47
ĐI H¯C THÁI NGUYÊN TRƯ˝NG ĐI H¯C KHOA H¯C LÊ MINH TIN CC TR CA M¸T S¨ HÀM NHIU BIN CÓ CÁC DNG ĐC BIT LUN VĂN THC SĨ TOÁN H¯C Thái Nguyên - Năm 2013

Cực Trị Của Một Số Hàm Nhiều Biến Có Các Dạng Đặc Biệt

Embed Size (px)

DESCRIPTION

avava

Citation preview

  • I HC THI NGUYN

    TRNG I HC KHOA HC

    L MINH TIN

    CC TR

    CA MT S HM NHIU BIN

    C CC DNG C BIT

    LUN VN THC S TON HC

    Thi Nguyn - Nm 2013

  • I HC THI NGUYN

    TRNG I HC KHOA HC

    L MINH TIN

    CC TR

    CA MT S HM NHIU BIN

    C CC DNG C BIT

    Chuyn ngnh: PHNG PHP TON S CP

    M s : 60460113

    NGI HNG DN KHOA HC

    TS. HONG VN HNG

    Thi Nguyn - Nm 2013

  • Mc lc

    Li ni u 2

    1 Mt s cc bt ng thc c in 5

    1.1 Bt ng thc Cauchy v cc h qu . . . . . . . . . . . . . . . . . 5

    1.2 Bt ng thc Holder v cc h qu . . . . . . . . . . . . . . . . . 9

    2 Cc tr ca mt s hm nhiu bin dng c bit 13

    2.1 Gi tr b nht ca cc phn thc k- chnh quy . . . . . . . . . . . 13

    2.2 Mt s v d p dng nh l 2.1.1 . . . . . . . . . . . . . . . . . . 16

    2.3 Tch ca phn thc k- chnh quy vi phn thc l- chnh quy . . . 21

    2.4 Cc tr ca t s hai phn thc ng dng . . . . . . . . . . . . . . 23

    2.5 Cc tr ca cc hm na cng tnh . . . . . . . . . . . . . . . . . . 28

    3 Cc tr ca cc hm ca hai a thc i xng hai bin 35

    3.1 Cc a thc i xng ca hai bin . . . . . . . . . . . . . . . . . . 35

    3.2 Cc tr ca cc hm ca hai a thc i xng ca hai bin . . . . 36

    Kt lun 44

    Ti liu tham kho 45

    1

  • Li ni u

    Cc bi ton cc tr l mt trong nhng vn quan trng ca c ton hc

    cao cp ln ton hc s cp. Trong chng trnh ton s cp bc ph thng

    trung hc, gi tr b nht hoc ln nht ca cc hm mt bin hoc nhiu bin

    trn mt min no c tm bng mt trong cc phng php sau y:

    - Dng o hm kho st hm s trn min cho (i vi hm mt bin).

    - Dng l thuyt v tam thc bc hai (phng php min gi tr).

    - S dng cc bt ng thc khc nhau.

    Cc bi ton tm gi tr b nht hoc ln nht ca hm nhiu bin (theo

    thut ng ca ton cao cp) rt thng hay xut hin cu hi phn loi ca

    cc thi tuyn sinh i hc v cao ng mn Ton hc (xem thi tuyn

    sinh i hc mn Ton cc khi A,B,D t nm 2002 n nm 2012). gii cc

    bi ton ny thng phi vn dng phng php th ba (phng php dng

    bt ng thc), hai phng php u hu nh khng pht huy tc dng. V

    vy, nng cao kh nng gii cc bi ton cc tr ca cc hm nhiu bin,

    hc sinh phi rn luyn rt nhiu v cc bt ng thc. Cc bt ng thc m

    hc sinh ph thng thng s dng l bt ng thc Cauchy, bt ng thc

    Cauchy Schwarz (hay cn gi l bt ng thc Bunhiacovski). Cc bt ng

    thc ny c cc dng tng qut khc nhau, chng hn tng qut hn bt ng

    thc Cauchy l bt ng thc Cauchy suy rng, tng qut hn bt ng thc

    Cauchy - Schwarz l bt ng thc Holder.

    Tc gi Phan Huy Khi (xem [P.H.Khi1]) s dng bt ng thc Cauchy

    suy rng tm cc tiu ca mt lp cc hm nhiu bin m tc gi gi l cc

    2

  • phn thc chnh quy. Theo hng ny, trong [H.V. Hng 1] tc gi Hong Vn

    Hng dng bt ng thc Holder tm gi tr b nht hoc ln nht ca

    mt lp cc hm nhiu bin c dng t s ca hai phn thc ng dng. Hng

    nghin cu ny cho thy mi mt bt ng thc cha nhiu bin hu nh cho

    kh nng kt lun v cc tr ca mt lp no cc hm nhiu bin. Vn l

    cc lp hm a ra phi n gin v dng d nhn bit, c nh vy ngi

    s dng mi c th nh v vn dng c linh hot.

    Bn lun vn Cc tr ca mt s hm nhiu bin c cc dng c

    bit nghin cu mt s bt ng thc cha nhiu bin v a ra kt lun tng

    ng v gi tr b nht hoc ln nht ca mt s lp hm nhiu bin c dng c

    bit. Ni dung ca bn lun vn gm Li ni u, 03 chng v Phn kt lun:

    Chng 1: Mt s cc bt ng thc c in

    Chng 2: Cc tr ca mt s hm nhiu bin dng c bit

    Chng 3: Cc tr ca cc hm ca hai a thc i xng hai bin

    Trong chng 1 tc gi a ra cc bt ng thc c in Cauchy, Bunhia-

    covski, Holder, Mincowski cng vi mt s h qu v m rng ca chng. Tt c

    cc bt ng thc c a ra u c chng minh cht ch, theo cch ngn

    gn nht m tc gi bit.

    Chng 2 dnh cho cc nh l v gi tr b nht ca cc phn thc k chnh

    quy, gi tr ln nht v b nht ca cc hm c dng t s ca hai phn thc

    ng dng, suy rng kt qu cho t s ca cc hm mt bin c dng c bit,

    gi tr b nht v ln nht ca cc hm na cng tnh. Sau mi nh l u c

    cc v d minh ho ly t cc tuyn sinh i hc mn Ton ca cc khi A,

    B, D t nm 2002 n 2012 v mt s ti liu tham kho v cc bi ton cc

    tr, bt ng thc. Tt c cc nh l u c chng minh cht ch.

    Chng 3 dnh cho vic xt bi ton gi tr b nht v ln nht ca cc hm

    hai bin biu din c qua cc a thc i xng ca hai bin u = x + y v v =

    xy. Tc gi a ra v chng minh hai nh l v gi tr b nht v ln nht

    3

  • ca cc hm dng ny. Mt s v d minh ho cho p dng ca cc nh l ca

    chng ny c ly t cc tuyn sinh i hc mn Ton ca cc khi A, B,

    D t nm 2002 n 2012. Cc v d khc do tc gi sng tc.

    Phn ti liu tham kho gm 07 ti liu.

    Tc gi xin by t lng bit n su sc ti thy hng dn TS. Hong Vn

    Hng, Vin Khoa hc C bn, Trng i hc Hng hi Vit Nam, thy tn

    tnh hng dn tc gi trong sut qu trnh chun b lun vn.

    Tc gi cng xin chn thnh cm n cc thy c cng tc ti: Trng i

    hc khoa hc, Trng i hc s phm, Khoa cng ngh thng tin- i hc

    Thi Nguyn, Trng i hc khoa hc- i hc Quc gia H Ni, Trng i

    hc s phm H Ni, Trng i hc Hi Phng, Vin Cng ngh Thng tin,

    Vin Ton hc- Vin Khoa hc v Cng ngh Vit Nam rt quan tm v to

    iu kin cho tc gi hon thnh chng trnh hc tp bc cao hc trong sut

    thi gian qua.

    Hi Phng, ngy 10 thng 5 nm 2013

    Tc gi

    L Minh Tin

    4

  • Chng 1

    Mt s cc bt ng thc c in

    Chng ny chng minh mt s cc bt ng thc c in nh bt ng thc

    Cauchy, bt ng thc Cauchy Bunhiacovski, bt ng thc Holder v cc m

    rng ca chng. Cc chng minh a ra trong chng ny khng ging cc cch

    chng minh truyn thng ca cc bt ng thc nu trn trong cc sch ph

    thng v ch bt ng thc.

    1.1 Bt ng thc Cauchy v cc h qu

    Mnh 1.1.1: Vi mi s thc x ta c bt ng thc ex x+1. Du ngthc xy ra khi v ch khi x = 0.

    Chng minh. Xt hm f(x) = exx1 ta c f (x) = ex1, f (x) = 0 x = 0.Khi x < 0 ta c f (x) < 0, khi x > 0 ta c f (x) > 0. Vy f(x) t cc tiu thc

    s v ton cc ti x = 0. Ta c f(0) = 0. Vy f(x) 0 vi mi s thc x, dung thc xy ra khi v ch khi x=0. Khng nh ny tng ng vi bt ng

    thc ex x+ 1, du ng thc xy ra khi v ch khi x = 0.nh l 1.1.2 (bt ng thc Cauchy): Nu xi ( i =1,2,..,n) l n s dng

    th:

    1

    n

    ni=1

    xi n n

    i=1

    xi

    du ng thc xy ra khi v ch khi x1 = x2 = ... = xn

    5

  • Chng minh. t A =1

    n

    ni=1

    xi, G = n

    ni=1

    xi. p dng khng nh ca mnh

    1.1.1 vi x =xiA 1 ( i = 1,..,n) ta c: exiA1 xi

    A(du ng thc xy ra khi

    v ch khixiA

    = 1 xi = A).V cc xi u l cc s dng nn t bt ng thc trn ta suy ra:

    ni=1

    exiA1

    ni=1

    (xiA) =

    Gn

    An e

    ni=1

    xiAn G

    n

    An 1 = enn G

    n

    An

    An Gn A G 1n

    ni=1

    xi n

    ni=1

    xi

    Du ng thc xy ra khi v ch khi xi =A vi mi i tt c cc xi phibng nhau.

