Dinamica_Hidrica_Cutzamala.pdf

Embed Size (px)

Citation preview

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    1/42

    1

    INSTITUTO NACIONAL

    DE ECOLOGÍA Y CAMBIO CLIMÁTICO

    INFORME

    CARACTERIZACIÓN Y ESCENARIOS DE DINÁMICA HÍDRICA DE LA REGIÓN DEAPORTE DEL SISTEMA CUTZAMALA*

    Verónica Bunge, Jorge Martínez y Karina Ruiz-Bedolla

    Septiembre, 2012

    *Este informe debe citarse de la siguiente manera:Bunge, V., Martínez, J. y Ruiz-Bedolla,K. (2012) “Escenarios de la dinámica hídrica de la región de aporte del sistema

    Cutzamala”. Documento de Trabajo de la Dirección General de Ordenamiento Ecológico y Conservación de Ecosistemas,

    Instituto Nacional de Ecología y Cambio Climático, México. Disponible en:

    http://inecc.gob.mx/descargas/cuencas/doc_trabajo_dinamica_hidrica_cutzamala.pdf

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    2/42

    2

    CONTENIDO

    RESUMEN .................................................................................................................................................................... 3

    I. INTRODUCCIÓN ....................................................................................................................................................... 4

    II. EL SISTEMA CUTZAMALA EN LA PRENSA NACIONAL .............................................................................................. 5

    III. CARACTERÍSTICAS SOCIO AMBIENTALES DE LA REGIÓN DE APORTE DEL SISTEMA CUTZAMALA ........................ 7

    IV. SUBCUENCAS CON EXCEDENTE Y DÉFICIT HÍDRICO PARA LOS PRÓXIMOS AÑOS ..............................................10

    V. DISCUSIÓN Y CONCLUSIONES...............................................................................................................................15

    VI. BIBLIOGRAFÍA ......................................................................................................................................................16

    ANEXOS .....................................................................................................................................................................17

    ANEXO 1. MÉTODO ...............................................................................................................................................17

    1.1 Proceso de Modelación ..............................................................................................................................17

    1.2 Interacción de las Variables ........................................................................................................................19

    1.3 Calibración Del Modelo ..............................................................................................................................26

    ANEXO 2. Características socio económicas de las subcuencas del Sistema Cutzamala ....................................27

    Subcuenca Valle de Bravo ................................................................................................................................27

    ANEXO 3. Estaciones meteorológicas utilizadas para el cálculo del balance hídrico y los coeficientes de

    evapotranspiración, escurrimiento e infiltración .................................................................................................38

    ANEXO 4. Modelo de Simulación del sistema Cutzamala ....................................................................................40

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    3/42

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    4/42

    4

    I. INTRODUCCIÓN

    El sistema Cutzamala es un conjunto de obras hidráulicas instaladas en 14 municipios de los estados de

    Michoacán y México, cuya finalidad actual es abastecer de agua a la gran cuenca del Valle de México (Figura 1).

    Desde 1993, se concluyeron las diferentes etapas de construcción de este sistema con capacidad para bombear

    19 m3/s de agua, a través de una distancia de 170 kilómetros y una diferencia de altura de 1,100 metros. La

    cantidad de agua que suministra el Sistema Cutzamala al Valle de México representa un poco más del 20% del

    volumen total que esta megalópolis consume.

    Figura 1. Ubicación nacional de las subcuencas del sistema Cutzamala

    La cuenca del río Cutzamala está conformada por 7 subcuencas, cada una de ellas con una presa que recolecta el

    agua de la región y la transfiere al sistema (figura 2). Actualmente, el promedio de extracción de agua de dichosistema es de casi 16 m3/s, lo que equivale al 80% de su capacidad instalada.

    Aparentemente, no existe intención de incrementar el volumen que se extrae de las subcuencas que

    actualmente conforman el sistema Cutzamala. Sin embargo, el crecimiento en la región de aporte podría

    demandar más agua y con ello exigir una menor extracción para abastecer al sistema. ¿Cuál de estas

    subcuencas podría manifestarse con déficit hídrico en los próximos años? ¿Cuál tiene agua de sobra? El presente

    trabajo muestra un modelo integral que permite vislumbrar lo que ocurriría en una subcuenca del sistema

    Cutzamala dado un cambio en los patrones actuales de uso del agua.

    Con la intención de ofrecer un trabajo de rápida lectura, este documento cuenta con un apartado de anexos

    que contiene el método empleado para este análisis, detalles de características socioeconómicas y biofísicas, así

    como de la modelación utilizada.

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    5/42

    5

    Figura 2. Presas y conexiones de las subcuencas del sistema Cutzamala

    Fuente: Sistema Cutzamala. Agua para millones de mexicanos, 2005.

    II. EL SISTEMA CUTZAMALA EN LA PRENSA NACIONAL

    Entre los años 2009 y 2011 se publicaron en La Jornada y El Milenio, ambas ediciones con cobertura nacional,

    369 notas periodísticas relacionadas con el Sistema Cutzamala, de las cuales el 60% tenían como referencia los

    temas de demanda de agua y recortes en el suministro. El 40% restante, trataba de temas diversos entre los que

    destacan acciones periódicas de mantenimiento de infraestructura, necesidad de inversión para mejoras, daños

    y fallas en la infraestructura (fugas y tomas clandestinas), baja disponibilidad en presas como consecuencias de

    factores ambientales como la sequía, entre otros.

    Tomando en cuenta la debida cautela acerca de lo que las notas periodísticas reflejan sobre el grado de

    conflictos por el agua en una región, se puede decir que, en lo que a la región de aporte se refiere, se observóque las subcuencas que presentaron mayor movilización o problemas en el suministro de agua entre 2009 y

    2011 fueron Valle de Bravo, El Bosque, Colorines y Villa Victoria. Ixtapan del Oro y Chilesdo parecen, por ahora,

    mantenerse al margen de este tipo de notas. Ejemplos de lo anterior fueron el revivir en 2010, del Frente de

    Mujeres Mazahuas que en el año 2003 se manifestaron por el desbordamiento de la presa Villa Victoria y la

    consecuente inundación de sus campos de cultivo, así como las manifestaciones enérgicas del sector náutico en

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    6/42

    6

    interesante notar que el promedio acumulado de precipitación de los estados de México y Michoacán fue

    menor1 en 2011 comparado con 2009, sin embargo, tuvo un comportamiento más normal a lo largo del año, lo

    que influyó en que las protestas no se suscitaran como en 2009. En ese año de manifestaciones, se reportó la

    mitad de la precipitación acostumbrada en los meses en que más lluvia se espera (figura 3).

