. 28 

Is the grid strong enough to cope with the renewable energy produced? ............................................... 29 

What are the plans for the electricity distribution network? .................................................................. 31 

Where does China’s renewable energy policy place it globally? ........................................................... 31 

References ................................................................................................................................................. 33 

 

 

Page 6: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     6 

 

 

 

Page 7: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     7 

China’sEnergySituationinaNutshell

HowhasChina’senergyconsumptionevolvedinrecentyears?In ten years, the energy consumption has increased by more than 50% in China, as well as in other East 

Asian and Middle Eastern countries. 

Since 2009, China has been consuming more energy than the United States. 

The individual energy consumption in China has also more than doubled over the past 10 years, but 

individual consumption is still well below consumption levels reached by countries like Canada, Norway, 

the United States or the European Union. 

([44], [79]) 

CanChinameettheincreasingenergydemand?Yes. Over the past ten years energy production per capita has more than tripled in China. 

However, China’s domestic energy sources are not sufficient. 

China is obliged to import crude oil and natural gas. Although its coal production is sufficient to cover its 

needs, China imports about 5% of the coal it uses (see Figure 1). 

 

Figure 1: Difference between primary energy production and consumption in China ([44]). 

Page 8: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     8 

A combination of factors seems to be the cause of this, the main one being a lack of suitable transport 

facilities within the country. The BAU scenario predicts that by 2030, imports will make up between 23 

and 45% of China’s coal consumption and that half of the world’s international coal trade will be 

destined for China. 

Crude oil production only covered 42% of domestic demand in 2011 and this proportion has been 

steadily declining by 5% per year for the past twenty years. China has become the world’s third largest 

importer of crude oil, after the EU and the United States. China is Saudi Arabia’s larges client, ahead of 

the United States. Iran is the third largest provider of crude oil to China and experts consider this to be 

the main reason behind China’s diplomatic support to this country. 

 

Figure 2: China’s coal and crude oil imports by country ([35]). 

China’s dependence on natural gas remains negligible, as its consumption is marginal.  

There is practically no cross‐border exchange of electricity. 

([4], [35], [44], [60], [70] p. 329) 

AreChina’sprimaryenergyresourcesclosetoitsgreateconomiccentres?No. Carbon is the almost‐exclusive primary energy source in China and the mines are located in the 

North and Northwest of the country, far from the coastal regions of the Southeast, where the main 

economic centres lie. This represents a real problem for the Chinese economy, as its growth is slowed 

down by the limited capacities to transport the coal. The problem has been aggravated in recent times 

by the mines’ move further west (Figure 3). 

Page 9: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     9 

 

 

Figure 3: (A) The location of coalmines and main power consumption; (B) the location of nuclear power, (C) the location of hydropower bases and (D) China’s seven individual grid systems ([57]). 

Until the end of the 1990s, the coal was transported by trucks and trains (it still represents about half of 

the railway commodity transportation), now some of the coal is also being transported by rail to the 

ports of the Northeast and then shipped to the Southeast provinces. There are plans to increase fluvial 

transport, especially on the Yangzi Jiang (the river crossing Shanghai), but the traffic on the rivers is 

already rather heavy (Figure 4). 

 

Figure 4: Coal transport by barges on the Yangzi Jiang River in Shanghai in January 2013. 

Page 10: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     10 

Another solution is to transport electricity rather than coal. Only 5% of the energy coming from China’s 

West to the coastal regions comes in the form of electricity. The proportion could rise to a fourth by 

2020, if the targets of the Strong and Smart Grid Plan are met. At the moment, 24 out of 31 provinces 

experience regular electricity blackouts, because of insufficient supply capacities. 

([5], [22], [37] p. 56, [40], [57]) 

WhatarethelikelytrendsforChina’senergymix?The two most striking trends are that total energy consumption will at least double by 2030 (for both, CIS 

and AIS see Table 1), whilst the share of coal will decrease sharply. It was 73% in 2005 and will drop 

below 50% by 2050, for both scenarios. 

The share of petroleum will increase because of the transport sector. It is expected to be responsible for 

two thirds of petrol consumption in 2050, which is basically the percentage currently observed in the 

United States. 

Energy consumption will also continue increasing over the next few decades, driven by the growth of the 

tertiary sector and urbanisation (79% of the Chinese population will live in cities by 2050, up from 50% in 

2011). Commercial buildings will be responsible for a third of electricity consumption in 2050. 

Year Scenario Primary energy consumption by sector (Mtoe)

Agriculture Industry Transportation Tertiary Residential

2005 Reference

Year 47 3 1,021 65 173 11 110 7 204 13

2030 CIS 37 1 2,008 55 657 18 548 15 402 11

AIS 31 1 1,815 58 626 20 344 11 313 10

2050 CIS 77 2 1,805 47 806 21 691 18 461 12

AIS 32 1 1,627 51 734 23 447 14 351 11

Table 1: Probable evolution of primary energy consumption in China, according to the Lawrence Berkeley National Laboratory ([15] p. 32). 

([7], [15] p. xiii, pp. 25‐28, p. 32, [43], [79]) 

WhatareChina’stargetsforthereductionofitsCO2emissions?The increase in CO2 concentrations in the atmosphere is due to the Western Countries. China’s CO2 

emissions per capita are considerably below that of the EU and the United States. 

Page 11: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     11 

 

Figure 5: Cumulative emissions of CO2 from energy, from 1900 to 2009 (origin of arrows) and 1900 to 2030 (arrow tips) ([25] p. 235). 

This does not keep China from having a very proactive agenda for energy saving and the reduction of 

greenhouse gas emission. 

In 2009 China formally committed itself to reduce its CO2 emissions per GDP (in other words its carbon 

intensity)) by 40‐45% compared to 2005 levels. It also plans to increase the proportion of non‐fossil 

energy in its primary energy consumption to 15% by 2020. It would thus meet the expectations of the 

United Nations Framework Convention on Climate Change (UNFCCC) formulated for China. 

([25] p. 235, [64] pp. 4‐9, [69]) 

Whatactionshavebeentakentoreachthosetargets?China’s 11th Five‐Year‐Plan (2006‐2010) included several policies for energy conservation and a decrease 

of GHG emissions. Numerous programmes were started in that period (see Table 2), concentrating on 

improving the most energy‐intensive industries (Ten Key Projects and Top‐1000) and closing small plants 

(small power stations, cement, steel, iron and coking). 

Programme Primary energy saving (Mtoe) Emission reduction (Mt CO2)

Ten Key Projects 188 743

Buildings energy efficiency 78 348

Overlap Ten Keys & Buildings efficiency -78 -348

Top-1000 energy consuming enterprises programme 91 235

Overlap Ten Key Projects & Top-1000 -22 -67

Small plant closure 83 222

Appliances standard & labelling 55 167

Provinces’ programmes and others 802 2973

Total 1,196 4,273 Table 2: The various energy conservation programmes, 2006 – 2008 ([13]). 

Page 12: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     12 

In addition, China participates in the United Nations’ Clean Development Mechanism programme. 

The programme was a result of the Kyoto Protocol; a company in an industrialized country implements 

an emission‐reducing project in a developing country. It can thus earn emission reduction credits for its 

own country. China is one of the main beneficiaries of the programme, allowing it to speed up the 

modernization of its energy production and reduce its CO2 emissions.  

The advantage for China is threefold: 

It attracts foreign investors for the development of renewable energy. 

It helps identifying innovative sectors to limit the emission of GHG. 

It allows China to gain expertise at an international level in controlling GHG emissions. 

([13], [52], [65] pp. 4‐5) 

China’sR&DonCleanEnergies

WhatisChina’sroleintheglobalresearchoncleanenergies?China tends to have a more open approach regarding innovation and is more willing to test new 

technologies compared to Western countries. It is also currently still lacking the necessary technological 

know‐how in clean energy technology. It has thus opted to import the technology by, for example, 

offering foreign firms the possibility to run full‐scale tests in China using technologies they have 

developed. 

This passage from R&D to the demonstration of the technical and economic feasibility is a crucial step in 

the process of innovation. In Western countries the industry sector tends to be reticent to finance such 

tests, as the first installations are generally very expensive and not yet very reliable. 

“The technology was developed here, tested in China and is now finding a market here.” as the CEO of a 

large American company sums it up. Both parties gain from this: the foreign company gets a chance to 

test a new technology; China receives a direct access to the most cutting‐edge‐technology and 

innovation. 