    Tip theo ta k hiu Rn+ l tp hp cc vc t x = (x1, ..., xn) ca Rn m

    mi thnh phn xi u dng, Qn+ l tp con ca R

    n+ m mi thnh phn ca

    cc vc t thuc n u l cc s hu t dng. Ta s gi mi vc t thuc Qn+

    l mt vc t hu t dng n- chiu. Hm thc n bin f(x)= f (x1, ..., xn ) gi l

    lin tc ti im x* = (x1, ..., xn) Rn nu x* thuc tp xc nh ca f(x) v

    vi mi dy {k = (1k, ..., nk)} nm trong tp xc nh ca f(x) tho mn:

    limk

    ik = xi (i {1, ..., n}) (1.1)

    ta lun c limk

    f(k) = f(x). Khi (1.1) ng ta ni dy {k = (1k, ..., nk)} hi

    t ti x* v k hiu limk

    k = x.

    Nu D l mt tp con ca tp xc nh ca f(x) v f(x) lin tc ti mi x Dta ni f(x) lin tc trn D. Mt vc t p = (p1, ..., pm) Rm+ gi l mt h trnglng chun nu

    mi=1

    pi = 1. Ta c mnh sau:

    Mnh 1.1.3: Gi s F(p,x), G(p,x) l hai hm xc nh trn Rm+ Rn+v lin tc theo bin p trn Rm+ vi mi x c nh Rn+ . Khi :

    1) Nu bt ng thc F(p,x) G(p,x) ng vi mi (p,x) Qm+ Rn+ thn cng ng vi mi (p,x) Rm+ Rn+ .

    6

  • 2) Nu bt ng thc F(p,x) G(p,x) ng vi mi cp (p,x) Qm+ Rn+trong p l mt h trng lng chun th n cng ng vi mi cp (p,x) Rm+ Rn+ trong p l mt h trng lng chun.

    Chng minh. 1) Gi s (p*,x*) l mt cp tu thuc Rm+ Rn+ . Tnti mt dy {pk} cc vc t hu t dng sao cho lim

    kpk = p

    . Khi theo gi

    thit ta c:

    F(pk,x*) G(pk,x*) vi mi k nguyn dng. (1.2)

    Cho k dn ti v cc trong (1.2) v dng tnh lin tc ca cc hm F, G theo

    bin p ta c iu cn chng minh: F(p*,x*) G(p*,x*).2) Chng minh hon ton tng t nh phn 1). Ch cn nhn xt rng nu

    p* l mt h trng lng chun tu th bao gi cng tn ti mt dy cc h

    trng lng chun gm ton cc vc t hu t dng {pk} sao cho limk

    pk = p.

    nh l 1.1.4 (bt ng thc Cauchy suy rng):

    Gi s x= (x1, x2...xn) l mt vc t thuc Rn+ v p = (p1, . . . , pn) l mt h

    trng lng chun. Khi ta c bt ng thc:ni=1

    pixi ni=1

    xpii (1.3)

    Chng minh. Trc ht ta chng minh bt ng thc (1.3) ng vi mi

    h trng lng chun hu t. Gi s pi l cc s hu t dng sao choni=1

    pi = 1.

    Quy ng mu s chung cho tt c cc pi ta c th xem pi =mim

    trong

    mi(i = 1, 2, . . . , n) v m l cc s nguyn dng tho mnni=1

    mi = m. p dng

    bt ng thc Cauchy cho m s dng: m1 s x1, m2 s x2 ,. . . , mn s xn ta

    c:

    1

    m

    ni=1

    mixi m

    ni=1

    xmii ni=1

    mimxi

    ni=1

    xmi/mi

    ni=1

    pixi ni=1

    xpii

    Vy (1.3) ng vi mi cp (p,x) Qn+ Rn+ . t F(p,x) =ni=1

    pixi, G(p,x)

    =ni=1

    xpii

    7

  • R rng F(p,x) v G(p,x) l cc hm lin tc theo p = (p1, . . . , pn) trn min

    Rn+ vi mi x c nh thuc Rn+ . p dng khng nh 2) ca mnh 1.1.3 ta

    suy ra tnh ng n ca bt ng thc Cauchy suy rng (1.3).

    Mnh 1.1.5: Nu xj(j = 1, 2, ..., k) l cc s dng tho mnkj=1

    xj = 1

    v / > 1 th:kj=1

    xj kj=1

    xj (1.4)

    Nhn xt: Bt ng thc (1.4) cho cu tr li khng nh i vi cu hi

    t ra bi tc gi L Thng Nht trong bi bo Nhng suy ngh ban u v

    thi tuyn sinh i hc mn Ton nm 2001 (Tp ch Ton hc v Tui tr s

    8/2001)

    Chng minh. Chng minh bt ng thc (1.4) c chia lm hai bc:

    i) Bc 1: Ta s chng minh rng nu m, n l cc s nguyn dng v m>n

    th:kj=1

    xm/nj

    kj=1

    xj (1.5)

    Vi mi j {1, 2, ..., k} p dng bt ng thc Cauchy cho m s dng: n sbng xm/nj v m n s bng 1 ta c:

    nxm/nj +m n mxj (j = 1, 2, ..., k) (1.6)

    t A =kj=1

    xm/nj , cng cc v ca k bt ng thc trong (1.6) ri p dng

    bt ng thc Cauchy cho k s dng xj(j = 1, 2, ..., k) (ch kj=1

    xj = 1) ta suy

    ra:

    nA+ k(m n) mkj=1

    xj = nkj=1

    xj + (m n)kj=1

    xj

    nkj=1

    xj + k(m n) A kj=1

    xj

    Vy bt ng thc (1.5) ng, tc bt ng thc (1.4) ng vi l s hu

    t =m

    n, m, n l cc s nguyn dng, m > n v = 1

    8

  • ii) Bc 2: Gi s > 1 l s v t, chn dy s hu t (rn) sao cho rn > 1

    v limn rn = . Bi v (1.5) ng khi =

    m

    nl s hu t > 1 ta c:

    kj=1

    xrnj kj=1

    xj (vi mi n )

    p dng mnh 1.1.3 vi p = R+, x = (x1, ..., xk) Rk+ , F(p,x) = F(,x)=

    ki=1

    xi , G(p,x) = G(,x) =kj=1

    xj (G khng ph thuc vo ) do F, G u lin

    tc theo ta c:kj=1

    xj kj=1

    xj (1.7)

    Kt hp cc kt qu ca bc 1 v bc 2 ta suy ra bt ng thc (1.7) ng

    vi mi s thc > 1. Thay trong (1.7) xj bi xj v bi

    > 1 ta thu c

    (1.4):kj=1

    xj kj=1

    xj

    1.2 Bt ng thc Holder v cc h qu

    Mnh 1.2.1: Gi s k, k l cc s dng tho mn1

    k+

    1

    k= 1. Khi

    vi mi x, y dng ta c bt ng thc:

    xy xk

    k+yk

    k(1.8)

    Du ng thc xy ra khi v ch khi xk = yk

    Chng minh. C nh y v xt hm f(x) = xy xk

    k y

    k

    k. o hm theo

    bin x ta c :

    f (x) = y xk1; f (x) = 0 xk = yk

    Xt du o hm f(x) trn min x > 0 ta c f(x) > 0 khi x yk1. Vy hm f(x) t cc i cht v ton cc trn min

    x>0 ti x = yk1. Ta c f

    (yk

    1) = 0. Vy f (x) 0 vi mi x > 0, du ng9

  • thc ch xy ra khi v ch khi x = yk1 hay xk = yk

    . Khng nh ny tng

    ng vi khng nh ca mnh 1.2.1 v (1.8) c chng minh.

    Nhn xt: i) Bt ng thc (1.8) vn ng nu mt trong cc s x, y hoc

    c hai u bng 0. Nu x = 0, y > 0 hoc x >0, y = 0 th trong (1.8) c du

    bt ng thc thc s.

    ii) Bt ng thc (1.8) c th suy ra t bt ng thc Cauchy suy rng (1.3).

    Thc vy, t trong (1.3) n = 2, x1 = xk, x2 = yk. V

    1

    k+

    1

    k= 1 p dng (1.3)

    vi p1 =1

    k, p2 =

    1

    kta c:

    xp11 xp22 p1x1 + p2x2 xy

    xk

    k+yk

    k

    Mnh 1.2.2 (bt ng thc Holder): Gi s a = (a1, ..., an),

    b = (b1, ..., bn) l hai vc t ca Rn, k v k l hai s dng tho mn

    1

    k+

    1

    k= 1.

    Khi ta c:ni=1

    |aibi| (ni=1

    |ai|k)1/k(ni=1

    |bi|k)1/k

    (1.9)

    Du ng thc xy ra khi v ch khi cc vc t (|a1|k, ..., |an|k), (|b1|k, ..., |bn|k

    )

    ph thuc tuyn tnh.

    Chng minh. R rng nu mt trong hai vc t a hoc b l vc t khng

    th (1.9) hin nhin ng. Do ta ch cn chng minh (1.9) vi gi thit l v

    phi ca (1.9) dng. Khng gim tng qut ta c th xem trong (1.9) tt c

    cc ai , bi u khng m ng thi t nht mt ai v mt bj no dng. Thay

    ln lt trong (1.8) x v y bi :

    xi =ai

    (ni=1

    aki )1/k

    , yi =bi

    (ni=1

    bki )

    1/k(i = 1, ..., n)

    ta c :

    xiyi xik

    k+yik

    k

    aibi(ni=1

    aki )1/k

    (ni=1

    bki )

    1/k a

    ki

    k(ni=1

    aki )

    +bk

    i

    k(ni=1

    bki )

    (i = 1, ..., n) (1.10)

    10

  • Ly tng theo i cc bt ng thc (1.10) ta c:

    ni=1

    xiyi

    ni=1

    xki

    k+

    ni=1

    yki

    k=

    1

    k+

    1

    k= 1

    ni=1

    aibi (ni=1

    aki )1/k(

    ni=1

    bki )

    1/k (1.11)

    Du ng thc trong (1.11) xy ra khi v ch khi c du ng thc tt c cc

    bt ng thc (1.10), tc l hoc ai = bi = 0 hocakini=1

    aki

    =bk

    i

    ni=1

    bki

    aik = bik

    vi =

    ni=1

    aki

    ni=1

    bki

    cc vc t (ak1, . . . , akn), (bk1, .., bkn), ph thuc tuyn tnh.

    Trng hp ring ca bt ng thc Holder l bt ng thc Cauchy- Bun-

    hiacovski.

    Mnh 1.2.3 (bt ng thc Cauchy-Bunhiacovski): Gi s

    a = (a1, ..., an), b = (b1, ..., bn) l hai vc t ca Rn. Khi ta c:

    ni=1

    |aibi|

    ( ni=1

    a2i )(

    ni=1

    b2i ) (1.12)

    Du ng thc xy ra khi v ch khi cc vc t (|a1| , ..., |an|), (|b1| , ..., |bn|) phthuc tuyn tnh.