    Figura 3. Promedio de precipitación mensual de los estados de México y Michoacán, 2009-2011.

    Las protestas por carencia de agua no sólo se limitan a la zona de aporte del Sistema Cutzamala, sino tambiénabarca la zona conurbada de la Ciudad de México. En particular, las zonas más afectadas por el suministro de

    agua proveniente del sistema Cutzamala son, en el estado de México, los municipios de Ecatepec, Naucalpan,

    Tlalnepantla, Nicolás Romero, Atizapán de Zaragoza, Tultitlán y Cuautitlán Izcalli, y en la ciudad de México, la

    delegación Iztapalapa (figura 4). Ante tal carencia, estas zonas han tenido que satisfacer su necesidad de agua a

    través de pipas, las cuales en algunos casos las proveen gratuitamente los gobiernos de los Estados de México y

    Distrito Federal, pero que en algunas ocasiones constituyen un negocio de particulares lo cual merma la calidad

    de vida de la población.

    Figura 4. Municipios más mencionados por afectación de recorte en el suministro de agua del Sistema Cutzamala entre

    2009 y 2011, según los periódicos La Jornada y Milenio. 

    Como era de esperarse, en la figura 5 se puede apreciar cómo las épocas con más notas periodísticas

    relacionadas con desabasto de agua coinciden con los momentos de mayor sequía.

    Figuras 5. Comparación de aparición de notas periodísticas relacionadas con el sistema Cutzamala y precipitación en la

    región de aporte de dicho sistema.

    1 Precipitación acumulada por año: en 2009, 746 mm; en 2010, 948 mm; en 2011, 674 mm (Servicio Meteorológico

    Nacional)

    Valle de Bravo en el año 2009, cuando se alcanzaron mínimos históricos en los niveles de la presa. Es

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    7/42

    7

    III. CARACTERÍSTICAS SOCIO AMBIENTALES DE LA REGIÓN DE APORTE DEL SISTEMA

    CUTZAMALA

    Las siete subcuencas que forman parte del sistema Cutzamala se diferencian entre sí tanto en aspectos biofísicoscomo sociodemográficos y económicos. La subcuenca con mayor superficie es Tuxpan, que abarca 6 municipios

    de Michoacán. Las subcuencas con mayor precipitación acumulada anual son Tuxpan, Colorines y Valle de Bravo

    (tabla 1).

    Tabla 1. Superficie total, precipitación promedio y superficie de bosques y selvas por subcuenca.

    SUBCUENCA Superficie (Km2)

    PP Promediocuenca alta ymedia (mm)

    SuperficieBosques y Selvas

    (km2)% Bosques y

    Selvas

    Tuxpan 1195 1391 680 57%

    El_Bosque 437 1043 215 49%Ixtapan_del_Oro 154 1043 101 66%

    Colorines 250 1257 115 46%

    Valle_de_Bravo 535 1195 296 55%

    Chilesdo 238 1150 66 28%

    Villa_Victoria 602 1150 109 18%

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    8/42

    8

    Al igual que en todo el país, esta región presenta lluvias que se concentran en apenas unos cinco meses al año.

    En la figura 6 se puede apreciar la heterogeneidad pluviométrica a lo largo de un año. La falta de un registro

    constante y riguroso de datos sobre precipitación en algunas de las estaciones meteorológicas de estas

    subcuencas impide trazar una tendencia acerca del aumento, disminución o concentración de los meses de

    lluvia y de la precipitación acumulada.

    Figura 6. Variabilidad pluviométrica anual de tres estaciones meteorológicas de la región de aporte del sistema Cutzamala.

    Ixtapan del Oro, Tuxpan y Valle de Bravo son las subcuencas que mantienen una mayor proporción de su

    superficie cubierta con bosques y selvas. Asimismo, en Ixtapan del Oro, este tipo de vegetación es manejada

    principalmente por núcleos agrarios mientras que en Tuxpan y Valle de Bravo, esta vegetación está en su

    mayoría en manos de la propiedad privada (tabla 2).

    Tabla 2. Porciento de superficie ocupada con bosque y agricultura en propiedad social.

    SUBCUENCASuperficie

    Bosques y Selvas(Km2)

    % en NúcleosAgrarios

    Superficieagrícola

    % en núcleoagrario

    Tuxpan 680 40% 47218 43%El_Bosque 215 79% 19487 64%Ixtapan_del_Oro 101 76% 4920 81%Colorines 115 38% 12408 36%Valle_de_Bravo 296 49% 18221 52%Chilesdo 663 63% 16914 76%Villa_Victoria 109 78% 42565 80%

    En cuanto a población, son Villa Victoria y El Bosque las que presentan una mayor tasa de crecimiento, sobre

    todo en lo que se refiere a los asentamientos mixtos que tienen entre 2 500 y 15 000 habitantes. Chilesdo, en

    cambio, presenta un decrecimiento en este tipo de asentamientos y tiene una tendencia de dispersión de la

    población en comunidades rurales con menos de 2 500 habitantes (tabla 3).

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    9/42

    9

    Tabla 3. Población total 2010 y crecimiento poblacional 2000 – 2010 por subcuenca.

    SubcuencaTipo de

    poblaciónPoblación total

    2010Tasa de crecimiento

    2000-2010

    TUXPAN

    Rural 79,478 0.74%

    Mixta 39,410 2.22%

    Urbana 60,542 0.96%

    EL_BOSQUE

    Rural 52,969 0.97%

    Mixta 11,617 4.33%

    Urbana 84,307 0.91%

    IXTAPAN_DEL_ORO

    Rural 5,863 1.96%

    Mixta 3,022 1.25%

    Urbana 0 0.00%

    COLORINES

    Rural 32,423 0.62%

    Mixta 14,169 0.45%

    Urbana 0 0.00%

    VALLE_DE_BRAVO

    Rural 44,819 0.92%

    Mixta 2,962 0.00%

    Urbana 25,554 0.06%

    CHILESDO

    Rural 36,551 3.53%

    Mixta 3,332 -8.00%

    Urbana 0 0.00%

    VILLA_VICTORIA

    Rural 123,139 1.68%

    Mixta 10,153 11.57%

    Urbana 0 0.00%

    Total de lassubcuencas

    Rural 375,242 1.35%

    Mixta 84,665 2.41%

    Urbana 170,403 0.80%

    En lo que a la economía se refiere, Tuxpan es la más industrial. La industria manufacturera, pero también la

    construcción, el comercio y el turismo, son las actividades económicas más importantes en toda la región. Las

    principales actividades consumidoras de agua en esta zona son la agrícola, la acuícola y el consumo doméstico.Si bien sólo Ixtapan del Oro tiene a más de la mitad de su población dedicada a las actividades del sector

    primario, Villa Victoria es la que presenta un mayor porcentaje de su superficie dedicada a la agricultura. No

    obstante, dado que la mayor parte de esta superficie es de agricultura de temporal, en esa subcuenca esta

    actividad no representa un consumo de agua importante. Es en El Bosque en donde la agricultura de riego

    ocupa una gran proporción de la superficie total de la subcuenca y su extensión casi se equipara con la

    agricultura de temporal (tabla 4).