For example, the Chinese company State Nuclear Power Technology Corporation is building the first 

nuclear reactors using Westinghouse’s AP1000 technology. The experience gained will help 

Westinghouse to obtain construction permits for AP1000 reactors in the United States. Westinghouse 

and State Nuclear Power Technology Corporation have actually created a joint‐venture to build more 

powerful reactors derived from AP1000. The Chinese company owns part of the intellectual property 

rights on these new reactors. 

([29], [41], [45], [68]) 

Page 13: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     13 

WhichcleanenergytechnologiesarebeingtestedinChina?The projects installed in China cover most of the research fields on clean energy, as Table 3 shows. 

Category Technology Development Status

11th Plan (2006-2010) 12th Plan (2011-2015)

Clean coal power

Ultra-supercritical (USC) 1000 MW USC 700 °C USC

Integrated gasification combined cycle (IGCC)

250 MW IGCC 400-500 MW IGCC

Large circulating fluidised bed (LCFB)

600 MW SC-CFB

Coal to liquids (CTL) Direct conversion 1 Mtoe

Indirect conversion 0.16 Mtoe

Coal to natural gas Gasification-based 1.35 billion cubic meters

Hydromethanation-based 0.85 billion cubic meters

Carbon capture and storage (CCS)

Pre-combustion capture 100 kt CO2 per coupled with

CTL project

CO2 storage by saline aquifer Three projects (3kt, 10 kt and

120 kt CO2 per year)

CO2-enhanced oil recovery (EOR) 100 kt CO2 per year 0.5 to 1 Mt CO2 par an

CO2-enhanced coal bed methane (ECBM)

Demonstrated in the Qinshui basin

Nuclear power

High temperature reactor 200 MW reactor

AP1000 1250 MW reactor

Fast reactor 20 MW reactor

Small modular reactor (SMR) Planned

Solar power

Solar photovoltaics 10 MW plant 100 MW plant

Concentrating solar power Three projects (50 MW, 100

MW and 300 MW)

Wind power Commercialisation of 1,5 to

3 MW turbines Offshore wind farm with

6 MW

Biomass

Power generation Commercialisation of 25 to

50 MW plants

Biofuels Cassava to ethanol

conversion (200 000 tonnes per year)

Cellulose to ethanol conversion

Clean energy vehicles

Electric vehicle (EV) Various EVs have been tested in several cities

Alternative-fuel vehicle Various essays with

alternative fuels have been carried out.

Hybrid-electric vehicle Various essays have been

carried out.

Synthetic utilization of multiple energy resources

Wind-solar 100 MW plant

Hydro-solar 10 MW plant

Power grid transmission and transformation

1000 kV direct-current long-

distance transmission

Smart grid Planned

Table 3: Advanced clean energy technologies in China during 2006–2015 ([68]). 

([68]) 

Page 14: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     14 

HowistheR&DonrenewableenergiesevolvinginChina?In the mid‐90s, Chinese companies invested heavily in technology acquisition, whilst their R&D budget 

was rather small. Since then, companies have continuously increased their R&D expenditure, reducing 

their technology acquisitions (Figure 6). 

 

Figure 6: Expenditures on R&D and technology acquisition by Chinese large and medium‐sized enterprises (LMEs), 1995–2010 ([68]). 

Enterprises account for 74% of the total R&D expenditure in China. The R&D therefore mainly 

concentrates on mastering clean energy technologies imported from developed countries and making 

secondary innovations. Fundamental research is still mostly carried out either in the developed countries 

or by foreign‐owned companies in China. 

For example, in 2010, seven companies were foreign amongst the top ten, which had filed for the largest 

numbers of patents in China on wind‐energy, sharing 83% of total patents (Figure 7 shows the numbers 

for wind turbine technology). Chinese companies tended to file for utility models. 

 

Figure 7: Wind‐turbine technology patents application in China (1990–2010) ([31]). Utility model: The requirements for acquiring a utility model are less stringent than for patents. To qualify for a patent, an invention has to be new, have an inventive step and be capable of being made or used by some kind of industry. To qualify for the utility model, the invention 

Page 15: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     15 

has still to be new, but the other two criteria are less stringent or even absent, depending on the country. Utility models offer less protection and are cheaper than patents. 

([21], [31], [68]) 

IsthereapatternintheinnovationprocessinChina?Yes, and this pattern is not limited to R&D on renewable energies. The wind energy sector is a good 

example for the different steps in the innovation process (illustrated in a more detailed manner in Figure 

8): 

1. From 1970‐1996, the government strongly encouraged R&D activities, accompanied by technology 

imports.  

2. From 1997‐ 2004, innovation was based on the imported technologies (“secondary innovation”). 

3. From 2004‐2007, the sufficient technical knowhow having been acquired, Chinese and foreign 

companies started designing and producing together in joint ventures. 

4. Since 2008, Chinese innovation has become more autonomous, thanks to the internationalization of 

the companies and the globalization of their R&D. 

 

Figure 8: The dynamics among technology capability, innovation mode, market formation, and wind energy policy ([21]). Goldwind (GW) – China; Jacobs – United States; Repower‐ Germany; Sinovel – China; Vensys – Germany. 

The Chinese wind power industry is a particularly interesting example, as it now occupies a very 

prominent role on a global scale: 

1. Four of the global top ten wind turbine manufacturers are Chinese (2010). 

Page 16: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     16 

2. China is worldwide the second largest producer of wind energy (63 GW), behind the European Union 

(97 GW) and ahead of the United States (47 GW) (2011). 

([21], [26] p. 82, p. 98) 

HowisChina’srenewableenergymarketorganized?The public authorities fix the resale price for electricity. A guaranteed feed‐in tariff compensates more or 

less for the difference with the production costs. 

The hydropower sector is state‐owned. 

Theoretically, the wind power market is open to competition, but state‐owned enterprises have de facto 

the monopoly over wind powered electricity production. 

The large photovoltaic projects are co‐financed by China, foreign governments (like Canada, Germany 

and Japan) and international institutions (like the World Bank). 

The production of electricity from biomass is the most open market. The Big Five (the five biggest state‐

owned electricity companies) own 39% of the market, private Chinese or foreign‐owned companies have 

27.5%, other Chinese state‐owned companies 23.5% and companies owned by the local authorities have 

10% of the market, which is also the most profitable one. 

There are five large fuel ethanol plants; two major state‐owned oil companies and a large agribusiness 

company are engaged through stock holdings. 

The biodiesel production is much more scattered. Three large state‐owned companies and a great 

number of small companies share the market. 

3,000 companies make up the solar water heater market, the ten largest shares a quarter of the market. 

There is no biogas market: farmers account for 85% of the biogas production; the public authorities have 

financed their equipment. 

([24], [36], [37] p. 56, [50], [51], [53]) 

DoesChinaencouragethedevelopmentofrenewableenergyfinancially?The rapid development envisaged by China’s government will require hundreds of billions of US Dollars 

from today until 2020. The very large state‐owned companies tend to be the sole beneficiaries of the 

funds mobilised by the central government (through the China Development Bank) and the international 

organisations (like the World Bank and the Asia Development Bank), offering long‐term loans with 

interest rates of 3‐4%. The other companies have access to bank loans at much less favourable 

conditions: short term loans with interest rates between 6‐8%. 

The state has created a favourable regulatory and financial environment including tax credits and feed‐

in‐tariffs. The local authorities have their own support system for renewable energies, focusing on land 

Page 17: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     17 

prices or land and property taxes. Provinces can set preferential on‐grid electricity (or purchase) prices 

(Figure 9). 

   

Figure 9: On‐grid (purchase) tariff by generation technology (left) and by region (right) ([14]). 1 RMB = US$ 0.16 = € 0.12. 

Despite these efforts, wind energy production is rarely and solar photovoltaic energy production never 

profitable. To compensate, an additional tax has been levied in 2012 on all electricity sales. 

There is one notable exception to this general policy of subsidies: the solar water heaters. Their 

installation has simply become mandatory in all new buildings and it is exceptional that local authorities 

help financially to comply with this. It is the only case where the return on investment is fast. 

([14], [36], [37] pp. 87‐90, [58], [59], [66]) 

WhatistheUS‐ChinaCleanEnergyResearchCenter(CERC)?In 2009, the American president and the Chinese president announced the creation of CERC. Its mission 

is to reinforce the collaboration on clean energy R&D. Both countries give an equal financial support, 

with the United States supporting American researchers and China supporting Chinese researchers. 