    Chng minh. p dng bt ng thc Holder vi k = k = 2 ta suy ra bt

    ng thc (1.12). Du ng thc xy ra khi v ch khi cc vc t (|a1|2, ..., |an|2),(|b1|2, ..., |bn|2) ph thuc tuyn tnh cc vc t (|a1| , ..., |an|), (|b1| , ..., |bn|) phthuc tuyn tnh.

    Mnh 1.2.4 (bt ng thc Mincowski): Vi s k 1 v a =(a1, ..., an), b = (b1, ..., bn) l hai vc t ca R

    n ta c:(ni=1

    |ai + bi|k)1/k

    (

    ni=1

    |ai|k)1/k

    +

    (ni=1

    |bi|k)1/k

    (1.13)

    11

  • Chng minh. R rng (1.13) ng nu v tri ca n bng 0. Cng hin

    nhin l (1.13) ng vi k = 1 do bt ng thc | + | ||+ || ng vi mis thc , . Vy ta ch cn chng minh (1.13) ng khi v tri ca n dng

    v k > 1. Gi k l s tho mn1

    k+

    1

    k= 1. p dng bt ng thc (1.9) ta c:

    ni=1

    |ai + bi|k =ni=1

    |ai + bi| |ai + bi|k1 ni=1

    |ai| |ai + bi|k1 +ni=1

    |bi||ai + bi|k1

    (ni=1

    |ai|k)1/k(ni=1

    |ai + bi|k(k1))1/k

    + (

    ni=1

    |bi|k)1/k(ni=1

    |ai + bi|k(k1))1/k

    = (

    ni=1

    |ai|k)1/k(ni=1

    |ai + bi|k)1/k+ (

    ni=1

    |bi|k)1/k(ni=1

    |ai + bi|k)1/k

    (1.14)

    Dng gi thit v tri ca (1.13) dng, t (1.14) ta suy ra:

    (ni=1

    |ai + bi|k)1 1k (ni=1

    |ai|k)1/k + (ni=1

    |bi|k)1/k

    (ni=1

    |ai + bi|k) 1k (ni=1

    |ai|k)1/k + (ni=1

    |bi|k)1/k

    Vy (1.13) c chng minh.

    12

  • Chng 2

    Cc tr ca mt s hm nhiu bindng c bit

    Chng ny s dng cc bt ng thc chng minh trong chng 1

    a ra cc kt lun v gi tr b nht hoc ln nht ca mt s hm nhiu bin

    c dng c bit.

    2.1 Gi tr b nht ca cc phn thc k- chnh quy

    nh ngha 2.1.1. Cho k l mt s thc. Hm ca n bin x1, ..., xn dng:

    f =mi=1

    cix1i1 x

    2i2 ...x

    nin (2.1)

    trong ci l cc s dng, ji ( i = 1,...,m; j = 1,...,n ) l cc s thc ty ,

    x = (x1, ..., xn) Rn+ gi l mt phn thc k chnh quy nu vi mi j = 1,...,nta u c:

    mi=1

    ciji = k (2.2)

    Nhn xt : Khi k = 0, tc gi Phan Huy Khi (xem [P.H.Khi 1]) gi mt

    hm n bin dng (2.1) l mt phn thc chnh quy.

    nh l 2.1.1: Gi s f =mi=1

    cix1i1 x

    2i2 ...x

    nin l mt phn thc k chnh quy.

    t:

    t = x1x2...xn

    khi :

    13

  • 1. Vi k = 0 gi tr b nht ca f trn Rn+ l S =mi=1

    ci (xem [P.H.Khi 1]).

    2. Vi k > 0 gi tr b nht ca f trn min {t 1} l S =mi=1

    ci

    3. Vi k < 0 gi tr b nht ca f trn min {0 < t 1} l S =mi=1

    ci

    4. Vi k tu , gi tr b nht ca f trn min t = 1 l S =mi=1

    ci

    Chng minh.

    1) Gi s x = (x1, ..., xn) Rn+ t:

    pi =ciS, yi = x

    1i1 ...x

    nin (i = 1, ...,m)

    ta c p = (p1, p2, ..., pm) l mt h trng lng chun v y = (y1, y2, ..., ym) Rm+ .p dng bt ng thc Cauchy suy rng (1.3) cho h trng lng chun p v

    vc t y Rm+ , dng iu kin (2.2) vi k = 0 ta c:mi=1

    piyi mi=1

    ypii = 1 f =mi=1

    cix1i1 ...x

    nin S =

    mi=1

    ci (trn min x Rn+ ).

    Mt khc f(1, 1, ..., 1) =mi=1

    ci = S. Vy:

    Min{f : x = (x1, ..., xn) Rn+ } = S.

    2) Gi s k > 0, t g = f+xk1 ...xkn = f+ t

    k. Khi g l mt phn thc chnh

    quy ca n bin x1, ..., xn. Thc vy, t cm+1 = 1, j (m+1) = k (j = 1, ..., n) iukin (2.2) i vi g tr thnh:

    m+1i=1

    ciji = 0 (j = 1, ..., n)

    Theo chng minh khng nh 1) ta c g(x1, ..., xn) S =m+1i=1

    ci =mi=1

    ci + 1.

    Do trn min {t 1} ta c f(x1, ..., xn) S tk S 1 = S =mi=1

    ci (ch

    rng trn min t > 0 hm tk nghch bin). Vi x1 = ... = xn = 1 ta c t = 1 v

    f(1,. . . ,1) = S. Vy suy ra :

    Min {f : t 1} = S

    14

  • 3) Gi s k < 0. L lun tng t nh trong chng minh phn 2) ta c:

    f(x1, ..., xn) S tk S 1 = S =mi=1

    ci

    (ch rng trn min {0 < t 1} hm tk ng bin). Vi x1 = . . .= xn = 1 tac t = 1 v f(1,. . . ,1) = S. Vy suy ra:

    Min {f : 0 < t 1} = S

    4) By gi gi s k l s thc tu v t = 1. L lun hon ton tng t

    nh trong chng minh phn 2) v phn 3) ta c :

    f(x1, ..., xn) S tk = S 1 = S =mi=1

    ci

    Li do vi x1 = . . .= xn = 1 ta c t = 1 v f(1,. . . ,1) = S. Vy suy ra:

    Min {f : t = 1} = S

    nh l 2.1.1 c chng minh hon ton.

    Nhn xt: i) Khi k 6= 0 mt phn thc k chnh quy c th khng c gitr b nht v ln nht trn min Rn+ nh cc v d sau y chng t:

    a) Hm f(x, y) =1

    x+

    1

    yl phn thc (-1)- chnh quy ca 2 bin x,y. Ta c

    f(x,x)=2

    xnn d dng suy ra sup

    {f : (x, y) R2+

    }=, inf{f : (x, y) R2+ } =0.

    Nhng f(x,y)> 0 vi mi x,y R2+b) Hm g(x, y, z) =

    xy

    z+yz

    x+zx

    yl phn thc 1- chnh quy ca 3 bin x,y,z.

    Ta c g(x,x,x) = 3x nn cng d dng suy ra:

    sup{g : (x, y, z) R3+

    }= +, inf {g : (x, y, z) R3+ } = 0

    Nhng g(x,y,z)> 0 vi mi (x,y,z) R3+ii) Trn min t = 1, vi mi s thc k lun tn ti cc phn thc k chnh

    quy khng c gi tr ln nht trn min ny. Chng hn, nu k = 0, hm:

    h(x, y) = x2 +1

    x2+ y2 +

    1

    y2

    15

  • l phn thc chnh quy ca 2 bin x, y khng c gi tr ln nht trn min

    t=xy=1. Bi v trn min ny tp gi tr ca h trng vi tp gi tr ca hm

    mt bin:

    h(x, x) = 2(x2 +1

    x2) (x > 0)

    R rng sup{h (x, x) : x > 0}= +.Nu k 6= 0, hm:

    p(x, y) = xk + yk

    l phn thc k chnh quy tho mn sup{p (x, y) : t = xy = 1} = +iii) Trn min {t = 1}, mt phn thc k chnh quy ca n bin c th bin

    i thnh mt phn thc chnh quy ca n 1 bin trn R(n1)+ . V vy kt lun

    ca khng nh 4) trong nh l 2.1.1 cng c th suy ra t khng nh 1) ca

    nh l v nhn xt ny.

    2.2 Mt s v d p dng nh l 2.1.1

    p dng nh l 2.1.1 c th tm gi tr b nht ca mt s cc hm nhiu

    bin trn mt tp con ca min m cc bin ch nhn gi tr dng. Trc

    ht ta ch ra mt vi v d p dng trc tip cc khng nh ca nh l 2.1.1,

    sau cc v d phc tp hn, xut hin trong cc ti liu khc v cc bi ton

    cc tr hoc bt ng thc s c ch ra.

    V d 1: Tm gi tr b nht ca hm s sau trn min m cc bin ch nhn

    gi tr dng:

    f(x, y, z) = xyz +

    x+

    y+

    z( , , l cc hng s dng)

    Gii. Hm f l phn thc chnh quy ca 3 bin x,y,z bi v:

    1. + (1) = 1. + .(1) = 1. + .(1) = 0

    Theo khng nh 1) ca nh l 2.1.1 ta c min{f : (x, y, z) R3+

    }= 1++

    +

    16

  • V d 2: Tm gi tr b nht ca hm g di y trn min cc bin x, y, z

    nhn gi tr dng v tho mn xyz 1:

    g(x, y, z) =x2+2.y2+2

    z22+

    2

    y+z2

    x+

    1

    x

    ( l hng s dng, l hng s thc tu ).