    Tabla 4. Porciento de la subcuenca ocupada con actividad agrícola de temporal y de riego

    SUBCUENCAAgricultura de

    temporal

    % Superficie de la

    subbcuenca

    Agricultura de

    riego

    % Superficie de la

    subbcuencaTuxpan 375 31% 97 8%El_Bosque 107 24% 88 20%Ixtapan_del_Oro 30 20% 19 13%Colorines 88 35% 36 14%Valle_de_Bravo 166 31% 16 3%Chilesdo 169 71% 0 0%Villa_Victoria 426 71% 0 0%

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    10/42

    10

    Como actividad consumidora de agua, las granjas acuícolas constituyen una que se debe considerar. Estudios

    solicitados por CONAGUA (2007), demuestran que, si bien el uso de agua es principalmente consuntivo, puede

    llegar a “consumir” hasta el 15% del agua que pasa por los estanques por efecto de la evaporación y filtraciones

    de los estanques. Las granjas acuícolas tuvieron un gran auge en subcuencas como Valle de Bravo y Tuxpan, y

    aunque los gobiernos municipales han manifestado su intención de promover el desarrollo de más unidades

    acuícolas, su crecimiento está estancado desde hace más de cinco años.

    IV. SUBCUENCAS CON EXCEDENTE Y DÉFICIT HÍDRICO PARA LOS PRÓXIMOS AÑOS

    Para cada subcuenca se modelaron los escenarios de crecimiento cero y tendenciales de las actividades que más

    agua consumen en la región. Dado el alto grado de incertidumbre que tienen los datos sobre cambio climático2,

    esta variable se incorporó en términos de la variabilidad pluviométrica entre los años 1940 y 2010. El

    escurrimiento superficial tomó en cuenta la precipitación media de las estaciones de la parte alta y media de

    cada cuenca para las cuales se cuenta con valores de los años 1940 – 2000. El volumen precipitado en la cuenca

    baja considera la variabilidad pluviométrica de las estaciones meteorológicas de cada presa para los años 1998 –

    2010. En las subcuencas que carecen de estaciones meteorológicas se estimó un valor promedio de los datos

    que presentan las cuencas colindantes.

    De acuerdo a este modelo de simulación hídrica de las subcuencas del sistema Cutzamala, el volumen de agua

    que éste puede aportar al Valle de México se encuentra comprometido por las actividades económicas de la

    región de aporte (figura 7). El modelo sugiere que, en los años más secos, la disminución en el volumen que el

    sistema transfiere será más evidente a causa del crecimiento de las actividades económicas propias de estas

    subcuencas. El modelo refleja la escasez de agua en la planta de Berros al año siguiente del periodo seco. Esto

    se explica por la reserva de agua de las presas del sistema que tras un año seco, no se recuperan para el próximo

    año. En años más lluviosos, las actividades económicas parecen no alterar el volumen que se trasvasa al Valle de

    México.

    2 Aunque no se encuentra en el modelo final, se hizo el ejercicio de correr un escenario tendencial que incorporara la tasa

    de cambio climático. Se empleó una tasa de -0.00256% que representa el valor que arroja el modelo de proyecciones

    globales de cambio climático regionalizado para México, escenario 2 proyectado al año 2020. El escenario 2 es el más

    conservador de todos y supone una concentración constante de gases de efecto invernadero igual a la existente en el año

    2000. El escenario tendencial que contempla el cambio climático muestra un descenso continuo en el volumen de agua que

    escurre en cada subcuenca y por tanto en la disponibilidad de este líquido. Particularmente en Valle de Bravo, este

    escenario muestra cómo en menos de 15 años, de darse esta tendencia, el agua de la presa bajaría todos los años a un

    nivel inferior al admitido por la población local (ese umbral se determinó a partir del nivel de presa que registró Valle de

    Bravo en agosto de 2009 en donde se presentaron protestas importantes por parte de la población).

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    11/42

    11

    Figura 7. Simulación de la variación en 25 años del volumen trasvasado de la planta potabilizadora Berros al Valle de México

    Los trasvases directos a la planta potabilizadora de Berros ocurren de Valle de Bravo, Colorines, Chilesdo y Villa

    Victoria. De estos trasvases, los más afectados por el crecimiento tendencial de actividades son los que

    provienen principalmente de Colorines (figura 8).

    Figura 8. Simulación de la variación del volumen trasvasado por Valle de Bravo, Colorines, Chilesdo y Villa Victoria en 25años, con escenarios de crecimiento cero y crecimiento tendencial

    Los trasvases de Colorines traen a su vez, agua que le transfiere Tuxpan, El Bosque e Ixtapan del Oro.

    Coincidentemente, son estas subcuencas, junto con Colorines, las que presentan un mayor déficit hídrico

    cuando se modela un escenario con crecimiento tendencial (figura 9).

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    12/42

    12

    Figura 9. Simulación de 10 años del déficit hídrico de las siete subcuencas del sistema Cutzamala

    Como se muestra en la figura 10, el déficit hídrico se da únicamente en época de estiaje. Las subcuencas

    Chilesdo y Villa Victoria son las únicas del sistema Cutzamala que incluso en estiaje, consumen menos agua de la

    que escurre.

    Figura 10. Simulación de escurrimiento y consumo de agua mensual, durante 10 años, en las subcuencas del sistema.

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    13/42

    13

    Como se ha dicho anteriormente, en el sistema existen tres presas propiamente dichas, es decir, con capacidad

    de almacenar agua: Valle de Bravo, El Bosque y Villa Victoria. Las demás son derivadoras. Al igual que lo que se

    refleja en la planta de Berros, cuando se contrastan escenarios de crecimiento cero y tendencial, el

    comportamiento en el volumen de la presa no sugiere una disminución en el tiempo, sino una acentuación de

    los niveles más bajos en los periodos secos (figura 11).

    Figura 11. Volumen almacenado en la presa El Bosque bajo simulación de un escenario de crecimiento cero y otro de

    crecimiento tendencial.

    Esto se explica porque en época de lluvia, todas las subcuencas presentan excedentes lo cual les permite cubrir

    sus necesidades productivas y compromisos con el sistema Cutzamala. En cambio, en estiaje, el escurrimiento a

    la presa se ve mermado por las actividades que consumen el recurso. A medida que estas actividades seincrementan, la escorrentía en época de secas disminuye aún más.