The initial budget is US$150 million over five years. It should increase thanks to contributions from 

industry. 

The main research areas are: 

Advanced coal technology (energy efficiency, reduction in pollutant emissions, CCS). 

Buildings energy efficiency (in‐depth knowledge of energy consumption and innovative climate 

control and lighting technologies). 

Clean vehicles (electric car, innovative materials). 

In all cases, the R&D includes the building of demonstration plants or models. An ad hoc committee, 

allows the members of the industry to give their opinion on the pertinence of the projects financed by 

the CERC. 

Page 18: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     18 

The economic interest and social acceptability of the innovations are always taken into consideration. 

([42] pp. 2‐4, pp. 10‐21, pp. 40‐117, [80]) 

FossilFuelTechnologyinChina‐PresentandFuture

Whicharethemostefficientcoal‐firedpoweredplants?There are several methods to estimate the efficiency of a coal‐fired power plant. One can choose, for 

example, the cost of the electricity produced, the quantity of coal used, the CO2 emissions or the 

emission of other pollutants (like sulphur and nitrogen oxides). Table 4 gives an estimate for these 

different criteria. The numbers vary according to different sources, if only, because the quality of the 

coal used can vary considerably. 

Generally speaking, though, the ultra‐supercritical and the IGCC power plants are the most efficient, as 

well as the most modern. 

Type of power plant Sub-critical Super-critical Ultra-

supercritical (IGCC)

Power 300 MW 600 MW 1,000 MW 600 MW

Energy Efficiency 34 to 38 % 38 to 41 % 43 to 45 % 38 to 44 %

GHG ( kg CO2/MWh equivalent) 872 to 931 746 to 830 720 to 738 731 to 832

SO2 emission (kg/MWh) 1.03 0.97 0.90 0.10

NO2 emission (kg/MWh) 0.54 0.50 0.47 0.39

Electricity cost (data for 2007 in $/MWh) 48.4 47.8 46.9 51.3

Table 4: Energy Efficiency, pollutant emissions and electricity cost of coal‐fired power plants, by type of technology and power. The cost of the electricity produced refers to the United States ([8] p. 19, p. 30, [48], [54]). 

The sub‐critical, supercritical and ultra‐supercritical plants differ in the temperature and the pressure of 

the steam used to drive the turbines: 560°C at 180 bar, 575°C at 221 bar, more than 600°C and 300 bar, 

respectively. The most advanced ultra‐supercritical plants even exceed 700°C and 375 bar. 

The IGCC plants are based on a completely different principle. Partial oxidation of the coal produces a 

gas made up of carbon monoxide (CO) and hydrogen (H2), which is then used in a combined‐cycle 

combustion turbine generator. 

([3], [8] pp. 17‐42, [48], [54]) 

IstheefficiencyofChina’scoal‐firedplantsincreasingrapidly?Yes. Since the 11th FYP, China has privileged the construction of more efficient and less polluting plants, 

whilst closing down the old ones (Guideline for Building Large Ones and Shutting Down Small Ones). 

By the end of 2012, half of the plants had a design capacity of 600MW or above (super‐critical and ultra‐

supercritical, see Table 5). 

 

Page 19: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     19 

Date of construction Less than 300 MW

Sub-critical

Between 300 and 600 MW

Sub-critical

Between 600 and 1000 MW

Super-critical

More than 1000 MW

Ultra- supercritical %

1984-1996 19 43 6 0 25

1997-2003 6 41 15 0 23

2004-2011 2 28 85 27 52

% 10 41 39 10

Table 5: China’s coal‐fired power plants in 2012, by date of construction and type of technology ([75]). 

The installed capacity more than doubled between 2005 and 2011 and has tripled between 2002 and 

2011 (electricity capacity in 2002: 37.9 GW; 2005: 59.6 GW; 2011: 128.7 GW). 

Since 2008, the Chinese power plants are on average more efficient and have lower CO2 emissions 

compared to their American counterparts (Figure 10). 

 

Figure 10: Energy efficiency (left hand side) and carbon intensity (right hand side) of the Chinese and the American coal‐fired power plants ([25] p. 278). 

([25] p. 278, [48], [54], [75]) 

Whichhavebeenthemainstepsinimprovingthecoal‐firedpowerplantsinChina?The same phases found in the innovation process on renewable energies (discussed in the previous 

section): 

A technology is imported from a foreign company; once the Chinese company has acquired the 

necessary know‐how, it will make local improvements (secondary innovation). This step is followed by 

the creation of a joint venture between the two companies, with a common design and production. 

One can find these phases at every change of technology (sub‐critical, super‐critical and ultra‐

supercritical) (Table 6). 

Page 20: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     20 

Technology Year Technology Origin Supplier country

Sub-critical

1980 Import and secondary innovation United States

1989 Cooperation with the foreign companies for the design and construction

Super-critical

1992 Import (and secondary innovation)

Switzerland

2000 Japan

2004 Cooperation with the foreign companies for the design and construction

Ultra-supercritical

2003 Import (and secondary innovation) Japan Germany

2006 Cooperation with the foreign companies for the design and construction

Table 6: Roadmap of clean coal power generation localization in China ([17]). 

Table 7 shows the different cooperation partners for SC/USC coal‐fired power technology of three 

Chinese major electric groups. Licensing is the most frequent form, but there are also some joint 

ventures. 

Chinese Group Boiler Turbine Generator

Source Mechanism Source Mechanism Source Mechanism

Shanghai Electric Alstom License Siemens Joint venture Siemens Joint venture

Harbin Electric / supercritical Mitsui Babcock License Mitsubishi License Toshiba License

Harbin Electric / ultra-supercritical Mitsubishi License Toshiba License Toshiba License

Dongfang Electric Babcock-Hitachi Joint venture Hitachi License Hitachi License

Table 7: Technology sources and cooperation mechanisms of SC/USC coal‐fired power technology of three Chinese major electric groups ([17]). 

GreenGen is a project led by a consortium of China’s biggest power companies, the Chinese state and an 

American company (the largest private sector coal company in the world). The aim is to design and build 

an IGCC (integrated gasification combined cycle) coal‐fired power plant with CCS (carbon capture and 

storage) technology. A 250 MW IGCC plant has been in operation since April 2014. The next step is the 

construction of a 400 MW IGCC plant with CCS. 

([17], [32]) 

WillChinaresorttocarboncaptureandstorageinitscoal‐firedpowerplants?The 12th Five‐Year‐Plan does not include CCS, as the technique will not be fully operational in the 

immediate future. 

However, China does pursue active research on CCS and has drawn level with the European Union 

regarding the number of patents filed (Table 8). 

Country Patents (%)

Japan 27.7

United States 23.5

European Union 13.5

China 11.1

Table 8: Patents filed on CCS, by country (72). 

Page 21: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     21 

There is a considerable difference between the size of the pilot plants installed and the projects 

envisaged by numerous countries, including China. And even those projects will only be demonstration 

plants (Table 9). 

Country Operational Projects

Number Capacity Number Capacity

European Union 5 14 MW - 48 MW 7 250 MW – 1,200 MW

United States 4 1 MW - 30 MW 9 60 MW – 1,000 MW

China 1 24 MW 2 250 MW - 350 MW

Australia 1 30 MW - -

Norway - - 1 400 MW

Table 9: Coal‐fired power plants coupled with CCS, by country and development stage (situation as of February 2012) ([76]). 

The main obstacle is the additional cost of the CCS. Given the present situation, CCS will only be 

profitable if emissions will be taxed at US$ 70 per ton C02. We are far from it. In China, one ton of CO2 

costs about US$ 15 in those areas subject to an emission trading system and a carbon tax. 

([61], [62], [65], [71], [73], [74], [76]) 

WhataboutcoalconversioninChina?China pursues a strong R&D on coal conversion because it possess large reserves of coal and only little oil 

and natural gas. However, the projects have not gone beyond demonstration plants (Table 10). 

Final product Number of

projects Total final production capacity (Mtoe/year)

Synthetic natural gas 4 13.5

(Liquid) fuel 6 1.9

Raw materials for the chemical industry 3 1.0

Table 10: Demonstration plants and projects for coal conversion, by product ([18]). 