    Gii. Hm g l phn thc 2 chnh quy, bi v :

    1.(2 + 2) + .(1) + 1.() = 21. (2 + 2) + 2. () = 21. (2 + 2) + .2 = 2

    Theo khng nh 2) ca nh l 2.1.1 gi tr b nht ca hm g trn min

    c ch ra l:

    1+2+ +1 = 4+

    V d 3: Tm gi tr b nht ca hm h cho di y trn min

    D= {x > 0, y > 0, z > 0;x+ y + z 3}

    h(x, y, z) =1

    x2+

    1

    y2+

    1

    z2+x3 + y3 + z3 xyz

    2

    Gii. p dng bt ng thc Cauchy vi (x,y,z) thuc min D ta c:

    xyz (x+ y + z3

    )3 1 (2.3)

    x3 + y3 + z3 3xyz

    Do : h(x, y, z) 1x2

    +1

    y2+

    1

    z2+3xyz xyz

    2=

    1

    x2+

    1

    y2+

    1

    z2+xyz = N(x, y, z)

    Hm N(x,y,z) l phn thc (-1) chnh quy. Theo khng nh 3) ca nh l

    2.1.1, trn min G= = {x > 0, y > 0, z > 0;xyz 1} ta c N(x,y,z) 1 + 1 + 1 +1 = 4. Do trn min G ta cng c h(x,y,z) 4. Bt ng thc (2.3) chngt min D nm trong min G. Vy trn D ta c:

    h(x,y,z) 4

    17

  • Nhng im (1,1,1) thuc min D v h(1,1,1) = 4 do ta c:

    min{h (x, y, z) : (x, y, z) D} = 4

    V d 4: Tm gi tr b nht ca hm k cho di y trn min

    E = {x > 0, y > 0, z > 0;xyz = 1}:

    k(x, y, z) = x3 +5

    x+

    2

    y+

    4z

    Gii. D thy hm k(x,y,z) l hm (-2) chnh quy, do theo khng nh

    4) ca nh l 2.1.1 ta c ngay min{k (x, y, z) : (x, y, z) E} = 1 + 5 + 2 + 4 = 12.Bn c khng kh khn c th t to ra cc v d vi cc hm phc tp

    hn. By gi ta s chng minh mt s bt ng thc nh s dng nh l 2.1.1.

    V d 5: Cho m, n l cc s nguyn dng v a 0, b 0. Chng minh btng thc:

    m ma+ n

    nb (m+ n) m+n

    ab (2.4)

    (bi ton 1.9 [Tr.Phng ]).

    Gii. Bt ng thc (2.4) r rng ng nu ab = 0, do ta ch cn chng

    minh (2.4) khi a > 0, b >0. Xt hm:

    f(a, b) = m.a

    1

    m

    1

    m+ n .b

    1m+ n + n.b

    1

    n

    1

    m+ n .a

    1m+ n

    f(a,b) l phn thc chnh quy i vi hai bin a, b v iu kin (2.2) i vi cc

    bin a, b tng ng l:

    m(1

    m 1m+ n

    ) + n.(1

    m+ n) = 0

    m.(1

    m+ n) + n.(

    1

    n 1m+ n

    ) = 0

    Theo khng nh 1) ca nh l 2.1.1 ta suy ra :

    f(a, b) m+ n (2.5)

    18

  • Nhng (2.5) tng ng vi (2.4) do (2.4) c chng minh.

    V d 6: Cho a, b, c l cc s dng. Chng minh bt ng thc :

    bc

    a+ca

    b+ab

    c a+ b+ c

    (bi ton 5.1 [Tr.Phng]).

    Gii. Xt hm s: f(x, y, z) = bx+ cy + az +b

    x+c

    y+a

    z

    D thy f l phn thc chnh quy ca 3 bin x,y,z nn theo khng nh 1)

    ca nh l 2.1.1 trn min x, y, z dng ta c:

    f(x, y, z) b+ c+ a+ b+ c+ a = 2(a+ b+ c)

    Thay x =c

    a, y =

    a

    b, z =

    b

    ctrong biu thc ca f ta c:

    f(c

    a,a

    b,b

    c) =

    bc

    a+ca

    b+ab

    c+ba

    c+cb

    a+ac

    b= 2(

    bc

    a+ca

    b+ab

    c) 2(a+ b+ c)

    bca+ca

    b+ab

    c a+ b+ c (iu phi chng minh)

    V d 7: Chng minh rng:

    a

    mb+ nc+

    b

    mc+ na+

    c

    ma+ nb 3m+ n

    (2.6)

    vi mi a, b, c, m, n dng (bi ton 5.8 [Tr.Phng]).

    Gii. t x = mb+ nc, y = mc+ na, z = ma+ nb, ta c x, y, z dng v:

    a =m2z + n2y mnx

    m3 + n3; b =

    n2z +m2xmnym3 + n3

    ; c =m2y + n2xmnz

    m3 + n3

    Thay biu din ca a, b, c qua x, y, z vo v tri ca (2.6) ta c:

    1

    m3 + n3(m2z

    x+n2y

    x+n2z

    y+m2x

    y+m2y

    z+n2x

    z) 3mn

    m3 + n3

    t: f(x, y, z) =1

    m3 + n3(m2z

    x+n2y

    x+n2z

    y+m2x

    y+m2y

    z+n2x

    z)

    D thy f(x,y,z) l phn thc chnh quy, do theo khng nh 1) ca nh

    l 2.1.1 ta c:

    f(x, y, z) 3(m2 + n2)

    m3 + n3

    19

  • Vy v tri ca (2.6) 3(m2 + n2)

    m3 + n3 3mnm3 + n3

    =3

    m+ n(iu phi chng minh)

    V d 8: Cho n s dng x1, ..., xn tho mn : x1 + x2 + ... + xn S. Chngminh rng:

    ni=1

    (1 +1

    xi) (1+n

    S)n (2.7)

    ((2.7) l tng qut ho ca b trong li gii bi ton 295 trong [P.H.Khi 2]).

    Gii. thun tin cho vic trnh by ta a vo k hiu sau:

    Nu a1, ..., an l n bin th ta k hiu

    n,k(a) l tngSk

    jSk

    aj, trong Sk

    l mt tp con gm k phn t (k 1) ca tp hp {1, 2, ..., n}. TngSk

    c ly

    theo tt c cc tp con Sk gm k phn t ca tp hp {1, 2, ..., n} (c Ckn cc tpSk nh vy). V d, nu n =3 th:

    3,1(a) = a1 + a2 + a3,

    3,2(a) = a1a2 + a2a3 + a3a1,

    3,3(a) = a1a2a3

    Vi dy bin dng y1, ..., yn k hiu1

    ytng ng vi dy

    1

    y1, ...,

    1

    ynPhn thc:

    fk =

    n,k(1

    y)

    l phn thc (Ck1n1)- chnh quy. Do , theo khng nh 3) ca nh l 2.1.1nu xt trn min t = y1y2...yn 1 ta c fk Ckn.

    Gi s dy s dng x1, ..., xn tho mn x1+x2+ ...+xn S t yi = nxiS

    ta c

    yi > 0 v y1 + y2 + ...+ yn n. T bt ng thc Cauchy suy ra t = y1y2...yn 1.Vy:

    n,k(1

    x) = (

    n

    S)k

    n,k(1

    y) Ckn(

    n

    S)k

    Suy ra:

    ni=1

    (1 +1

    xi) = 1 +

    nk=1

    n.k(

    1

    x) 1 +

    nk=1

    Ckn(n

    S)k = (1 +

    n

    S)n

    Nh vy (2.7) c chng minh. Du ng thc trong (2.7) xy ra khi v ch

    khi tt c cc xi u bng nhau v bngS

    n.

    20

  • Nhn xt (bi ton 295 trong [P.H.Khi 2]): Khi A,B,C l cc gc trong

    ca mt tam gic v x1 = sinA, x2 = sinB, x3 = sinC ta c xi > 0 v:

    sin A +sin B + sinC 33

    2= S

    Do p dng (2.7) vi n = 3 ta c:

    (1 +1

    sinA)(1 +

    1

    sinB)(1 +

    1

    sinC) (1 + 2

    3)3

    2.3 Tch ca phn thc k- chnh quy vi phn thc

    l- chnh quy

    nh l 2.3.1: Gi s:

    f =mi=1

    cix1i1 x

    2i2 ...x

    nin l phn thc k chnh quy.

    g =s

    p=1

    dpx1p1 x

    2p2 ...x

    npn l phn thc l chnh quy.

    Khi hm h(x1, ..., xn) = f(x1, ..., xn)g(x1, ..., xn) l phn thc r chnh quy,

    trong r tnh theo cng thc:

    r = k

    sp=1

    dp + l

    mi=1

    ci

    Ni ring, tch ca hai phn thc chnh quy li l mt phn thc chnh quy.

    Chng minh. Thc hin php nhn phn thc f vi phn thc g v lp tng

    dng (2.2) i vi hm h = f.g cho bin xj tu ta c tng sau:

    r =

    mi=1

    sp=1

    cidp(ji + jp) =

    mi=1

    sp=1

    cidpji +

    mi=1

    sp=1

    cidpjp

    =

    sp=1

    dp

    mi=1

    ciji +

    mi=1

    ci

    sp=1

    dpjp = k

    sp=1

    dp + l

    mi=1

    ci

    Nh vy r khng ph thuc j, do h l phn thc r chnh quy.

    21

  • H qu 2.3.2: Gi thit nh trong nh l 2.3.1. Khi :

    1) Nu r = ks

    p=1

    dp + lmi=1

    ci = 0 th gi tr b nht ca hm h = f.g trn Rn+

    l (mi=1

    ci)(s

    p=1

    dp).

    2) Nu r = ks

    p=1

    dp+ lmi=1

    ci > 0 th gi tr b nht ca hm h = f.g trn min

    {t = x1x2...xn 1} l (mi=1

    ci)(s

    p=1

    dp)

    3) Nu r = ks

    p=1

    dp+ lmi=1

    ci < 0 th gi tr b nht ca hm h = f.g trn min

    {t = x1x2...xn 1} l (mi=1

    ci)(s

    p=1

    dp).

    V d: Tm gi tr b nht trn min D ={x > 0, y > 0, z > 0 : x+ y + z 3}ca hm s sau:

    f(x, y, z) = (x2013y2014z2015 +2012

    x+

    2013

    y+

    2014

    z)(

    1

    x2+

    1

    y2+xy

    z)

    Gii: t:

    g(x, y, z) = x2013y2014z2015 +2012

    x+

    2013

    y+

    2014

    z; h(x, y, z) =

    1

    x2+

    1

    y2+xy

    z

    D thy g l phn thc 1 chnh quy cn h l phn thc (-1) chnh quy, do

    f l phn thc r chnh quy vi r = (1+2012+2013+2014)(-1) + (1+1+1).1

    = - 6037 < 0. T iu kin x > 0, y > 0, z > 0 v x + y + z 3, dng btng thc Cauchy ta suy ra 0 < t = xyz 1. Do D c cha trong min E= {x > 0, y > 0, z > 0; t = xyz 1}. Theo h qu 2.3.2 ta c f(x,y,z) c gi tr bnht trn min E l m = ( 1+2012+2013+2014)(1+1+1) = 18120. Do trn

    min D ta phi c: f(x,y,z) 18120Nhng im (1,1,1) thuc D v f(1,1,1) = 18120 do :

    min{f (x, y, z) : (x, y, z) D} =18120.