    En la subcuenca El Bosque, el volumen de agua que la presa tiene concesionado para esta actividad no rebasa

    los 0.3 hm3 anuales. Repartiendo este volumen en los ocho meses de menor lluvia (que coincidiría con la

    necesidad de riego), la extracción se mantiene inferior a la que se reporta por infiltraciones de la propia presa, y

    su impacto es casi imperceptible. En Villa Victoria, el excedente con que se cuenta incluso en época de sequía,

    tampoco permite percibir los impactos de la extracción de agua de la presa para la agricultura. En Valle de

    Bravo, a pesar que la extracción de agua de la presa para el riego agrícola es de alrededor de 8.5 hm3 anuales,

    tampoco se refleja en los niveles de la presa. Estas concesiones difícilmente podrían aumentar con el tiempo

    por lo que no deberían suponer un riesgo al nivel de almacenamiento anual de las presas. Sin embargo, las

    tomas clandestinas en el canal que va de Tuxpan a El Bosque y de El Bosque a Colorines sí podrían aumentar y

    esto, bajo el modelo en cuestión, sí refleja una disminución importante en el volumen de agua que la planta de

    Berros puede derivar (figura 12).

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    14/42

    14

    Figura 12. Simulación del volumen de agua que la planta de Berros podría derivar a lo largo de 25 años bajo distintos

    escenarios de crecimiento de actividades y de incremento de tomas clandestinas.

    Las cuencas con tendencia a mayor crecimiento en la actividad agrícola de riego son Ixtapan del Oro, Tuxpan y

    Colorines. Dado que estas cuencas no tienen presas que formen parte del sistema Cutzamala sino derivadoras

    que transfieren agua a las presas del sistema en época de lluvia, el impacto sobre el recurso hídrico se midió en

    función del incremento en el volumen de agua subterránea que estas subcuencas tendrán que extraer a falta deescurrimientos superficiales. La figura 13 muestra la tasa de crecimiento de esta extracción para un escenario

    de 10 años con incremento tendencial de las actividades que más agua consumen.

    Figura 13. Simulación de la tasa del incremento en la extracción de agua subterránea bajo un escenario de crecimiento

    tendencial de las actividades en cada subcuenca.

    El agua para uso público - urbano se obtiene generalmente del subsuelo. La razón de ello radica no sólo en que

    la escorrentía superficial es muy variable a lo largo del año y este tipo de consumo es contante, sino también por

    la mala calidad del agua superficial en la mayoría de las cuencas. En toda la región, existen dos plantas detratamiento de aguas residuales, una se encuentra en Zitácuaro y otra en Valle de Bravo. Solamente la de Valle

    de Bravo funciona. Zitácuaro, con más de 80,000 habitantes, vierte sus aguas negras a los cauces naturales sin

    tratamiento alguno.

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    15/42

    15

    V. DISCUSIÓN Y CONCLUSIONES

    El modelo construido resultó ser muy sensible a los cambios en los valores de las variables que lo componen. La

    precipitación, por ejemplo, es uno de los insumos del modelo que más lo afecta, y también es uno de los menos

    precisos. Una prioridad para la continuación de este proyecto es la obtención de datos confiables y actuales de

    precipitación sobretodo en cuenca alta y media, con el fin de analizarlos y acercarse más al rango de variabilidad

    pluviométrica.

    Las subcuencas de Ixtapan del Oro, Tuxpan, El Bosque y Valle de Bravo son las que presentan una mayor

    proporción de vegetación natural. Sin embargo, dado el impulso en la agricultura de riego y crecimiento

    económico en general, las tres primeras son también las que, de acuerdo a este modelo, presentan mayor

    déficit hídrico en periodo de estiaje. Se sugiere que en el tiempo, el crecimiento económico de estas subcuencas

    provocará que en épocas de menos lluvia, desaparezca el escurrimiento a las presas, disminuyendo con ello el

    agua disponible para el sistema Cutzamala. Pero independientemente del efecto que esto pueda traer para el

    desarrollo de otras regiones, es probable que este crecimiento se esté dando en detrimento del agua

    subterránea lo cual, de no analizar la dinámica hídrica del subsuelo, podría ocasionar desequilibrios ecológicos

    importantes en la zona. El manejo sustentable de las zonas que todavía están conservadas puede ser crucial

    para el desarrollo de la región. En Ixtapan del Oro y El Bosque, la vegetación natural se encuentra

    principalmente bajo propiedad ejidal o comunal, mientras que en Tuxpan y Valle de Bravo, esta vegetación se

    encuentra en manos de la propiedad privada. El tipo de manejo que cada propiedad hace sobre este recurso

    varía, por lo que sería aconsejable planear programas y formas de apoyo a la conservación tomando en

    consideración estas diferencias.

    Por su parte, Villa Victoria es la subcuenca con menor proporción de bosques. El modelo arroja datos que

    reflejan un nivel de escurrimiento superior al volumen que se consume o que se tiene comprometido con el

    sistema Cutzamala incluso en época de secas. No obstante, existe información en prensa que denuncia

    problemas de azolve en la presa y de inundaciones en las comunidades por disminución de la capacidad de

    almacenaje de la misma. La recuperación de boques en esta subcuenca es una acción impostergable; ello

    pudiera disminuir el escurrimiento en ciertas partes de la cuenca, pero mejoraría la integridad ecológica de la

    misma y contribuiría a resolver los problemas de azolve y las consecuentes inundaciones. Un estudio

    fundamental en este aspecto consiste en espacializar este modelo a fin de determinar las zonas importantes

    para restablecer la flora original y preveer los impactos que la conservación y cambio en el uso de suelo podrían

    tener sobre el funcionamiento general de la cuenca.

    De acuerdo al modelo que se presenta, las tomas clandestinas en el tramo Tuxpan – Bosque – Colorines

    contribuye de manera importante en la disminución del volumen hídrico del sistema. Sería de gran utilidad

    analizar el tipo de necesidades que cubren esas tomas clandestinas para identificar si dichas tomas son

    reprochables o si debiera procurarse un arreglo que les permitiera estar en norma.

    La cantidad de agua que puede abastecer la región de estudio se encuentra limitada no sólo por los usos

    consuntivos sino también por la calidad en que se encuentra. Para muchos usos, sobretodo la doméstica –y por

    tanto la que requiere el sistema Cutzamala - la disponibilidad depende de la calidad. La espacialización del

    modelo también sería un avance en este sentido, toda vez que permitiría ubicar los sitios de contaminación

    puntual y difusa, y su impacto en la reducción de este recurso.