There are various reasons for this: 

1. The price of coal has soared in recent years. The price difference between coal and crude oil or 

natural gas has become too small to make coal conversion profitable. 

2. The coalmines are in rather arid regions, yet coal conversion consumes enormous amounts of water 

(15 t of water a needed to produce one tonne of methanol; 10 t of water are needed for a single 

tonne of fuel). 

The central government has lowered its ambitions since the beginning of the new millennium and the 

12th Five‐Year‐Plan puts the emphasis on R&D. The local governments of coal producing provinces, 

however, are still eager to develop large coal conversion projects. They see this as a way to develop the 

local economy, but the projects hardly stand any chance because of the amount of water required. 

Note that China consumed 75 Mtoe of natural gas and 433 Mtoe of fuel in 2010. 

([2], [12], [18], [37] pp. 69‐73, [46]) 

Page 22: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     22 

WhatisChinadoingtoreduceairpollutioncausedbyfossilfuel?China has made considerable progress since the beginning of the new millennium, but air pollution levels 

remain very high (Figure 11). 

 

Figure 11: Average annual SO2 (left) and NO2 (right) concentrations observed for the 10 largest cities in Japan and China, 1970–2009 (μg/m

3) ([25] p. 251). 

The power stations are responsible for 45% of the air pollution with sulphur oxides and particulate 

matter, because they often lack flue gas treatment equipment. In 2011, only 14% of the coal‐fired power 

stations had denitrization systems and still 20% lacked a desulphurization system. There has been no 

progress in the other highly polluting industries (like steel and cement) over the past decade. 

China began to address air pollution during the 11th Five‐Year‐Plan, with the aim to reduce SOx emissions 

by 10% over that period. It surpassed this target, obtaining a 14% reduction. The 11th Five‐Year‐Plan did 

not contain any targets for NOx emissions. 

The 12th Five‐Year‐Plan sets out to reduce NOx emissions by 10% and SOx emissions by another 8%. The 

power industry is opposing this plan, as they lack the financial means to acquire the necessary 

equipment. The debate was taking place at a moment, when the five biggest electricity companies had 

lost a total of US$ 3 billion because the price of coal had increase by 150%, but the feed‐in‐tariff only by 

32%. 

([6], [25] p. 251, [27], [33], [37] pp. 56‐57, [43], [48]) 

WillChinastartexploitingnon‐conventionalgasreserves?China’s unconventional gas reserves are not well known, but specialists think they might be considerable 

(Figure 12). They believe that by 2015 annual production of tight gas could reach 27 Mtoe, of shale gas 5 

Mtoe and of coal bed methane and coal mine methane 11 Mtoe. 

Page 23: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     23 

 

Figure 12: China’s gas resources by type. Total reserves are estimated at 92 000 Mtoe ([37] p. 63). 

China lacks experience in the exploitation of shale gas. Even more so, as the problem it faces is a 

particularly difficult one: Shale gas exploration uses a technique called hydraulic fracturing, which 

requires very large quantities of water, but China’s reserves lie in regions with severe water scarcity. 

China is trying to acquire the necessary know‐how by teaming up with large foreign groups. Agreements 

exist between several American companies and, recently, Total. In each case, a joint venture has been 

created with a Chinese petroleum company to explore and exploit the reserves. Chinese law excludes 

foreign companies from exploiting fossil fuel reserves in China without a Chinese partner (through a joint 

venture). 

An alternative is to invest in foreign companies, who have the necessary expertise and thus gain 

technology and operational know‐how. This is the reasoning behind China’s large investments in 

Canadian companies in 2011 and 2012. 

([28], [34], [37] p. 36, pp. 46‐47, pp. 58‐59, pp. 62‐65, [49], [70] pp. 341‐344) 

NuclearEnergyinChina–PresentandFuture

WhichhavebeenthemilestonesinChina’sciviliannuclearprogramme?The civilian nuclear sector was created in the 1970s, based on the knowledge from the nuclear weapons 

programme. 

China signed its first international cooperation agreement on civilian nuclear energy in 1978, with 

France. In 1983, it joined the International Atomic Energy Agency. Since 1994, China has been connecting 

one nuclear reactor per year on average. 

China Guangdong Nuclear Power Group (CGNPC), China National Nuclear Corporation (CNNC) and the 

China Power Investment Corporation (CPIC) (the “nuclear troika”) dominate the market. 

All reactors are along the coastal provinces and cooled with seawater. 

Page 24: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     24 

 

Figure 13: Number of nuclear reactors in operation in China ([82]). 

In 1983 China and France signed a technology transfer agreement, which included the construction of 

nuclear power plants. The first plant was designed and largely constructed by France and started 

operating in 1994. 

China then decided on the construction of three further reactors and placed orders with France, Canada 

and Russia. The plants were put into operation in 2002, 2003 and 2006. The order with France was a 

continuation of the 1983 agreement, whilst the other two were turnkey projects (they did not include a 

technology transfer). 

In 2007, China signed contracts with the United States, France and Russia for the construction of third 

generation nuclear power plants including technology transfer. 

It also continues building generation II reactors, to answer its short‐term needs (28 reactors were under 

construction in 2013). 

([38], [41], [82], [20], [84]) 

Whataretheparticularitiesofthegovernmentalandregulatoryframeworkonnuclearenergy?Politics and diplomatic relationships play an important role in this sector (the adoption of a Russian VVER 

design shortly after the Chernobyl accident for example), which is one of the reasons China has a number 

of different reactor technologies in use. 

Planning, approval and licensing nuclear reactors is always complex, but particularly so in China, where 

there are many government organisations sometimes with overlapping or not clearly defined and 

delimited responsibilities (a problem also found in the oil sector). 

A problem not unique to China, but perhaps more exacerbated there, is the influence politicians have in 

the various institutions. The heads of the large companies are often appointed by the Premier of the 

State Council (for example the president and vice‐president of CNNC) and are frequently high‐ranking 

Page 25: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     25 

officials of the Communist Party. This may lead to the situation where the head of the regulatory body 

has the same or an inferior rank than the head of the company he is supposed to regulate. 

It is perhaps easy to assume that as China is a single‐party state, policy decisions can be taken and 

implemented easily at a national level. But the fragmentation of the decision centres (at national and 

local levels) and diverging opinions between them, have lead to somewhat contradictory policies. It has 

also contributed to the diversity of reactor designs chosen for construction (nine in 2013). 

This means that there is little standardization in this field, making the construction of power plants more 

expensive. It makes it also more difficult to draw up and implement safety standards and rules. 

([20], [29], [11]) 

WhatisChina’snucleartechnologyknow‐how?The Chinese nuclear industry has been autonomous since the mid‐1990s and builds generation II 

reactors. A large proportion of its know‐how stems from the technology transfer with France, dating 

back from the beginning of the 80s. 

The Chinese nuclear industry is present on the international market as a single player (exports to 

Pakistan and Rumania) or together with large western groups (like the partnership between CGNPC and 

EDF for the construction of nuclear power plants in the United Kingdom) 

China is the United States’ partner for the commercialisation of third generation plants. 

([55], [82], [81], [78]) 

WhatarethecharacteristicsofChina’snuclearfuelcycle?China calls on foreign suppliers for every step of the fuel cycle, from the extraction of uranium, the 

fabrication of the fuel rods to reprocessing. 

The Chinese mines only cover a quarter of its need. The problem will be aggravated as China increases 

the number of new reactors. China has started joint ventures in countries supplying uranium in order to 

secure its supplies. The partners are either state‐owned companies (like in Kazakhstan) or large private 

companies (like Areva for the exploitation of resources in Africa). 

Russia built a large enrichment plant in the 1990s, increasing its capacity between 2007‐2011. 

China is developing its own enrichment technology and the first domestically produced centrifuge was 

commissioned in February 2013. 

CNNC is responsible for the fuel fabrication, benefitting from technology transferred from France, Russia 

and the United States. Fuel reprocessing is based on Belgian and French technologies. 

Page 26: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     26 

Until now, spent fuel rods were mainly stocked on the reactor sites. There are plans to create a 

centralized storage facility for highly radioactive waste, with a repository 500m underground. The site 

has not yet been decided on, it should be operational by 2050. 

([83]) 

WhathasChina’snuclearpolicybeenaftertheFukushimaaccidentinJapan?On the days following the Fukushima accident, the Chinese government suspended all new projects and 

ordered an in‐depth safety inspection of all existing plants, as well as the plants under construction. 