    22

  • 2.4 Cc tr ca t s hai phn thc ng dng

    nh ngha 2.4.1: Xt hm n bin cho bi cng thc (2.1) :

    f(x1, ..., xn) =

    mi=1

    cix1i1 x

    2i2 ...x

    nin

    Cc gi thit v hm f ging nh trong nh ngha 2.1.1, ngoi tr iu kin

    k- chnh quy (2.2). Khi ta ni rng cc hm:

    u =f(x1, ..., xn)

    k

    f(xk1, ..., xkn)

    v v =f(xk1, ..., x

    kn)

    f(x1, ..., xn)k

    trong k l s thc tu , k > 1, l cc hm c dng t s ca hai phn thc

    ng dng.

    T bt ng thc Holder ta suy ra bt ng thc sau y:

    Mnh 2.4.2: Gi s q = (q1, q2, ..., qn), z = (z1, z2, ..., zn) l cc vc t

    thuc Rn+ , k > 1, khi c bt ng thc:

    ni=1

    qizi (ni=1

    qi)1

    1

    k (

    ni=1

    qizki )

    1

    k (2.8)

    (xem [Hardy, Littllewood,Polya], trang 85).

    Nhn xt : Hin nhin (2.8) vn cn ng nu tng hu hn trong (2.8)

    c thay bng chui v hn v mt s cc qi hoc zi bng 0, trong ta xem

    (2.8) l ng nu v phi (2.8) bng +. Ta s ch s dng bt ng thc (2.8)di dng chui km theo gi thit l khng phi tt c cc qi v zi u bng 0.

    Chng minh. t ai = q1/k

    i , bi = q1/ki .zi ( i =1,. . . ,n), trong

    1

    k+

    1

    k= 1.

    p dng bt ng thc Holder cho hai dy s (ai) v (bi) ta c ngay (2.8).

    nh l 2.4.3 ([H.V.Hng 1]): t:

    f(x1, ..., xn) =

    mi=1

    cix1i1 x

    2i2 ...x

    nin

    23

  • trong : c = (c1, c2, ..., cm) Rm+ x = (x1, ..., xn) Rn+ 1i, 2i, ..., ni (i =1, 2, ...,m) l cc s thc tu , k > 1. Khi ta c:

    max{f(x1, ..., xn)k

    f(xk1, ..., xkn)

    : x = (x1, ..., xn) Rn+ } = (mi=1

    ci)k1

    Chng minh. t qi = ci, zi = x1i1 ...x

    nin , (i = 1, 2, ...,m). p dng bt ng

    thc (2.8) ta c:

    f(x1, ..., xn) =

    mi=1

    cix1i1 x

    2i2 ...x

    nin (

    mi=1

    ci)1

    1

    k (

    mi=1

    cixk1i1 x

    k2i2 ...x

    knin )

    1

    k

    f(x1, ..., xn)f(x1k, ..., xnk)

    1/k (

    mi=1

    ci)1

    1

    k f(x1, ..., xn)k

    f(x1k, ..., xnk) (

    mi=1

    ci)k1

    Mt khc, ta c:

    f(1, 1, ..., 1)k

    f(1k, 1k, ..., 1k)=f(1, 1, ..., 1)k

    f(1, 1, ..., 1)= (

    mi=1

    ci)k1

    Vy:

    max{f(x1, ..., xn)k

    f(xk1, ..., xkn)

    : x = (x1, ..., xn) Rn+ } = (mi=1

    ci)k1

    V d: Tm gi tr ln nht ca cc hm sau trn min m tt c cc bin

    u dng:

    1) y =(x+ 1)2013

    x2013 + 1( x l bin )

    2) z =(ax3 + bx2y + cxy2 + dy4)

    2

    ax6 + bx4y2 + cx2y4 + dy8(a, b, c, d (0;+)) (x,y l bin)

    3) u =(x3z + 2y2z3 + 5xz6)

    10

    x30z5 + 1024y20z30 + 5x10z60(x,y,z l cc bin).

    Gii. Xem cc n thc khng cha bin no nh cc n thc cha bin

    vi s m 0, ta thy tt c cc gi thit ca nh l 2.4.3 u c tho mn

    i vi v d 1 v 2 (cc gi tr tng ng ca k l: k =2013 trong v d 1; k=2

    trong v d 2). i vi v d 3, t t = 2y2 ta vit li hm u nh sau:

    u =(x3z + tz3 + 5xz6)

    10

    x30z5 + t10z30 + 5x10z60

    24

  • gi tr k tng ng l 10. Vy theo nh l 2.4.3, gi tr ln nht ca cc hm

    s tng ng trn min tt c cc bin u dng l: max{y : x > 0} = 22012,max{z : x > 0, y > 0}= a+b+c+d, max{u : x > 0, y > 0, z > 0} = 79

    Nhn xt : Bng cch i bin bn c c th tm gi tr ln nht ca cc

    hm phc tp hn cc hm a ra trong cc v d trn.

    T nh l 2.4.3 ta suy ra h qu:

    nh l 2.4.4 [H.V.Hng 1]: Vi cc gi thit nh trong nh l 2.4.3 ta c:

    min{ f(xk1, ..., x

    kn)

    f(x1, ..., xn)k: x = (x1, ..., xn) Rn+ } = (

    mi=1

    ci)1k

    Chng minh. Vi cc gi thit nh trong nh l 2.4.3, t:

    u =f(x1, ..., xn)

    k

    f(xk1, ..., xkn)

    , v =f(xk1, ..., x

    kn)

    f(x1, ..., xn)k

    Khi u > 0, v > 0 trn min Rn+ v v =1

    u. Do trn min Rn+ ta c:

    min{v =

    1

    u

    }=

    1

    maxu= (

    mi=1

    ci)1k

    V d: 1) Gi s x, y, z l cc s dng tho mn x+y+z = 3. Chng minh

    rng vi mi s k > 1 ta c :

    xk + yk + zk 3

    2) Tm gi tr b nht ca hm s:

    u = x + y + z + t

    trn min D = {x > 0, y > 0, z > 0, t > 0 : xy + xz + xt+ yz + yt + zt = 1}.3) Cho n s dng xi ( i = 1,. . . ,n) c tng bng a v k > 1. Chng minh

    bt ng thc:

    ni=1

    xki ak

    nk1

    25

  • Gii. 1) p dng nh l 2.4.4 trn min D ta c:

    xk + yk + zk

    (x+ y + z)k 1

    3k1 x

    k + yk + zk

    3k 1

    3k1 xk + yk + zk 3

    Du ng thc xy ra khi x = y = z = 1.

    2) Ta c:

    x2 + y2 + z2 + t2 = (x+ y + z + t)2 2(xy + xz + xt+ yz + yt+ zt) = u2 2.

    Theo nh l 2.4.4 (hoc theo bt ng thc Cauchy-Bunhiacovski) ta c:

    x2 + y2 + z2 + t2 14(x+ y + z + t)2 =

    u2

    4 u2 2 u

    2

    4 u2 8

    3 u

    8

    3

    Khi x = y = z = t =16ta c : xy+xz+xt+yz+yt+zt = 1 v u =

    8

    3. Vy:

    minD

    u =

    8

    3

    3) p dng nh l 2.4.4 cho hm f =ni=1

    xi trn min Rn+ ta c ngay:

    ni=1

    xki(ni=1

    xi

    )k 1nk1 ni=1

    xki

    (ni=1

    xi

    )knk1

    =ak

    nk1

    Du ng thc xy ra khi tt c cc xi bng nhau v bng a/n.

    By gi gi s (an) (n N) l mt dy cc s thc khng m nhng cha vhn s dng sao cho chui dng

    n=0

    an hi t. Xt chui lu tha:

    n=0

    anxn (2.9)

    Chui (2.9) hi t ti x = 1 nn theo nh l Abel, min hi t ca chui

    (2.9) cha khong ng [0;1]. Gi tp cc im hi t dng ca chui (2.9) l

    26

  • X*, ta c 1X*. Gi f(x) l tng ca chui (2.9) trn min X*. p dng btng thc (2.8) di dng chui ta c:

    f(x) =

    n=0

    anxn (

    n=0

    an)1

    1

    k (

    n=0

    anxkn)

    1

    k f(x)

    f(xk)

    1

    k

    (n=0

    an)1

    1

    k (2.10)

    Trong ta xem v tri ca (2.10) bng 0 nu chui f(xk) =n=0

    anxkn phn k (*). Bt ng thc (2.10) tng ng vi bt ng thc:

    f(x)k

    f(xk) (

    n=0

    an)k1 (x X) (2.11)

    Khng kh khn c th chng minh rng nu ai0 l h s c ch s b nht

    trong cc h s khc 0 ca chui (2.9) th: limx0+

    f(x)k

    f(xk)= ak1i0

    Do nu xem ak1i0 l gi tr ca v tri bt ng thc (2.11) khi

    x = 0 (**) th (2.11) ng c vi trng hp x = 0. Mt khc, rng:

    f(1)k

    f(1k)= f(1)k1 = (

    n=0

    an)k1

    kt hp vi (2.11) ta suy ra:

    max{f(x)k

    f(xk): x X {0}} = f(1)k1 = (

    n=0

    an)k1

    Nh vy ta thu c nh l:

    nh l 2.4.5: Gi s chui dngn=0

    an hi t v c tng dng. Gi f(x)

    l tng ca chui lu than=0

    anxn khi x thuc tp X cc im hi t khng

    m ca chui . Khi ta c:

    max{f(x)k

    f(xk): x X} = f(1)k1 = (

    n=0

    an)k1

    min{f(xk)

    f(x)k: x X} = f(1)1k = (

    n=0

    an)1k

    (ta gi nguyn cc quy c (*) v (**)).

    27

  • V d : 1) Ta c : ex =n=0

    xn

    n!(x R) nn p dng nh l 2.4.5 ta c

    ngay:

    max{e2010x

    ex2010 : x 0} = e2009 (k = 2010)

    Nu nhn xt thm rnge2010x

    ex2010

    e2010x

    ex2010 khi x 0 kt qu trn cn cho

    khng nh mnh hn:

    max{e2010x

    ex2010 : x R} = e2009 (k = 2010)

    2) Ta c: ln(1 x2) =

    n=1

    1

    n(x

    2)n (x (2; 2)) . p dng nh l 2.4.5 ta

    c:

    max{ln100(1 x

    2)

    ln(1 x100

    2)

    : 0 x < 1002} = (ln 2)99 ( k = 100).