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    16/42

    16

    El análisis realizado a partir de este modelo permitió no sólo generar escenarios que sugieren las áreas que más

    obstáculos tendrán para seguir contribuyendo con el sistema Cutzamala, sino cuestionar las políticas de

    trasvases intercuencas que se llevan a cabo en el país. ¿Quién determina la fuente de agua de una población?

    ¿Qué criterios deben tomarse en cuenta para decidir si una región puede desarrollarse? ¿Son acaso las

    subcuencas con mayor crecimiento las que representan un riesgo al abastecimiento de agua del Valle de México

    o es el crecimiento del Valle de México lo que genera un riesgo para la sustentabilidad de las cuencas de aporte?

    La discusión de este tipo de temas parece fundamental en una era que busca el desarrollo sustentable fundado

    en la justicia y en las relaciones de equidad.

    VI. BIBLIOGRAFÍA

    Quiroz-Carranza, Joaquín y Roger Orellana. 2010. Uso y manejo de leña combustible en viviendas de seis

    localidades de Yucatán, México. Madera y Bosques 16 (2), 2010:47-67.

    Programa de Manejo Hídrico de la Subcuenca Molino-Los Hoyos (cuenca Valle de Bravo-Amanalco), Estado deMéxico, 2007. CONAGUA, 2007. Convenio de colaboración OCAVM-GOA-07-402-RF-CO)

    Comisión Nacional del Agua. 2008. Estadísticas del Agua en México. SEMARNAT, México.

    Consejo Nacional de Población. Proyecciones de Población 2005 – 2030. www.conapo.gob.mx  (16 de julio de

    2011).

    Instituto Nacional de Estadística, Geografía e Informática. Censo y Conteo de Población y Vivienda, 2000, 2005 y

    2010. www.inegi.org.mx (15 de febrero de 2011).

    Masera Cerutti, O. 2005. Los Recursos Bioenergéticos en México. En el libro: “La bioenergía en México. Uncatalizador del desarrollo sustentable” coordinado por Omar Masera Cerutti. Publicado por la Comisión

    Nacional Forestal (CONAFOR) y la Asociación Nacional de Energía Solar (ANES).

    Sistema de Información Agropecuaria (SIAP). 2003 – 2008. Sistema de consulta de cultivos perennes y anuales,

    de temporal y de riego, por municipio. Secretaría de Agricultura, Ganadería , Desarrollo Rural, Pesca y

    Alimentación, México.

    http://www.conapo.gob.mx/http://www.conapo.gob.mx/http://www.conapo.gob.mx/http://www.inegi.org.mx/http://www.inegi.org.mx/http://www.inegi.org.mx/http://www.inegi.org.mx/http://www.conapo.gob.mx/

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    17/42

    17

     ANEXOS

     ANEXO 1. MÉTODO

    1.1 Proceso de Modelación

    A partir de un modelo de simulación conocido como VENSIM, se realizó el pronóstico del efecto de un cambio en

    el volumen de agua extraído por el sistema Cutzamala y un cambio en el patrón de uso del agua en la subcuenca

    tendría sobre la disponibilidad de agua en las presas de El Bosque, Valle de Bravo y Villa Victoria. Se trata de una

    herramienta gráfica que permite conceptualizar, documentar, simular, analizar y optimizar modelos de dinámica

    de sistemas (Figura 1).

    Figura 1. Modelo de interacción de variables, VENSIM.

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    18/42

    18

    Vensim es una herramienta gráfica de creación de modelos de simulación que permite conceptualizar,

    documentar, simular, analizar y optimizar modelos de Dinámica de Sistemas. Vensim proporciona una forma

    simple y flexible de crear modelos de simulación, sean con diagramas causales o con diagramas de flujos.

    Las relaciones entre los elementos del sistema representan las relaciones causales, que se muestran mediante la

    conexión de palabras con flechas. Esta información se usa después por un Editor de Ecuaciones para crear el

    modelo de simulación. Se puede analizar el modelo en el proceso de construcción teniendo en cuenta las causas

    y el uso de las variables, y también estudiando los ciclos relacionados con una variable. Mientras que se

    construye un modelo que puede ser simulado, Vensim permite explorar el comportamiento del modelo. Algo

    importante que permite la herramienta es construir el modelo en partes, en el caso que nos ocupa se hizo por

    subcuenca.

    Para correr el modelo, fue necesario no sólo caracterizar las actividades de la región sino también conocer la

    manera en que interactúan los diferentes elementos biofísicos, sociales y políticos de la subcuenca.

    Un primer reto en la caracterización de la subcuenca fue la integración de la información biofísica con la

    socioeconómica y política. Esto implicó ciertas dificultades que han ameritado algunos ajustes en los límites del

    área de estudio y en la estimación de datos que se asignan a la subcuenca. Por ejemplo, la localidad deColorines, perteneciente al municipio de Valle de Bravo, está fuera de los límites de la subcuenca, pero recibe

    agua potable de fuentes que se ubican dentro de la subcuenca motivo de esta parte del estudio. En general, los

    asentamientos más importantes de un municipio reciben servicios de agua potable y saneamiento por parte de

    la cabecera municipal; en cambio, los asentamientos con poca población se abastecen de fuentes de agua

    locales. Sin embargo, esta misma localidad, Colorines, no se debe considerar dentro de esta subcuenca para

    fines relacionados a descargas de aguas residuales; éstas no son captadas por el organismo operador de aguas

    residuales y alcantarillado de Valle de Bravo sino que se vierten en terrenos aledaños a la comunidad.

    Otro ejemplo de ajuste cartográfico que se ha tenido que hacer por diferencias entre los límites político-

    administrativos y físicos es el relacionado con la actividad agrícola. El área sembrada y cosechada anualmentees reportada por el Sistema de Información Agropecuaria (SIAP) a nivel municipal. Sin embargo, dado que el

    municipio de Valle de Bravo no se encuentra en su totalidad dentro de esta subcuenca, ha sido necesario

    recurrir a una estimación de dichas superficies comparando con la carta de uso de suelos que reporta INEGI en

    2008. El agua asignada al riego de los cultivos también viene a nivel municipal. Para calcularla a nivel

    subcuenca, fue necesario estimar la cantidad de agua utilizada por hectárea y luego recalcular el volumen

    concesionado a la agricultura en función de la superficie de riego estimada para la subcuenca. Con respecto a

    las granjas acuícolas, como los datos también se encuentran por municipio, su estimación se hizo conjuntando

    los datos del Censo Económico 1999 y los del diagnóstico de campo que presenta el Plan Rector de la cuenca

    Amanalco-Valle de Bravo coordinado por la Comisión de Cuenca Amanalco - Valle de Bravo.