Twelve teams from the International Atomic Energy Agency (IAEA) teamed up with the Chinese National 

Nuclear Safety Administration (NNSA). 

In 2012, the government postponed the construction of inland reactors. It adopted a new security 

programme for nuclear reactors. It imposes that security regulations for the nuclear power plants be 

conform to IAEA standards. The Prime Minister has formally solicited the public’s opinion on this issue. 

The government foresees that the 12th 5‐Year Plan for Nuclear Safety and Radioactive Pollution 

Prevention and Vision for 2020 will cost US$ 13 billion over the next three years. 

As mentioned above, China possesses a variety of different reactor designs, which makes it difficult to 

draw up, apply and verify safety standards. 

Foreign observers consider that the NNSA might not be sufficiently independent from the institutions 

charged with the construction of the power plants. However, it should be noted that the NNSA works 

closely with the US Nuclear Regulatory Commission for the construction of third generation reactors. 

([29], [38], [41], [55], [82]) 

China’sRenewableEnergies–PresentandFuture

WhatareChina’srenewableenergyresourcesfortheproductionofelectricity?China has large resources for renewable energies. It possesses the strongest potential for hydropower 

worldwide. It is esteemed at 542 GW, 128 of it for small stations (less than 50 MW). Two‐thirds of the 

possible locations are in the west of the country (Figure 14). 

Page 27: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     27 

Figure 14: Distribution of wind energy resources (left) and solar energy sources (right) in China ([67]). 

China plans to double its electricity production from renewable energies between 2010 and 2020 (Table 

11). 

Energy source Potential (GW)

2010 2015 2020

Capacity (GW)

Energy generation

(TWh)

Capacity (GW)

Energy generation

(TWh)

Capacity (GW)

Energy generation

(TWh)

Hydro power 542 216 687 260 780 350 1,050

Wind power 800 44,7 50,1 100 190 200 377

Biomass 380 5,5 27,5 13 52 30 131

Solar Basically unlimited 0,9 0,6 15 21 50 70

Equivalent in Mtoe 66 90 140

Table 11: China’s plans for electricity generation from renewable energies ([47], [53]). 

The biomass used for electricity production comes from agricultural residues. 

([47], [53], [66], [67]) 

WhatareChina’sgeothermalenergysources?Figure 15 shows the distribution of China’s geothermal sources. In Tibet they are used for the production 

of electricity (the main station has a capacity of 25 MW), elsewhere they are used for warm water 

production and heating hothouses. 

Page 28: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     28 

 

Figure 15: Distribution of China’s geothermal sources ([67]). 

([67]) 

WillbiomassplayanimportantroleinChina’senergypolicies?China is planning to greatly increase its energy production from biomass. 

Table 12 sums up the objectives fixed by Medium and Long‐Term Development Plan for Renewable 

Energy in China (2007) for the exploitation of biomass. 

2010 2020

Agricultural and forestry wastes, energy crops 4 GW 24 GW

Biogas 3.6 Mtoe and 1 GW 12.6 Mtoe and 3 GW

livestock farms 4,700 large projects 10,000 large projects

organic industrial effluent 1,600 large projects 6,000 large projects

Municipal waste 0,5 GW 3 GW

Biomass pellets 0.25 Mtoe 12.5 Mtoe

500 pilot installations

Biogas distribution network in rural areas 13.5 Mtoe 27 Mtoe

40 million households 80 million households

Biofuels from non-food grains

Bioethanol 1.3 Mtoe 6.3 Mtoe

Biodiesel 0.2 Mtoe 1.8 Mtoe

Table 12: Roadmap for the energy production from biomass ([1], [50]). 

([1], [47], [50], [66], [67]) 

WillChinameetitstargetsforrenewableenergies?Almost all the targets set for 2010 have been met or even surpassed (Table 13). 

Energy source Unit Situation in 2005 Situation in 2010 2010 Target

Hydro power GW 117.0 213.0 190

Biomass power GW 2.0 6.7 5.5

Page 29: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     29 

Energy source Unit Situation in 2005 Situation in 2010 2010 Target

Wind power GW 1.3 44.0 5

Solar photovoltaic power GW 0.1 0.8 0.25

Biogas consumption in rural areas Mtoe 7.2 15.1 13.5

Solar water heater Mtoe 6.3 12.2 12.9

Non-grain fuel ethanol Mtoe 0.0 0.2 1.3

Biomass briquette Mtoe 0.0 0.6 0.25

Biodiesel Mtoe 0.0 0.4 0.18

Table 13: Targets of the 2007 renewable energy plan, compared to the situations in 2005 and 2010 ([50]). Solar water heater: 1toe ≈ 11.7 square meters of solar water heater on average in China. 

The one major problem is the production of bio‐ethanol from non‐food grains. The difficulties are the 

same as in Europe: 

1. The existing agricultural land is indispensable for food production. 

2. The cost is too high. 

3. The energy crops have an adverse effect on the environment. 

Biodiesel does not pose these problems as it is produced from waste oil. 

China posses 65% of the global capacity for solar water heaters, the equivalent of 105kWh per capita. 

Still, on a per capita basis, it only occupies the seventh position, well behind Israel, Austria and Greece 

(see Table 14). 

Country Israel Austria Greece Turkey Germany Australia China Italy Japan

kWh/capita 451 390 310 152 134 106 105 97 38

Table 14: Solar water heater capacity per capita, by country ([77] p. 55). 

([1], [37] pp. 131‐132, [50], [66], [77] pp. 54‐56) 

Isthegridstrongenoughtocopewiththerenewableenergyproduced?No. For example, a third of the wind energy produced in 2010 was lost because of the inadequacy of the 

power grid (Figure 16). This is partly due to the very rapid and rather anarchic growth of the wind farms. 

Local authorities and companies have launched a multitude of small projects to circumvent the law, 

which requires the state’s authorization for the construction of wind farms larger than 50 MW. 

 

Page 30: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     30 

Figure 16: Schematic of electricity delivery from the main wind power bases ([19]). 

Another problem lies in the distance that separates the wind farms, mainly located in the Northwest of 

the country and at the end of the power grid and the consumption centres, located in the Southeast of 

the country (Figure 17). It is easier and faster to build a wind farm than a high‐voltage transmission line 

crossing China. Europe is facing the same problem, although the distances involved are much smaller. 

 

Figure 17: Schematic of Electricity Delivery from the Main Wind Power Bases ([9] p. 31). 

One generally compensates the variability of wind power output with hydro power stations, which can 

be activated on demand (so‐called back‐up capacities). But again, the distances between hydropower 

and wind‐power stations are large, as the former are concentrated in the Southern provinces. The 

production, supply and demand have to be coordinated over very large distances, requiring a so‐called 

smart grid. 

These smart control systems show promising results at a local scale: one was installed in Jiuquan Gansu 

province, connecting 9 wind farms with a total capacity of 210 GW; it increased the power output by 

14% on average. 

However, the construction of a smart grid covering the whole of China is well beyond the current 

technological know‐how. 

([5], [9] pp. 30‐32, [10] pp. 6‐7, pp. 11‐13, pp. 28‐35, [19], [23], [37] p. 14, p. 98, [56]) 

Page 31: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     31 

Whataretheplansfortheelectricitydistributionnetwork?In 2009, China adopted the Strong and Smart Grid Plan with a budget of US$ 600 billion and the aim to 

establish by 2020 a “complete, reliable, efficient and smart power grid”. 

During the first phase of the project, between 2009‐2010, preliminary test were carried out in 26 

provinces with 228 demonstration projects. 

The main points of the second phase (2011‐2015), with a budget of US$ 300 billion, are: 

The construction of 200 000 km of ultra‐high voltage (1 million volts) lines and distribution networks 

in urban and rural areas. The network will total 900 000 km (three times Europe’s network). 

Expansion of the smart grid technology (real‐time control over the grid using IT technology) 

Integration of the large wind farms 

The preference given to the construction of the ultra‐high voltage lines has met with criticism from 

eminent Chinese specialists, as the technology is not yet mature. They consider that a distributed 

network using very high voltage (500 000 volts) would be a more economic and resilient solution, calling 

on techniques that are already perfectly controlled. 

China’s plan to extend the smart grid technology at a national level, has also met with scepticism: China’s 

electricity production system as a whole has not been conceived for such a development and the market 

for household applications is not mature enough. 