    2.5 Cc tr ca cc hm na cng tnh

    Trong mc ny, ging nh u chng 1 i khi ta vit f(x) thay cho

    f(x1, ..., xn), trong x = (x1, ..., xn) l mt vc t ca Rn. Ta cng gi thit

    rng hm f(x) xc nh trn tp con D ca Rn c tnh cht: x, y D ko theox + y D.

    nh ngha 2.5.1: Hm f c gi l:

    - Di cng tnh trn tp xc nh D ca n nu f c tnh cht:

    f(x+y) f (x) + f(y)

    vi mi cp vc t x, y D.- Trn cng tnh trn tp xc nh D ca n nu f c tnh cht:

    f(x+y) f (x) + f(y)

    vi mi cp vc t x, y D.

    28

  • Cc hm di cng tnh v trn cng tnh trn mt min no gi chung

    l hm na cng tnh trn min .

    V d: - Hm u = (ni=1

    xki )1/k l hm di cng tnh trn min Rn+ vi k 1,

    bi v theo bt ng thc Mincowski trn min Rn+ ta c:(ni=1

    (xi + yi)k

    )1/k(

    ni=1

    xki

    )1/k+

    (ni=1

    yki

    )1/k- Hm u = x2 l trn cng tnh trn khong (0, + ), bi v vi mi s thc

    x, y (0, + ) ta c:

    (x+ y)2 = x2 + 2xy + y2 > x2 + y2

    Mnh di y cho php ta thu c nhiu hm na cng tnh t mt

    hm na cng tnh bit trc.

    Mnh 2.5.1: 1) Gi s f(x) l hm mt bin xc nh trn khong

    (0,+). Nu hm f(x)x

    l hm khng tng th f(x) l hm di cng tnh trn

    (0,+). Nu hm f(x)x

    l hm khng gim th f(x) l hm trn cng tnh trn

    (0,+).2) Gi s f(u) l hm di cng tnh v khng gim trn (0,+). Nu u=g(x)

    l hm nhn gi tr dng v di cng tnh trn Rn+ th hm hp f(g(x)) l

    di cng tnh trn Rn+ .

    3) Gi s f(u) l hm trn cng tnh v khng gim trn (0,+). Nu u=g(x)l hm nhn gi tr dng v trn cng tnh trn Rn+ th hm hp f(g(x)) l

    trn cng tnh trn Rn+ .

    Chng minh. 1) Trc ht ta chng minh rng nu c, d l cc s dng th

    vi cc s a, b tu ta c:

    min(a

    c,b

    d) a+ b

    c+ d max(a

    c,b

    d) (2.12)

    Tht vy, khng gim tng qut gi sa

    c bd. Khi c cc s m, n 0 sao

    29

  • cho:a

    c=bmd

    ,a+ n

    c=b

    d. Suy ra:

    min(a

    c,b

    d) =

    a

    c=bmd

    =a+ bmc+ d

    a+ bc+ d

    a+ n+ bc+ d

    =a+ n

    c=b

    d= max(

    a

    c,b

    d)

    Vy (2.12) c chng minh.

    By gi gi s x,y (0,+). V hm f(x)x

    l khng tng trn (0,+) ta c:

    f(x+ y)

    x+ y min(f(x)

    x,f(y)

    y) f(x) + f(y)

    x+ y f(x+ y) f(x) + f(y)

    Vy hm f(x) l di cng tnh trn (0,+).Nu hm

    f(x)

    xl khng gim trn (0,+) v x,y (0,+) ta c:

    f(x+ y)

    x+ y max(f(x)

    x,f(y)

    y) f(x) + f(y)

    x+ y f(x+ y) f(x) + f(y)

    Vy hm f(x) l trn cng tnh trn (0,+).2) Gi s x, y l hai vc t tu ca Rn+ . Vi cc gi thit nu trong khng

    nh 2) ca mnh 2.5.1 ta c:

    f(g(x+y)) f(g(x)+g(y)) f(g(x)) + f(g(y))

    Vy hm f(g(x)) l di cng tnh trn Rn+ .

    3) Gi s x, y l hai vc t tu ca Rn+ . Vi cc gi thit nu trong khng

    nh 3) ca mnh 2.5.1 ta c:

    f(g(x+y)) f(g(x)+g(y)) f(g(x)) + f(g(y))

    Vy hm f(g(x)) l trn cng tnh trn Rn+ .

    V d: - Hm f(x) = ln(1 + x) l hm tho mnf(x)

    xkhng tng trn

    (0;+), cn bn thn f(x) thc s tng trn (0;+) do theo khng nh 2)ca mnh 2.5.1 hm f(g(x)) l hm di cng tnh trn Rn+ vi mi hm g

    di cng tnh trn Rn+ . Ni ring, hm u = ln(1 + (

    ni=1

    xki )1/k

    )l di cng

    tnh trn Rn+ .

    30

  • - Trong Rn t: x1 =ni=1

    |xi| vi mi vc t x = (x1, ..., xn) Rn. Vi micp vc t x, y Rn+ ta c:

    x+ y1 = x1 + y 1

    Vy hm g(x) = x1 l cng tnh trn Rn+ (do g(x) va di cng tnh,va trn cng tnh trn Rn+ ). Hm f(x) = x2 l trn cng tnh v thc s tng

    trn (0,+ ) nn theo khng nh 3) ca mnh 2.5.1 ta c hm x21 l trncng tnh trn Rn+ .

    nh ngha 2.5.2: Hm n bin f(x) (x =(x1, ..., xn) D Rn) gi l thunnht dng trn D nu D v f c cc tnh cht sau:

    1) x =(x1, ..., xn) D ko theo tx D vi mi t > 0.2) f(tx) = tf(x) vi mi t > 0 v mi x D.V d : - Hm u = (

    ni=1

    xki )1/k l thun nht dng trn min Rn+ vi mi

    k>0. Khi k > 1 hm u l di cng tnh (bt ng thc Mincovski). Khi 0 0}

    =R2+ vi s thc n tu .

    - Nu z = x l mt chun tu ca vc t x Rn+ th z va c tnh chtdi cng tnh, va c tnh cht thun nht dng trn Rn, x1 l hm cngtnh v thun nht dng trn Rn+ .

    nh l 2.5.2: 1) Gi s w = f(u,v) l hm di cng tnh, thun nht

    dng trn min R2+ v khng gim theo v vi mi u c nh. t:

    G =

    {x = (x1, ...xn) Rn+ :

    ni=1

    xi C = const > 0}

    ; z =ni=1

    f(xi,1

    xi)

    Nu hm g(t) = f(t,1

    t) khng tng theo t trn (0;C) th:

    min {z : x = (x1, ..., xn) G}= f(C, n2

    C)

    31

  • 2) Gi s w = f(u,v) l hm trn cng tnh, thun nht dng trn min R2+

    v khng tng theo v vi mi u c nh. t:

    G =

    {x = (x1, ...xn) Rn+ :

    ni=1

    xi C = const > 0}

    ; z =ni=1

    f(xi,1

    xi)

    Nu hm g(t) = f(t,1

    t) khng gim theo t trn (0;C) th :

    max {z : x = (x1, ..., xn) G}= f(C, n2

    C)

    Chng minh. 1) Nuni=1

    xi < C, thay x1 bi x1 > x1 > 0 sao cho x1 +

    ni=2

    xi=C. Do gi thit g(t) khng tng theo t (0;C) v hm f l di cng tnhta c:

    ni=1

    f(xi,1

    xi) f(x1,

    1

    x1) +

    ni=2

    f(xi,1

    xi)

    f(x1 +ni=2

    xi,1

    x1+

    ni=2

    1

    xi) = f(C,

    1

    x1+

    ni=2

    1

    xi)

    Vy vi x = (x1, ..., xn) tu thuc G ta c:

    z =ni=1

    f(xi,1

    xi) inf{f(C,

    ni=1

    1

    xi) :

    ni=1

    xi = C, xi > 0}

    Theo bt ng thc Cauchy Bunhiacovski, vi x = (x1, ..., xn) G vni=1

    xi = C ta c:

    n2 (ni=1

    xi)(

    ni=1

    1

    xi) = C(

    ni=1

    1

    xi) (

    ni=1

    1

    xi) n

    2

    C

    Bi v hm f khng gim theo bin th hai, ta suy ra khini=1

    xi = C c bt

    ng thc:

    f(C,

    ni=1

    1

    xi) f(C, n

    2

    C)

    Vy: z f(C, n2

    C) vi mi x = (x1, ..., xn) G.

    Khi x1 = x2 = ... = xn =C

    n, do tnh thun nht dng ca f ta c z=nf(

    C

    n,n

    C)

    = f(C,n2

    C).

    32

  • Vy min{z : x = (x1, ..., xn) G}= f(C, n2

    C).

    2) Nuni=1

    xi < C, thay x1 bi x1 > x1 > 0 sao cho x1 +

    ni=2

    xi = C. Do gi

    thit g(t) khng gim theo t (0;C) v hm f l trn cng tnh ta c:ni=1

    f(xi,1

    xi) f(x1,

    1

    x1) +

    ni=2

    f(xi,1

    xi)

    f(x1 +ni=2

    xi,1

    x1+

    ni=2

    1

    xi) = f(C,

    1

    x1+

    ni=2

    1

    xi)

    Vy vi x = (x1, ..., xn) tu thuc G ta c:

    z =ni=1

    f(xi,1

    xi) sup{f(C,

    ni=1

    1

    xi) :

    ni=1

    xi = C, xi > 0}

    Theo bt ng thc Cauchy Bunhiacovski, vi x = (x1, ..., xn) G vni=1

    xi = C ta c:

    n2 (ni=1

    xi)(

    ni=1

    1

    xi) = C(

    ni=1

    1

    xi) (

    ni=1

    1

    xi) n

    2

    C

    Bi v hm f khng tng theo bin th hai, ta suy ra khini=1

    xi = C c bt

    ng thc:

    f(C,

    ni=1

    1

    xi) f(C, n

    2

    C)

    Vy ta c: z f(C, n2

    C) vi mi x = (x1, ..., xn) G.

    Khi x1 = x2 = ... = xn =C

    n, do tnh thun nht dng ca f ta c z=nf(

    C

    n,n

    C)

    = f(C,n2

    C).

    Vy max{z : x = (x1, ..., xn) G}= f(C, n2

    C).