    Además de la caracterización socioeconómica de las distintas subcuencas, se realizó un balance hídrico

    preliminar para cada una de ellas. Este balance es preliminar porque aún no se han calibrado los valores

    estimados con los observados en campo. Mientras se tienen estos datos finales, los modelos de cada subcuenca

    se corrieron con los datos preliminares.

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    19/42

    19

    Una vez identificadas y conectadas las variables del modelo, se procedió a su calibración con los datos que la

    Comisión de Aguas del Valle de México facilitó sobre almacenamiento mensual de la presa entre los años 1998 y

    2010. Con el modelo calibrado se pudo empezar a crear escenarios y evaluar el efecto que las distintas políticas

    podrían tener sobre la disponibilidad de agua en la presa.

    1.2 Interacción de las Variables

    Las variables identificadas para este modelo así como su interrelación se aprecian en la figura 2.

    En algunos casos, el escurrimiento estimado con el balance hídrico preliminar generó comportamientos atípicos

    en el modelo, es decir, provocó una disponibilidad de agua en la presa superior a la que reporta de manera

    mensual la CONAGUA. En esos casos, se prefirió ajustar el escurrimiento de acuerdo a lo que sugiere el modelo

    y esperar a tener los resultados definitivos del balance para determinar qué otra variable podría estar

    ocasionando el ruido. A continuación se muestra la imagen del modelo de la subcuenca del Valle de Bravo y la

    lista de las variables usada en el mismo.

    Figura 2. Tipos de variables y su interacción.Ejemplo gráfico de interacción de las variables del modelo de la subcuenca de Valle de Bravo.

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    20/42

    20

    Lista de variables y formulas correspondientes del modelo de la subcuenca Valle de Bravo:

    (001)  Agua en Presa Valle de Bravo= INTEG (Volumen precipitado en presa VB+Escurrimientos a la presa VB+Trasvases

    Colorines-Evaporación VB-Extracciones VB-Filtraciones VB, 394.4)

    Units: hm3*Month

    El valor inicial es la capacidad de almacenamiento según CONAGUA

    (002)  Área de subcuenca VB=Superficie en Subcuenca VB-Área Presa VB

    Units: haSuperficie en metros cuadrados (m2) Subcuenca Valle de Bravo

    (003)  Área Presa VB=1759

    Units: ha

    Fuente: INEGI 1:50,000. Área en hectáreas (ha) Subcuenca Valle de Bravo

    (004) Consumo agrícola VB= (Superficie agrícola VB*Consumo de agua por hectárea agrícola VB/Convertidor m3 a

    hm3)/8 

    Units: hm3

    consumo por hectárea de amanalco

    (005) Consumo de agua anual por granja acuícola VB=0.23

    Units: hm3/granja

    Plan Rector Cuenca Amanalco-Valle de Bravo Subcuenca Valle de Bravo

    (006) Consumo de agua anual por población rural VB=150

    Units: l/persona

    APAS (comunicación oral) --- Plan Rector Cuenca Amanalco-Valle de Bravo (incluye 45% de fugas en la

    infraestructura) Subcuenca Valle de Bravo

    (007) Consumo de agua anual por población urbana VB=500 

    Units: l/personaAPAS (comunicación oral) (incluye 45% de fugas en la infraestructura) Subcuenca Valle de Bravo

    (008) Consumo de agua por hectárea agrícola VB=11084 

    Units: m3/ha

    CONAGUA, 2008 ------ SIAP, 2008 Subcuenca Valle de Bravo

    (009) Consumo doméstico rural VB=Población rural VB*(Consumo de agua anual por pob rural VB/30)/Convertidor litros

    a hm3

    Units: hm3

    Se considera un consumo de 150 l por persona por considerando fugas del 40%. Consumo por mes de 4.6 m3 por

    persona

    (010) Consumo doméstico urbano VB=Población urbana VB*(Consumo de agua anual por población urbana VB/30)/

    Convertidor litros a hm3

    Units: hm3

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    21/42

    21

    Consumo de 500 litros por persona por población urbana por día considerando fugas del 40% y riego de jardines.

    Por mes, consumo de 15.16 m3 por persona

    (011) Consumo granjas acuícolas VB=Granjas acuícolas VB*(Consumo de agua anual por granja acuícola VB/12)

    Units: hm3

    Según promedio de consumo de las granjas visitadas para el plan rector de la cuenca Amanalco -Valle de Bravo.

    (15% del gasto de la granja). El consumo está por mes, el anual es de 0.2318 hm3

    (012) Consumo mensual agrícola VB=Consumo agrícola VB*Distribución de consumo agrícola por mes VBUnits: hm3

    (013) Consumo mensual doméstico y acuícola VB=Consumo granjas acuícolas VB+Consumo doméstico rural VB+Consumo

    doméstico urbano VB

    Units: hm3

    (014) Consumo VB=Consumo mensual agrícola VB+Consumo mensual doméstico y acuícola VB

    Units: hm3

    (015) contador de mes=MODULO(Time, 12)

    Units: Month [1,12]

    (016) Convertidor ha a m2=10000

    Units: m2/ha

    Convertidor usado en todos los modelos

    (017) Convertidor litros a hm3=1e+009

    Units: l/hm3

    Convetidor usada en todos los modelos

    (018) Convertidor m3 a hm3=1e+006

    Units: m3/hm3

    Constante usada en todos los modelos

    (019) Distribución de consumo agrícola por mes VB = WITH LOOKUP (contador de mes, ([(0,-1)-

    (11,2)],(0,1.5),(1,1),(2,1),(3,1),(4,0.5),(5,0),(6,0),(7,0),(8, 0),(9,1),(10,1),(11,1) ))

    Units: Dmnl

    (020) Distribución de escurrimientos por mes VB= WITH LOOKUP (contador de mes, ([(0,-0.1)-

    (11,0.3)],(0,0.017),(1,0.02),(2,0.02),(3,0.025),(4,0.0614035),(5,0.19),(6,0.19),(7,0.23),(8,0.2),(9,0.08),(10,0.01),(11,0.

    003) ))

    Units: Dmnl

    Valores obtenidos de los promedios de aforos registrados en las estaciones hidrométricas de las principales

    corrientes de aportación a la presa (Amanalco-el Salto, los Hoyos-el Molino, Yerbabuena-Sta Mónica, Velo de

    novia-vertedor González, carrizal-el sauzal)\!\!\!