([5], [16], [30], [37] p. 14, pp. 93‐104, [63]) 

WheredoesChina’srenewableenergypolicyplaceitglobally?According to the Ernst & Young Country Attractiveness Indices, China receives a very favourable 

evaluation (Table 15). 

Country China Germany United States India France United Kingdom

Rank 1 2 3 4 5 6

Global score 69.6 65.6 64.5 63.5 55.8 54.6

Wind index 76 68 62 63 58 62

Solar PV index 66 70 69 68 57 47

Biomass index 59 68 61 60 57 57

Geothermal index 50 58 67 44 34 35

Infrastructure 72 73 59 63 56 64

Table 15: All Renewables Index (global score) for the six top scoring countries in November 2012 ([72] p. 21). 

The indices classify countries on the attractiveness of their renewable energy markets, energy 

infrastructure and the suitability for individual technologies. The indices provide scores out of 100. 

Each renewable technology is given an index (Individual Technology Index), composed of a Renewables 

Infrastructure Index and a Technology Factor.  

Page 32: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     32 

The Renewables Infrastructure Index of a country considers the electricity market regulatory and political 

risk, planning and grid connection issues and access to finance. 

The Technology Factor is calculated individually for each renewable energy source and considers the 

incentive measures and market growth potential. 

Each country then receives a global score (All Renewables Index), which combines the Individual 

Technology Indices. 

([59], [72] p. 21, p. 36) 

Page 33: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     33 

ReferencesThe URLs were verified in March 2013. If a link should not work, it is generally possible to retrieve the 

document by using its title and a search engine. The references are listed in function of their online 

publication, starting with the oldest reference. 

2007‐10‐15 [1] Medium and Long‐Term Development Plan for Renewable Energy. National Development 

and Reform Commission (NDRC) People’s Republic of China. September 2007. 

http://www.chinaenvironmentallaw.com/wp‐content/uploads/2008/04/medium‐and‐long‐term‐

development‐plan‐for‐renewable‐energy.pdf 

2008‐02‐15 [2] Pierre MARION. La liquéfaction du charbon : où en est‐on aujourd’hui ? IFP, Panorama 

2008. Février 2008. 

http://www.ifpenergiesnouvelles.fr/content/download/58417/1278364/version/2/file/8‐

vf_La+liqu%C3%A9faction+du+charbon+‐+o%C3%B9+en+est‐on+aujourd%5C%27hui.pdf 

2009‐06‐15 [3] János M.BEER. Higher Efficiency Power Generation Reduces Emissions. National Coal 

Council Issue Paper 2009 MIT. http://mitei.mit.edu/system/files/beer‐emissions.pdf 

2009‐10‐17 [4] Bo‐qiang LIN, Jiang‐hu LIU. Estimating coal production peak and trends of coal imports in 

China. Energy Policy 38 (2010) 512–519. doi:10.1016/j.enpol.2009.09.042 

2010‐01‐10 [5] Adrian LU. A Primer on the (Strong) Smart Grid and its Potential for Reducing GHG 

Emissions in China and the United States. Natural Resources Defense Council. October 2010. 

http://www.nrdc.cn/phpcms/userfiles/download/201107/17/A%20Primer%20on%20the%20(Strong)%2

0Smart%20Grid%20and%20its%20Potential%20for%20Reducing%20GHG%20Emissions%20in%20China%

20and%20the%20United%20States%202010%20Oct.pdf 

2010‐02‐26 [6] Yen‐Chiang CHANG, Nannan WANG. Environmental regulations and emissions trading in 

China. Energy Policy 38 (2010) 3356–3364. doi:10.1016/j.enpol.2010.02.006 

2010‐03‐01 [7] Tao WANG, Jim WATSON. Scenario analysis of China’s emissions pathways in the 21st 

century for low carbon transition. Energy Policy 38 (2010) 3537‐3546. doi:10.1016/j.enpol.2010.02.031 

2010‐07‐29 [8] Deborah SELIGSOHN, Yue LIU, Sarah FORBES, Zhang DONGJIE, Logan WEST. CCS in China: 

Toward an Environmental, Health, and Safety Regulatory Framework. World Resources Institute. August 

2010. http://pdf.wri.org/ccs_in_china.pdf 

2010‐09‐28 [9] Li JUNFENG, Shi PENGFEI, Gao HU. China Wind Power Outlook 2010. Chinese Renewable 

Energy Industries Association, Global Wind Energy Council, Greenpeace. 

http://www.gwec.net/publications/country‐reports/china_outlook/ 

2010‐11‐17 [10] Priorités en matière d’infrastructures énergétiques pour 2020 et au‐delà – Schéma 

directeur pour un réseau énergétique européen intégré. Communication de la Commission au Parlement 

Page 34: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     34 

européen, au Conseil, au Comité économique et social européen et au Comité des régions. Commission 

européenne. COM(2010) 677 final. Bruxelles, le 17.11.2010. http://eur‐

lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0677:FIN:FR:PDF 

2010‐11‐24 [11] Yun ZHOU, Christhian RENGIFO, Peipei CHEN, Jonathan HINZE. Is China ready for its 

nuclear expansion? Energy Policy 39 (2011) 771–781. doi:10.1016/j.enpol.2010.10.051 

2011‐01‐17 [12] ASIACHEM: 2010 China Coal Chemical Review. January 2011. 

http://www.chemweekly.com/release/2011/ASIACHEM‐2010‐China‐Coal‐Chemical‐Review.pdf 

2011‐02‐01 [13] Lynn PRICE, Mark D. LEVINE, Nan ZHOU, David FRIDLEY, Nathaniel ADEN, Hongyou LU, 

Michael McNEIL, Nina ZHENG, Yining QIN, Ping YOWARGANA. Assessment of China’s energy‐saving and 

emission‐reduction accomplishments and opportunities during the 11th Five Year Plan. Energy Policy 39 

(2011) 2165–2178. doi:10.1016/j.enpol.2011.02.006 

2011‐03‐01 [14] Jinlong MA. On‐grid electricity tariffs in China: Development, reform and prospects. 

Energy Policy 39 (2011) 2633–2645. doi:10.1016/j.enpol.2011.02.032 

2011‐04‐28 [15] Nan ZHOU, David FRIDLEY, Michael McNEIL, Nina ZHENG, Jing KE, and Mark LEVINE. 

China’s Energy and Carbon Emissions Outlook to 2050. China Energy Group. Energy Analysis Department. 

Environmental Energy Technologies Division. Lawrence Berkeley National Laboratory. April 2011 

2011‐06‐29 [16] Yannis KABOURIS. Transmission Planning Activities in Europe – The role of ENTSO‐E. 5th 

South East Europe Energy Dialogue. 2‐3 June 2011. 

http://www.iene.gr/5thSEEED/articlefiles/sessionIII/kabouris.pdf 

2011‐07‐08 [17] Li YUE. Dynamics of clean coal‐fired power generation development in China. Energy 

Policy 51 (2012) 138–142. doi:10.1016/j.enpol.2011.06.012 

2011‐09‐19 [18] YuZhuo ZHANG, ZhengPing LU. The Cleaner Coal Conversion & Utilization Technologies 

in Shenhua and China. September 2011. 

http://www.engineering.pitt.edu/uploadedFiles/Coal_Conference/Pl2‐1%20‐

%20Zhengping%20Lu.Publishable.pdf 

2011‐11‐04 [19] Mian YANG, Dalia PATIÑO‐ECHEVERRI, Fuxia YANG. Wind power generation in China: 

Understanding the mismatch between capacity and generation. Renewable Energy 41 (2012) 145‐151. 

doi:10.1016/j.renene.2011.10.013 

2011‐11‐12 [20] M.V. RAMANA, Eri SAIKAWA. Choosing a standard reactor: International competition 

and domestic politics in Chinese nuclear policy. Energy 36 (2011) 6779‐6789. 

doi:10.1016/j.energy.2011.10.022 

2012‐02‐03 [21] Peng RU, Qiang ZHI, Fang ZHANG, Xiaotian ZHONG, Jianqiang LI, Jun SU. Behind the 

development of technology: The transition of innovation modes in China’s wind turbine manufacturing 

industry. Energy Policy 43 (2012) 58‐69. doi:10.1016/j.enpol.2011.12.025 

Page 35: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     35 

2012‐02‐16 [22] Kevin Jianjun TU, Sabine JOHNSON‐REISER. Understanding China’s Rising Coal Imports. 