    V d: 1) Trn R2+ hm f(u,v) = (uk + vk)1/k vi k > 1 l di cng tnh

    v thun nht dng, khng gim theo bin v (suy t bt ng thc Mincovski

    v biu thc ca f). Gi s:

    G=

    {x = (x1, ..., xn) Rn+ :

    ni=1

    xi 1}

    33

  • Ta c:

    g(t)= f(t,1

    t

    )= (tk +

    1

    tk)1/k

    l hm thc s gim trn (0;1) bi v g(t) = (tk +1

    tk)

    1 kk (

    t2k 1tk+1

    ) < 0 khi t (0;1). Nh vy, tt c cc gi thit v cc hm f, g trong khng nh 1) ca nh

    l 2.5.2 c tha mn. Theo khng nh 1) ca nh l ny ta c:

    min

    {ni=1

    (xki +1

    xki)1/k

    :ni=1

    xi 1, xi > 0 (i = 1, ..., n)}

    = (1 + n2k)1/k

    Khi k = 2, n =3 ta nhn c chng minh ca bi ton s V ca thi tuyn

    sinh i hc khi A nm 2003:

    Cho 3 s dng x,y,z tha mn x + y + z 1. Chng minh rng:x2 +

    1

    x2+

    y2 +

    1

    y2+

    z2 +

    1

    z282

    2) Cho n s dng x1, ..., xn tha mnni=1

    xi C. Tm gi tr ln nht ca biuthc:

    z =ni=1

    (xi 1xi)

    Gii. Xt hm w = u v. Khi w l thun nht dng v cng tnh, do

    c th coi w l trn cng tnh. Hm w thc s gim theo bin v vi mi u c

    nh. Hm g(t) = t 1tthc s tng trn (0;C) bi v g(t) = 1 +

    1

    t2> 0. Do

    mi gi thit trong khng nh 2) ca nh l 2.5.2 c tho mn. Theo khng

    nh ny ta c:

    max

    {z =

    ni=1

    (xi 1

    xi

    ):ni=1

    xi C, xi > 0i}

    = C n2

    C

    34

  • Chng 3

    Cc tr ca cc hm ca hai athc i xng hai bin

    3.1 Cc a thc i xng ca hai bin

    nh ngha 3.1.1. Mt a thc i xng ca hai bin x, y l mt hm

    dngmi=1

    cixmiyni, trong ci l cc s thc, mi, ni l cc s nguyn khng m,

    c tnh cht bt bin khi hon v cc k hiu x, y cho nhau.

    V d: s1= x+ y, s2 = xy, n = xn + yn (n l s nguyn >1) l cc a thc

    i xng ca hai bin x, y.

    Ta c khng nh sau (xem [Kurosh]):

    Mnh 3.1.1: Mi a thc i xng ca hai bin x, y u l a thc ca

    cc a thc i xng s1, s2.

    Do mnh 3.1.1, mi hm ca hai a thc i xng ca hai bin x, y u

    c th xem l hm ca hai bin s1 = x + y v s2 = xy. V vy ta s xt cc hm

    dng f(u,v), trong u = x + y, v = xy. Chng ny dnh cho bi ton tm gi

    tr ln nht v gi tr b nht ca cc hm dng f(x+y, xy) khi cc hm ny

    c xc nh trn cc tp dng c bit ca R2. V cc kt qu lin quan xem

    bi bo [H.V.Hng 2] .

    35

  • 3.2 Cc tr ca cc hm ca hai a thc i xng

    ca hai bin

    Trong mc ny k hiu ch mt trong cc khong (a;b), [a;b), (a;b],

    [a;b], a 0 v b c th l + .nh l 3.2.1: Gi s f(u,v) l hm ca hai bin u, v xc nh trn min

    D =

    {u < a; b >, v u

    2

    4

    }v g(x,y) = f(x+y,xy) xc nh trn min H =

    {(x, y) : u = x+ y < a, b >} R2. t N(x) =f (2x, x2), x < a2;b

    2>. Khi :

    1) Nu trn min D =

    {u < a, b >, v u

    2

    4

    }hm f(u,v) khng tng theo bin

    v vi mi u c nh v hm N(x) c gi tr b nht trn th:

    min{g (x, y) : (x, y) H} = min{N (x) : x < a

    2,b

    2>

    }.

    2) Nu trn min D=

    {u < a, b >, v u

    2

    4

    }hm f(u,v) khng gim theo bin

    v vi mi u c nh v hm N(x) c gi tr ln nht trn th:

    max{g (x, y) : (x, y) H} = max{N (x) : x < a

    2,b

    2>

    }.

    Chng minh. 1) C nh mt gi tr u . Vi mi (x,y) H thamn x + y = u ta c:

    xy (x+ y)2

    4=u2

    4(3.1)

    V hm f(u,v) khng tng theo v, vi (x,y) H tha mn x + y = u ta c:

    g(x, y) = f(x + y, xy) = f(u, xy) f(u,u2

    4) (3.2)

    Khi x = y = u/ 2 ta c (x,y) H v:

    g(x,x)=f(2x,x2)=N(x)=f(u,u2

    4) (3.3)

    V hm N(x) c gi tr b nht trn , tn ti im x*< a

    2;b

    2> sao

    cho:

    36

  • min

    {N (x) : x < a

    2;b

    2>

    }=N(x*) (3.4)

    T (3.2), (3.3), (3.4) ta suy ra:

    g(x, y) N(x*) = f(2x, x

    2)vi mi (x, y) H.

    Ly u* = 2.x* v x = y = x* ta c (x, x) H v g(x*, x*) = N(x*). Vy:

    min{g (x, y) : (x, y) H}=min{N (x) : x < a

    2;b

    2>

    }= N(x*)

    2) Nu f(u,v) l hm khng gim theo v th t (3.1) ta suy ra vi mi (x,y)

    tho mn x+y = u ta c:

    g(x, y) = f(x + y, xy) = f(u, xy) f(u,u2

    4) (3.5)

    Khi x = y = u/ 2 ta c (x,y) H v:

    g(x,x)=f(2x,x2)=N(x)=f(u,u2

    4) (3.6)

    V hm N(x) c gi tr b nht trn , tn ti im x** < a

    2;b

    2>

    sao cho:

    max

    {N (x) : x < a

    2;b

    2>

    }= N (x) (3.7)

    T (3.5), (3.6), (3.7) ta suy ra:

    g(x, y) N (x) =f(2x, x

    2)vi mi (x,y) H.

    Ly u** = 2.x** v x = y = x** ta c (x**,x**) H v g(x**, x**) = N(x**).Vy:

    max{g (x, y) : (x, y) H} = max{N (x) : x < a

    2;b

    2>

    }= N(x**).

    nh l 3.2.1 c th p dng gii mt lot cc bi ton v tm gi tr b

    nht, gi tr ln nht ca cc hm ca hai a thc i xng ca hai bin x, y

    trn min dng H. Nhng bi ton ny thng xut hin trong cc k thi tuyn

    37

  • sinh i hc v cc k thi hc sinh gii ton bc trung hc c s hoc trung hc

    ph thng. Di y l mt s v d:

    V d 1: Tm gi tr nh nht ca biu thc A = x3+y3+3(xy1)(x+y2),trong x, y l cc s thc tho mn (x 4)2 + (y 4)2 + 2xy 32.

    ( thi tuyn sinh i hc nm 2012, mn Ton-khi D).

    Gii. Ta c: (x 4)2 + (y 4)2 + 2xy 32 (x+ y)2 8(x + y) 0 0 x+ y 8;

    A = (x+ y)3 3(x+ y) 6xy + 6

    Vy bi ton c dng: Tm gi tr b nht ca hm f(u,v) = u3 3u 6v+6,trong u = x + y, v = xy trn min H ={(x, y) : 0 x+ y 8}.

    Hm f(u,v) r rng gim theo bin v = xy v min H c dng nh trong nh

    l 3.2.1 (khong trong trng hp ny l khong ng [0;8]). p dng

    khng nh 1) ca nh l ta c:

    min{A : 0 x+ y 8} = min{N (x) = 8x3 6x2 6x+ 6 : 0 x 4}.Ta c : N(x) = 24x2 12x 6, N(x) = 0 x = 1

    5

    4. V xt trn min

    0x4 nn ta ch ly gi tr x = 1 +5

    4. So snh cc gi tr N(0) = 6, N(

    1 +5

    4)

    =17 55

    4, N(4) = 398 ta suy ra:

    min{A : 0 x+ y 8}=min{N (x) = 8x3 6x2 6x+ 6 : 0 x 4}=17 554

    .

    V d 2: Cho cc s thc x, y thay i v tho mn (x+ y)3 + 4xy 2.Tm gi tr nh nht ca biu thc A = 3

    (x4 + y4 + x2y2

    ) 2 (x2 + y2)+ 1.( thi tuyn sinh i hc nm 2009, mn Ton - khi B).

    Gii. t H ={(x, y) : (x+ y)3 + 4xy 2}. Bi v (x+ y)2 4xy 0 nn ta

    suy ra:

    (x+ y)3+ (x+ y)2 - 2 0 x + y 1

    Nh vy min H nm trong min G = {(x, y) : (x+ y) 1}. Do :

    38

  • inf{A : (x, y) H} inf{A : (x, y) G} (3.8)

    Ta c : A = 3(x+ y)4 12xy(x+ y)2 + 9x2y2 - 2(x+ y)2 + 4xy + 1. t u =

    x + y, v = xy ta nhn c:

    A = f(u,v) = 3u4 12vu2 + 9v2 2u2 + 4v + 1

    f

    v= 12u2 + 18v + 4 = 4 (1 u2)+ 18(v 4

    9u2)

    Trn min D=

    {u 1, v u

    2

    4

    }ta c

    f

    v< 0, do f(u,v) gim theo v vi

    mi u 1 c nh. t N(x) = f(2x, x2) = 9x4 4x2 + 1 ta c:N(x) = 36x3 8x > 0 trn min x 1

    2

    Do : min{N (x) : x 1

    2

    }= N

    (1

    2

    )=

    9

    16. Theo khng nh 1) ca nh l

    3.2.1 ta c:

    min{A : (x, y) G}=min{N (x) : x 1

    2

    }=

    9

    16

    Do (3.8) ta c: inf {A : (x, y) H} 916

    . Nhng vi x = y = 1/2 ta c

    (x+ y)3 + 4xy = 2 vy im(1

    2;1

    2

    ) H v A

    (1

    2;1

    2

    )=

    9

    16nn ta suy ra

    min{A : (x, y) H} = 916

    V d 3: Tm gi tr ln nht ca hm s:

    z =x3 + y3

    x3 + y3 xytrn min H = {(x, y) : x+ y a > 1}.