    (021) Distribución de evaporación por mes VB = WITH LOOKUP (contador de mes,([(0,0)-

    (11,0.2)],(0,0.07),(1,0.08),(2,0.13),(3,0.14),(4,0.13),(5,0.08),(6,0.07),(7,0.07),(8,0.06),(9,0.06),(10,0.06),(11,0.05) )) 

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    22/42

    22

    Units: Dmnl

    (022) Distribución de extracciones por mes VB = WITH LOOKUP (contador de mes, ([(0,0)-

    (11,0.2)],(0,0.064),(1,0.091),(2,0.113),(3,0.112),(4,0.129),(5,0.125),(6,0.105),(7,0.067),(8,0.025),(9,0.04),(10,0.057),( 

    11,0.074) ))

    Units: Dmnl

    (023) Distribución de la precipitación por mes VB = WITH LOOKUP (contador de mes, ([(0,-0.1)-

    (11,0.5)],(0,0.02),(1,0.02),(2,0.01),(3,0.01),(4,0.05),(5,0.18),(6,0.19),(7,0.23),(8,0.2),(9,0.08),(10,0.01),(11,0) ))Units: Dmnl

    (024) Distribución de trasvases por mes VB = WITH LOOKUP (contador de mes, ([(0,-0.1)-

    (11,0.5)],(0,0.023),(1,0.025),(2,0.026),(3,0.023),(4,0),(5,0),(6,0.056),(7,0.086),(8,0.318),(9,0.338),(10,0.09),(11,0.017 

     ) ))

    Units: Dmnl

    (025) Escurrimiento Random por año VB=SAMPLE IF TRUE(MODULO(Time,Periodo Constante)

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    23/42

    23

    Units: hm3

    (035) FINAL TIME = 119 

    Units: Month

    The final time for the simulation.

    (036) Granjas acuícolas VB= INTEG (Granjas acuícolas VB*Tasa mensual de crecimiento granjas acuícolas VB, 71)

    Units: granja

    Según censo económico 2009 son 41, según plan para la gestión integral del agua, son 61.

    (037) INITIAL TIME = 0

    Units: Month

    The initial time for the simulation.

    (038) Periodo Constante=12 

    Units: Dmnl

    Valor utilizado en la función SAMPLE IF TRUE

    (039) Población rural VB= INTEG (Tasa mensual de crecimiento poblacional rural VB*Población rural VB, 47781)

    Units: persona

    Población cuenca del VAlle de Bravo (Censo de Población y Vivienda, 2010, INEGI)

    (040) Población urbana VB= INTEG (Población urbana VB*Tasa mensual de crecimiento poblacional urbano VB, 25554)

    Units: persona

    Población cabecera municipal Valle de Bravo

    (041) Porcentaje de Escurrimientos VB=0.31

    Units: Dmnl

    Balance hídrico generado para la subcuenca con valores de precipitación que va de 1998 a 2010. Subcuenca Valle

    de Bravo

    (042) Precipitación Cuenca Alta Random VB=RANDOM NORMAL(1016,1423, 1195, 180, 1137)

    Units: hm3

    Datos en mm de la estación Amanalco (Escurrimiento para Valle de Bravo). Random(Valor mínimo, valor máximo,

    promedio, desviación estándar, valor inicial)

    (043) Precipitación en estación de la Presa Random VB=RANDOM NORMAL(723.5, 1244.8, 913.7, 128.3, 914)

    Units: mm

    Promedio de pp en estación Valle de Bravo de 914. 1998-2010.

    (044) Precipitación en la presa VB=Precipitación Random por año VB*1e-009*(Área Presa VB*Convertidor ha a m2)

    Units: hm3

    (045) Precipitación promedio anual en la presa VB=909 

    Units: mm

    Fuente: Plan Rector de la Cuenca Amanalco - Valle de Bravo. Precipitación en mm Subcuenca Valle de Bravo

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    24/42

    24

    (046) Precipitación promedio anual en la subcuenca VB=912

    Units: mm

    Fuente: Plan Rector de la Cuenca Amanalco - Valle de Bravo. Precipitación en mm Subcuenca Valle de Bravo.

    (047) Precipitación Random por año VB=SAMPLE IF TRUE(MODULO(Time, Periodo Constante)

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    25/42

    25

    (062) Tasa mensual de crecimiento poblacional urbano VB= (Tasa anual de crecimiento poblacional urbano VB/100)/12

    Units: Dmnl

    Censo de Población y Vivienda, 2000 - 2010, INEGI

    (063) TIME STEP = 1 

    Units: Month [0,?]

    The time step for the simulation.

    (064) Tomas clandestinas VB=0

    Units: hm3 [0,?]

    (065) Trasvases Colorines= (Extraciones del Colorines*Distribución de trasvases por mes VB)-Tomas clandestinas VB

    Units: hm3

    (066) UMBRAL=200

    Units: hm3

    (067) Valor de estabilización=0.5

    Units: Dmnl [0,15,1]

    Valor usado en la función SAMPLE IF TRUE

    (068) Volumen evaporado VB=33.5

    Units: hm3

    Subcuenca Valle de Bravo

    (069) Volumen precipitado en presa VB=Precipitación en la presa VB*Distribución de la precipitación por mes VB

    Units: hm3

    El resultado de la simulación se puede ver en la siguiente imagen:

    Figura 3. Modelo de simulación integrado del Sistema Cutzamala

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    26/42

    26

    Mes

    Promedio Observado

    1998-2010

    (hm3)

    Agua Presa_Tendencia_ Simulado

    (hm3)

    1 344 344

    2 339 344

    3 327 330

    4 313 310

    5 297  285 

    6 282 269

    7 279 273

    8 287 282

    9 312 306

    10 339 339

    11 350 352

    12 349 349

    1.3 Calibración Del Modelo

    Para la calibración del modelo se usaron los valores mensuales del primer año de simulación y los valores

    mensuales promedios de 1998 a 2010 de almacenamiento en las presas registrados por las estaciones

    meteorológicas de cada una (Figura 4).

    Una vez ajustado el modelo de cada subcuenca, fue posible empezar a experimentar el efecto que distintos

    escenarios de políticas públicas podrían tener sobre la disponibilidad de agua en la cada región de estudio.

    Figura 4. Comparación entre datos observados y simulados del almacenamiento mensual de agua en la presade Valle de Bravo

     Tabla 1. Valores observados y simulados utilizados en la calibración del modelo de la subcuenca Valle de

    Bravo.

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    27/42

    27

     ANEXO 2. Características socio económicas de las subcuencas del SistemaCutzamala

    Subcuenca Valle de Bravo

    La subcuenca Valle de Bravo se encuentra en el estado de México y comprende el 96% del municipio Amanalco,

    el 61% de Valle de Bravo y porcentajes menores de Donato Guerra, Villa de Allende y Villa Victoria (figura 5).