Carnegie Endowment for International Peace. February 16, 2012. 

http://www.carnegieendowment.org/files/china_coal.pdf 

2012‐02‐18 [23] Junjie KANG, Jiahai YUAN, Zhaoguang HU, Yan XU. Review on wind power development 

and relevant policies in China during the 11th Five‐Year‐Plan period. Renewable and Sustainable Energy 

Reviews 16 (2012) 1907– 1915. doi:10.1016/j.rser.2012.01.031 

2012‐02‐22 [24] Zhao XINGANG, Liu LU, Liu XIAOMENG, Wang JIEYU, Liu PINGKUO. A critical‐analysis on 

the development of China hydropower. Renewable Energy 44 (2012) 1‐6. 

doi:10.1016/j.renene.2012.01.005 

2012‐02‐24 [25] China 2030: Building a Modern, Harmonious, and Creative High‐Income Society. 

Conference Edition. The World Bank, Development Research Center of the State Council, the People’s 

Republic of China. 2012. http://www.worldbank.org/content/dam/Worldbank/document/China‐2030‐

complete.pdf 

2012‐03‐08 [26] Le baromètre de l’éolien. EurObserv’ER. Février 2012. http://www.energies‐

renouvelables.org/observ‐er/stat_baro/observ/windpower_2012.pdf 

2012‐03‐13 [27] Bo ZHANG, G.Q. CHEN, X.H. XIA, S.C. LI, Z.M. CHEN, Xi JI. Environmental emissions by 

Chinese industry: Exergy‐based unifying assessment. Energy Policy 45 (2012) 490–501. 

doi:10.1016/j.enpol.2012.02.060 

2012‐03‐18 [28] Simon HALL. Total Extends Its China Ties. The Wall Street Journal. March 18, 2012. 

2012‐03‐19 [29] XU Yi‐chong. Nuclear Power in China: How It Really Works. Global Asia 7 (2012) 32‐43. 

March 19, 2012. http://www.globalasia.org/V7N1_Spring_2012/Xu_Yi‐chong.html 

2012‐04‐03 [30] Lihui XU, Jochen ALLEYNE. Strong Smart Grid Vs. Distributed Smart Grid – The Dispute of 

China’s Smart Grid Roadmap. SGT SmartGridTimes&Consulting. April 3, 2012. 

http://www.sgtresearch.com/insights/2012/0417/80.html 

2012‐04‐09 [31] Yuanchun ZHOU, Bing ZHANG, Ji ZOU, Jun BI, Ke WANG. Joint R&D in low‐carbon 

technology development in China: A case study of the wind‐turbine manufacturing industry. Energy 

Policy 46 (2012) 100‐108. doi:10.1016/j.enpol.2012.03.037 

2012‐04‐12 [32] Jeff TOLLEFSON, Richard Van NOORDEN. Slow progress to cleaner coal. China moves 

forward with demonstration power plant as United Kingdom revives carbon‐capture programme. Nature 

484 (12 April 2012) 151–152. doi:10.1038/484151a. http://www.nature.com/news/slow‐progress‐to‐

cleaner‐coal‐1.10411 

2012‐04‐12 [33] Qiang ZHANG, Kebin HE, Hong HUO. Cleaning China’s air. Nature 484 (2012) 161–162. 

doi:10.1038/484161a 

Page 36: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     36 

2012‐04‐15 [34] JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in 

China and the prospect of exploration and development. Petroleum Exploration and Development 39 

(2012) 139–146. 

2012‐05 [35] Mark LEVINE, David FRIDLEY, Hongyou LU, Cecilia FINO‐CHEN. Key China Energy Statistics 

2012. China Energy Group. Environmental Energy Technologies Division. Lawrence Berkeley National 

Laboratory. May 2012. http://china.lbl.gov/sites/china.lbl.gov/files/2012_Databook.pdf 

2012‐05‐06 [36] Hu RUNQING, Sun PEIJUN, Wang ZHONGYING. An overview of the development of solar 

water heater industry in China. Energy Policy 51 (2012) 46–51. doi:10.1016/j.enpol.2012.03.081 

2012‐05‐17 [37] The China Greentech Report 2012. China Greentech Initiative. May 2012. 

http://www.china‐greentech.com/Home 

2012‐06‐02 [38] Cheryl S.F. CHI, Ling CHEN. The sources of divergent practices in China’s nuclear power 

sector. In Special Section: Frontiers of Sustainability Edited By Atle MIDTTUN and Alberto MARTINELLI. 

Energy Policy 48 (2012) 348–357. doi:10.1016/j.enpol.2012.05.036 

2012‐06‐12 [40] Dunguo MOU, Zhi LI. A spatial analysis of China’s coal flow. Energy Policy 48 (2012) 358–

368. doi:10.1016/j.enpol.2012.05.034 

2012‐06‐13 [41] Ioannis N. KESSIDES. The future of the nuclear industry reconsidered: Risks, 

uncertainties, and continued promise. Energy Policy 48 (2012) 185–208. 

doi:10.1016/j.enpol.2012.05.008 

2012‐06‐15 [42] U.S.‐China Clean Energy Research Center Annual Report 2011. U.S.‐China Clean Energy 

Research Center (CERC). http://www.us‐china‐cerc.org/pdfs/US‐China_CERC_Annual_Report_2011.pdf 

2012‐06‐27 [43] Jiahai YUAN, Yong HOU, Ming XU. China’s 2020 carbon intensity target: Consistency, 

implementations, and policy implications. Renewable and Sustainable Energy Reviews 16 (2012) 4970–

4981. doi:10.1016/j.rser.2012.03.065 

2012‐06‐30 [44] BP Statistical Review of World Energy. June 2012. http://www.bp.com/statisticalreview 

2012‐07‐09 [45] Road Testing American Carbon‐Saving Technology in China. ChinaFAQs The Network for 

Climate and Energy Information. July 9, 2012. 

http://www.chinafaqs.org/files/chinainfo/China%20FAQs_Road_Testing_Tech_v1_6.pdf 

2012‐07‐11 [46] Wei SHEN, Weijian HAN, David CHOCK, Qinhu CHAI, Aling ZHANG. Well‐to‐wheels life‐

cycle analysis of alternative fuels and vehicle technologies in China. Energy Policy 49 (2012) 296–307. 

doi:10.1016/j.enpol.2012.06.038 

2012‐07‐13 [47] Sheng ZHOU, Qing TONG, Sha YU, Yu WANG, Qimin CHAI, Xiliang ZHANG. Role of non‐

fossil energy in meeting China’s energy and climate target for 2020. Energy Policy 51 (2012) 14‐19. 

doi:10.1016/j.enpol.2012.05.083 

Page 37: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     37 

2012‐07‐21 [48] Xiaowei CUI, Jinglan HONG, Mingming GAO. Environmental impact assessment of three 

coal‐based electricity generation scenarios in China. Energy 45 (2012) Pages 952–959. 

doi:10.1016/j.energy.2012.06.063 

2012‐07‐26 [49] Nicholas CLEMENT. CNOOC to Buy Canadian Oil Company in US$15 Billion Deal. China 

Briefing. July 26, 2012. http://www.china‐briefing.com/news/2012/07/26/cnooc‐to‐buy‐canadian‐oil‐

company‐in‐us15‐billion‐deal.html 

2012‐07‐27 [50] Shiyan CHANG, Lili ZHAO, Govinda R. TIMILSINA, Xiliang ZHANG. Biofuels development 

in China: Technology options and policies needed to meet the 2020 target. Energy Policy 51 (2012) 64–

79. doi:10.1016/j.enpol.2012.05.084 

2012‐08‐04 [51] Yongzhong FENG, Yan GUO, Gaihe YANG, Xiaowei QIN, Zilin SONG. Household biogas 

development in rural China: On policy support and other macro sustainable conditions. Renewable and 

Sustainable Energy Reviews 16 (2012) 5617–5624. doi:10.1016/j.rser.2012.06.019 

2012‐08‐19 [52] Jing KE, Lynn PRICE, Stephanie OHSHITA, David FRIDLEY, Nina Zheng KHANNA, Nan 

ZHOU, Mark LEVINE. China’s industrial energy consumption trends and impacts of the Top‐1000 