    Gii. Nu xy < 0 ta c: x3 + y3 xy = (x+ y) (x2 + y2 xy) xy a(x2 + y2 xy) xy > 0. Nu xy 0 ta c x3 + y3 = (x + y)(x2 + y2 xy)

    a(x2 + y2 xy) > axy xy trn min H. Vy hm z c ngha trn H. t u = x+ y , v = xy ta c:

    z =(x+ y)3 3xy(x+ y)

    (x+ y)3 3xy(x+ y) xy=

    u3 3uvu3 3uv v = f(u,v)

    39

  • f

    v=

    u3

    (u3 3uv v)2> 0 khi u a > 1.

    Vy hm f(u,v) khng gim theo v trn min G =

    {(u, v) : v u

    2

    4, u a > 1

    }vi mi u c nh. Theo khng nh 2) ca nh l 3.2.1 ta c:

    max{z : (x, y) H}= max{N (x) = f

    (2x, x2

    ): x a

    2

    }.

    Nhng N(x) =2x3

    2x3 x2 =2x

    2x 1 = 1 +1

    2x 1 1 +1

    a 1 vi mi xa

    2. Khi

    x =a

    2ta c N(

    a

    2) = 1 +

    1

    a 1 .

    Vy max{z : (x, y) H}= max{N (x) = f

    (2x, x2

    ): x a

    2

    }= 1 +

    1

    a 1 .nh l 3.2.2: Gi s f(u,v) l hm ca hai bin u, v xc nh trn min

    D=

    {(u, v) : u 0, v < a; b >, v u

    2

    4

    }v g(x,y) = f(x+y, xy) xc nh trn min

    H = {(x, y) : v = xy < a; b >} R2. t N(x) = f(2x, x2), x < a;b > . Khi:

    1) Nu trn min D =

    {(u, v) : u 0, v < a, b >, v u

    2

    4

    }hm f(u,v) khng

    gim theo bin u vi mi v c nh v hm N(x) c gi tr b nht trn min{x < a;b >} th:

    min{g (x, y) : (x, y) H}= min {N (x) : x < a;b >}.2) Nu trn min D =

    {(u, v) : u 0, v < a, b >, v u

    2

    4

    }hm f(u,v) khng

    tng theo bin u vi mi v c nh v hm N(x) c gi tr ln nht trn min{x < a;b >} th:

    max {g (x, y) : (x, y) H}= max {N (x) : x < a;b >}.Chng minh. 1) C nh mt gi tr v < a;b >. Vi mi (x,y) H tha

    mn xy = v ta c:

    v = xy (x+ y)2

    4 x+ y 2v (3.9)

    40

  • V hm f(u,v) khng gim theo u, vi (x,y) H tha mn xy = v ta c:

    g(x, y) = f(x + y, xy) = f(x + y, v) f(2v, v) (3.10)

    Khi x = y =v ta c (x,y) H v:

    g(x,x)=f(2x, x2

    )=N(x)=f(2

    v, v) (3.11)

    Gi s:

    min{N (x) : x < a;b >} = N(x*); (x*< a;b > ) (3.12)

    T (3.10), (3.11), (3.12) ta suy ra:

    g(x,y) N(x*) = f(2x, x

    2)vi mi (x,y) H.

    Ly v* =x2

    v x = y = x* ta c (x*,x*) H v g(x*, x*) = N(x*). Vy:

    min{g (x, y) : (x, y) H}= min {N (x) : x < a;b >}= N(x*).2) Nu f(u,v) l hm khng tng theo u th t (3.9) ta suy ra vi mi (x,y)

    tho mn xy = v > 0 ta c:

    g(x, y) = f(x + y, xy) = f(x + y, v) f(2v, v) (3.13)

    Khi x = y =v ta c (x,y)H v:

    g(x,x)=f(2x, x2

    )=N(x)=f(2

    v, v) (3.14)

    Gi s :

    max{N (x) : x < a;b >} = N(x**); (x**< a;b > ) (3.15)

    T (3.13), (3.14), (3.15) ta suy ra:

    g(x,y) N(x**) = f(2x, x

    2)vi mi (x,y)H

    Ly v** = x2

    v x = y = x** ta c (x**,x**)H v g(x**, x**) = N(x**).Vy:

    41

  • max {g (x, y) : (x, y) H}= max {N (x) : x < a;b >} = N(x**)nh l 3.2.2 c chng minh hon ton.

    Ta a ra mt s v d minh ho cho nh l 3.2.2.

    V d 4: Tm gi tr b nht trn min H ={(x, y) : xy 1

    9, x > 0, y > 0

    }ca hm s:

    z =x3 + y3 xyx3 + y3 + 2xy

    Gii. t u = x + y, v = xy, ta c :

    z =(x+ y)3 3(x+ y)xy xy(x+ y)3 3(x+ y)xy + 2xy

    =u3 3uv vu3 3uv + 2v

    z

    u=

    9(u2 v)v(u3 3uv + 2v)2

    Trn min D =

    {(u, v) :

    1

    9 v u

    2

    4

    }ta c

    z

    u> 0 do hm z tng theo

    bin u. Theo khng nh 1 ca nh l 3.2.2 ta c:

    min{z : (x, y) H} = min{N (x) =

    2x3 x22x3 + 2x2

    =2x 12(x+ 1)

    : x 13

    }nu v phi tn ti. Hm N(x) c o hm N(x) > 0 trn min x 1

    3, nn ta

    c: min{N (x) : x 1

    3

    }= N(

    1

    3) = 1

    8. Vy:

    min

    {Z =

    x3 + y3 xyx3 + y3 + 2xy

    : (x, y) H}

    = 18.

    V d 5: Tm gi tr ln nht ca hm s:

    z=x4 + y4 + xy(x2 + y2)

    2(x4 + y4) xy(x2 + y2)trn min H = {(x, y) : x > 0, y > 0}.Gii. Ta c : 2

    (x4 + y4

    )xy (x2 + y2)= (x2+y2)[(x y2)2+

    3y2

    4]+(x2 y2)2 > 0

    khi x > 0, y > 0 do z hon ton c xc nh trn min H. t u = x + y,

    v = xy ta c biu din:

    42

  • z =u4 3vu2

    2u4 9vu2 + 6v2

    Ly o hm z theo bin u ta c:

    z

    u= 6uv

    (u4 4vu2 + 6v2)

    (2u4 9vu2 + 6v2)2

    Trn min D =

    {(u, v) : u > 0, 0 < v u

    2

    4

    }ta c

    z

    u< 0, do z l hm gim

    theo u vi mi v c nh. Theo khng nh 2 ca nh l 3.2.2 ta c:

    max

    {z =

    x4 + y4 + xy(x2 + y2)

    2(x4 + y4) xy(x2 + y2) : x > 0, y > 0}

    = max

    {N (x) =

    4x4

    2x4= 2 : x > 0

    }= 2.

    43

  • Kt lun

    Bn lun vn Cc tr ca mt s hm nhiu bin c cc dng c bit

    a ra cng thc tnh gi tr ln nht hoc gi tr b nht ca mt s hm nhiu

    bin c dng c bit. Cc hm nhiu bin c dng c bit ny bao gm: cc

    phn thc k- chnh quy, cc hm c dng t s ca hai phn thc ng dng,

    cc hm biu din qua cc hm na cng tnh, cc hm ca hai a thc i xng

    ca hai bin. Mt s cc kt qu c tc gi tng kt t cc ti liu tham kho,

    cc kt qu khc do tc gi t chng minh di s hng dn ca TS. Hong

    vn Hng, Vin Khoa hc C bn, i hc Hng hi Vit nam (cc khng nh

    v cc phn thc k chnh quy khi k 6= 0 ca nh l 2.1.1, nh l 2.5.2 v ccnh l 3.2.1, 3.2.2). Cc v d minh ha cho cc nh l trong bn lun vn ch

    yu c ly t cc thi tuyn sinh i hc mn Ton ca cc khi A, B, D

    t nm 2002 n nm 2012 v mt s sch tham kho v bt ng thc. iu

    ny chng t cc kt qu ca bn lun vn l hu ch khi gii mt s cc bi

    ton v gi tr b nht v ln nht trong chng trnh ph thng.

    Cc kt qu ca chng 3 cn c th m rng cho cc hm ca cc a thc

    i xng vi s bin ln hn. tin li cho vic din t, trong bn lun vn

    tc gi s dng cc thut ng v k hiu thuc phm vi ca chng trnh

    ton cao cp. Tuy nhin, cc l lun trong cc chng minh hon ton s cp. V

    vy bn lun vn ny hon ton thuc chuyn ngnh Phng php Ton s cp

    v c th c s dng lm ti liu ging dy cho gio vin cng nh lm ti

    liu hc tp cho hc sinh t bc trung hc c s tr ln trong cc chng trnh

    nng cao v bt ng thc v cc bi ton cc tr.

    44

  • Ti liu tham kho

    [1]. [H.V.Hng 1] Hong Vn Hng (2010), "Cc tr ca mt lp cc hm c

    dng t s ca hai hm i s", Tp ch Khoa hc Cng ngh Hng hi (ISSN

    1859 -316X), s 24-11/2010, trang 92-97.

    [2]. [H.V.Hng 2] Hong Vn Hng (2013), "Phng php hm tri v hm

    non tm gi tr ln nht v b nht ca mt s hm ca hai a thc i xng",

    Tp ch Khoa hc Cng ngh Hng hi (ISSN 1859 -316X), s 33-01/2013, trang

    97-101.

    [3]. [P.H.Khi 1] Phan Huy Khi (1998), "Cc tiu ca phn thc chnh quy",

    Tuyn tp 30 nm Tp ch Ton hc v Tui tr, Nh xut bn Gio dc, (trang

    231- 234).

    [4]. [P.H.Khi 2] Phan Huy Khi (1998), 10.000 bi ton s cp - Bt ng

    thc hnh hc, Nh xut bn H Ni.

    [5]. [Tr.Phng] Trn Phng (1997), Bt ng thc, Tp 1. Nh xut bn

    thnh ph H Ch Minh.

    [6]. [Hardy, Littllewood,Polya] .G.H.Hardy, J.E. Littllewood,G.Polya (1981),

    Bt ng thc, Nh xut bn i hc v trung hc chuyn nghip (dch t bn

    ting Nga).

    [7]. [Kurosh] A.G Kurosh (1975), Gio trnh i s cao cp, Nh xut bn

    Khoa hc, Moskva (ting Nga).

    45