Enterprises Energy‐Saving Program and the Ten Key Energy‐Saving Projects. Energy Policy 50 (2012) 562–

569. doi:10.1016/j.enpol.2012.07.057 

2012‐08‐30 [53] Zhao XINGANG, Wang JIEYU, Liu XIAOMENG, Liu PINGKUO. China’s wind, biomass and 

solar power generation: What the situation tells us? Renewable and Sustainable Energy Reviews 16 

(2012) 6173–6182. doi:10.1016/j.rser.2012.07.020 

2012‐08‐31 [54] Xiaoye LIANG, Zhihua WANG, Zhijun ZHOU, Zhenyu HUANG, Junhu ZHOU, Kefa CEN. Up‐

to‐date life cycle assessment and comparison study of clean coal power generation technologies in 

China. Journal of Cleaner Production 39 (2013) 24‐31. doi:10.1016/j.jclepro.2012.08.003 

2012‐09‐10 [55] Antony FROGGATT, Joy TUFFIELD. Chinese Nuclear Power Development at Home and 

Abroad. The Asia‐Pacific Journal. September 10, 2012. http://www.japanfocus.org/‐Joy‐Tuffield/3826 

2012‐09‐13 [56] Xinhua TANG, Jianjun ZHOU. A future role for cascade hydropower in the electricity 

system of China. Energy Policy 51 (2012) 358–363. doi:10.1016/j.enpol.2012.08.025 

2012‐09‐15 [57] Qiang WANG, Xi CHEN. China’s electricity market‐oriented reform: From an absolute to 

a relative monopoly. Energy Policy 51 (2012) 143–148. doi:10.1016/j.enpol.2012.08.039 

2012‐09‐15 [58] Zhongying WANG, Haiyan QIN, Joanna I. LEWIS. China's wind power industry: Policy 

support, technological achievements, and emerging challenges. Energy Policy 51 (2012) 80–88. 

doi:10.1016/j.enpol.2012.06.067 

2012‐09‐28 [59] Aldo SANTALCO. How and when China will exceed its renewable energy deployment 

targets. Energy Policy 51 (2012) 652‐661. doi:10.1016/j.enpol.2012.09.008 

Page 38: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     38 

2012‐10‐01 [60] Key Indicators for Asia and the Pacific 2012. Asian Development Bank. August 2012. 

http://www.adb.org/publications/key‐indicators‐asia‐and‐pacific‐2012 

2012‐10‐02 [61] China to impose carbon tax from 2012. Klean Industries. October 02, 2012. 

http://www.kleanindustries.com/s/environmental_market_industry_news.asp?ReportID=550905 

2012‐10‐05 [62] Jia‐Hai YUAN, Thomas P. LYON. Promoting global CCS RDD&D by stronger U.S.–China 

collaboration. Renewable and Sustainable Energy Reviews 16 (2012) 6746–6769. 

doi:10.1016/j.rser.2012.08.014 

2012‐10‐09 [63] Kamil BOJANCZYK. China and the World’s Greatest Smart Grid Opportunity. 

Greentechgrid. October 9, 2012. http://www.greentechmedia.com/articles/read/enter‐the‐dragon‐

china‐and‐the‐worlds‐greatest‐smart‐grid‐opportunity 

2012‐10‐10 [64] Richard SCOTNEY, Sarah CHAPMAN, Cameron HEPBURN, Cui JIE. Carbon Markets and 

Climate Policy in China. The Climate Institute ‐ Australia. October 2012. 

http://www.climateinstitute.org.au/verve/_resources/ClimateBridge_CarbonMarketsandClimatePolicyin

China_October2012.pdf 

2012‐10‐12 [65] China Carbon Debut Defies Emission Doubters. Bloomberg News. October 12, 2012. 

http://www.bloomberg.com/news/2012‐10‐12/china‐carbon‐debut‐defies‐emission‐doubters‐energy‐

markets.html 

2012‐10‐18 [66] Xiliang ZHANG, Shiyan CHANG, Eric MARTINOT. Renewable energy in China: An 

integrated technology and policy perspective. Energy Policy 51 (2012) 1‐6. 

doi:10.1016/j.enpol.2012.09.071 

2012‐10‐23 [67] Li‐qun LIU, Chun‐xia LIU, Jing‐si WANG. Deliberating on renewable and sustainable 

energy policies in China. Renewable and Sustainable Energy Reviews 17 (2013) 191–198. 

doi:10.1016/j.rser.2012.09.018 

2012‐10‐27 [68] Hengwei LIU, Dapeng LIANG. A review of clean energy innovation and technology 

transfer in China. Renewable and Sustainable Energy Reviews 18 (2013) 486–498. 

doi:10.1016/j.rser.2012.10.041 

2012‐11 [69] China’s Policies and Actions for Addressing Climate Change. Information Office of the State 

Council of the People’s Republic of China. November 21, 2012. 

http://www.china.org.cn/government/whitepaper/node_7172407.htm 

2012‐11‐14 [70] 2012 Report to Congress of the U.S.‐China Economic and Security Review Commission. 

November 14, 2012. http://www.uscc.gov/annual_report/2012/2012‐Report‐to‐Congress.pdf 

2012‐11‐27 [71] Bingyun LI, Yuhua DUAN, David LUEBKE, Bryan MORREALE. Advances in CO2 capture 

technology: A patent review. Applied Energy 102 (2013) 1439‐1447. doi:10.1016/j.apenergy.2012.09.009 

Page 39: China Energy

The Future of China’s Energy Market    April 2013 

Report for the IHEST     39 

2012‐11‐27 [72] Renewable energy country attractiveness indices. November 2012. Ernst & Young. 

http://www.ey.com/Publication/vwLUAssets/CAI_issue‐35_Nov‐2012/$FILE/CAI_issue‐35_Nov‐

2012_DE0372.pdf 

2012‐12‐04 [73] Ning WU, John E. PARSONS, Karen R. POLENSKE. The impact of future carbon prices on 

CCS investment for power generation in China. Energy Policy 54 (2013) 160‐172. 

doi:10.1016/j.enpol.2012.11.011 

2012‐12‐11 [74] La Californie met en place son « Cap & Trade » des émissions de CO2. ADIT. 11 décembre 

2012. http://www.bulletins‐electroniques.com/actualites/71674.htm 

2013‐01 [75] Current List of Coal Power Plants. Global Energy Observatory. January 2013. 

http://globalenergyobservatory.org/list.php?db=PowerPlants&type=Coal 

2013‐01‐20 [76] Björn NYKVIST. Ten times more difficult: Quantifying the carbon capture and storage 

challenge. Energy Policy 55 (2013) 683‐689. doi:10.1016/j.enpol.2012.12.026 

2013‐01‐30 [77] Renewables 2012 Global Status Report. REN21. 30 janvier 2013. 

http://new.ren21.net/Portals/0/documents/Resources/%20GSR_2012%20highres.pdf 

2013‐02‐04 [78] Lorraine TURNER, Karolin SCHAPS. Centrica pulls out of new UK nuclear projects. 

Reuters. http://uk.reuters.com/article/2013/02/04/uk‐centrica‐idUKBRE9130B220130204 

2013‐03 [79] Banque mondiale – indicateurs. http://donnees.banquemondiale.org/indicateur 

2013‐03 [80] U.S.‐China Clean Energy Research Center (CERC). http://www.us‐china‐cerc.org/ 

2013‐03‐14 [81] Metes ( Nuclearelectrica): Units 3 and 4 in Cernavoda will not start working before 2019. 

Romanian Business News – ACTMedia. http://actmedia.eu/energy‐and‐environment/metes‐

nuclearelectrica‐units‐3‐and‐4‐in‐cernavoda‐will‐not‐start‐working‐before‐2019/44899 

2013‐03‐21 [82] Nuclear Power in China. World Nuclear Association. http://world‐

nuclear.org/info/Country‐Profiles/Countries‐A‐F/China‐‐Nuclear‐Power/ 

2013‐03‐21 [83] China's Nuclear Fuel Cycle. World Nuclear Association. http://world‐

nuclear.org/info/Country‐Profiles/Countries‐A‐F/China‐‐Nuclear‐Fuel‐Cycle/ 

2013‐04 [84] Current List of Nuclear Power Plants. Global Energy Observatory. 

http://globalenergyobservatory.org/list.php?db=PowerPlants&type=Nuclear