    Figura 5. Subcuenca Valle de Bravo

    Con una extensión de 535 km2, el uso del suelo en la subcuenca se distribuye de la siguiente manera: 31% de la

    superficie tiene un uso agrícola, 55% bosque, 5% pastizal, 3% riego, 2% asentamientos y 4% cuerpos de agua

    (Figura 6). Si bien el porcentaje de zona boscosa aun parece elevado, una gran proporción de ésta se encuentra

    muy deteriorada (INE, 2009).

    Figura 6. Usos del suelo en la subcuenca Valle de Bravo

    31%

    55%

    5% 3%

    2%

    4% Agricultura

    Bosque

    Pastizal

    Riego

     Asentamientos

    humanos

    Cuerpos de agua

     

    La subcuenca Valle de Bravo cuenta con una presa en su parte más baja, la presa Miguel Alemán que fue

    construida en 1947 como parte de un proyecto hidroeléctrico. En 1985 pasó a formar parte del proyecto de

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    28/42

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    29/42

    29

    Figura 8. Comparación de número de pasajeros en embarcaciones públicasentre los años 2008 y 2010.

    1812

    1814

    1816

    1818

    1820

    1822

    1824

    1826

    1828

    1830

    1832

        E    N    E

        F    E    B

        M    A    R

        A    B    R

        M    A    Y

        J    U    N

        J    U    L

        A    G    O

        S    E    P

        O    C    T

        N    O    V

        D    I    C .

    Meses

       E   l  e  v  a  c   i   ó  n   n

       i  v  e   l   d  e   l   l  a  g  o

    Año 2008

    Año 2009

    Año 2010

     

    Las actividades económicas predominantes cuenca arriba de la presa son la agricultura y la acuicultura. En la

    subcuenca, la superficie dedicada a la agricultura de riego es baja y su crecimiento, entre 2003 y 2008 fue menor

    al 1% anual (SIAP, 2003 – 2008). Los cultivos de riego que se encuentran en la subcuenca pertenecen casi en su

    totalidad al municipio de Amanalco. Las parcelas con riego del municipio de Valle de Bravo se encuentran en la

    subcuenca Chilesdo-Colorines. En Amanalco, la superficie que dispone de infraestructura de riego es de un poco

    más de 1000 hectáreas y el volumen de agua promedio concesionado entre 2003 y 2008 fue de 11,562 m3/ha (a

    partir de SIAP y CONAGUA). Expertos de la Subdirección General de Infraestructura Hidroagrícola de CONAGUA

    consideran que una concesión de agua es alta cuando el volumen adjudicado es mayor a 13,000 m3 

    por

    hectárea. Por su parte, la agricultura de temporal tuvo en el mismo periodo, un crecimiento negativo, de -

    0.05%. A pesar de ello, esta actividad es una de las principales causas de la erosión hídrica y eólica de los suelos

    de la cuenca alta y media de Valle de Bravo (Informe final Plan Rector).

    Por otro lado, la acuicultura se ha desarrollado lentamente; de acuerdo al censo económico 2004 y 2009, la

    acuicultura en el Estado de México creció a una tasa de 0.65% anual. Mientras que en el municipio de Valle de

    Bravo el número de granjas se incrementó entre 2004 y2009, en Amanalco decreció. En Valle de Bravo pasó de

    15 a 17 granjas acuícolas y en Amanalco pasó de 28 a 24. Según estudios del Programa de Manejo Hídrico de la

    Subcuenca Molino-Los Hoyos (cuenca Valle de Bravo-Amanalco), Estado de México (2007), las granjas acuícolas

    consumen el 15% del agua que reciben, el resto vuelve a fluir por los cauces naturales. Este consumo obedece a

    infiltraciones de los estanques y a la evaporación que ocurre en los mismos. La razón de estas pérdidas tiene que

    ver con la infiltración que ocurre en canales y estanques no revestidos, el consumo de agua por los peces para

    formación de tejidos, el uso del agua por las personas encargadas de las granjas y la evaporación.

    A pesar de que más del 50% de la subcuenca está cubierta por bosques (INEGI, 2008), existe una fuerte

    fragmentación al interior de este ecosistema “lo que evidencia una deforestación clandestina, selectiva y

    constante con tendencia creciente” (Programa de Manejo Hídrico:333). Parte de la deforestación observada en

    esta subcuenca se debe al uso de leña. El 52% de las viviendas de la subcuenca consumen leña para cocinar (XII

    Censo General de Población y Vivienda, Edo. De México, INEGI, 2000). Entre las localidades rurales, el 75% de

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    30/42

    30

    las viviendas consume leña, mientras que en las zonas urbanas la utilizan el 6% de las viviendas ( ); las demás

    emplean gas. Sin embargo, en época invernal el consumo de leña en las zonas urbanas se incrementa.

    Para la elaboración del plan rector de la cuenca Valle de Bravo-Amanalco se consideró un consumo de leña

    aproximado de 2 kilos diarios por persona. Este valor coincide con el reportado por otros estudios como los de

    Quiroz-Carranza y Orellana (2010) quienes a su vez encontraron que los que buscan leña recorren hasta 4

    kilómetros a partir de su vivienda para buscar este recurso. Considerando que alrededor de 40,000 personas

    utilizan leña, el consumo de este combustible asciende anualmente a 29,200 toneladas. Dada la dispersión de

    las comunidades y considerando este desplazamiento en busca de leña, todos los bosques de la subcuenca

    estarían bajo la presión de sus habitantes (figura 1). Si se considera que existen 29,500 hectáreas de bosque y

    que cada hectárea produce 0.96 toneladas de materia seca por año (Masera, 2005), es decir, 28,320 toneladas

    por año, estaríamos ante un déficit de casi 1000 toneladas anuales. En otras palabras, se requerirían de un

    poco más de 1000 hectáreas de bosque, o 3% más de bosque, para poder abastecer las necesidades locales con

    leña sin recurrir a la tala de árboles vivos. Dada la falta de datos acerca de cuánta agua se deja de captar por un

    territorio por hectárea deforestada, este aspecto no podrá modelarse cuantitativamente pero deberá tomarse

    en cuenta de manera cualitativa en el impacto que las actividades de la región tienen sobre la cantidad de agua

    que le llega a la presa de Valle de Bravo.

    De acuerdo a información reportada por el Registro Agrario Nacional, la mitad de los bosques de la subcuenca

    son de propiedad ejidal. Ver n° de ejidos y cantidad que es área de uso común.

    Con respecto a la ocupación de los habitantes de la subcuenca, los datos son de hace 10 años porque sólo el

    censo general de población y vivienda reporta la población ocupada por sector de actividad incluyendo al

    agropecuario. En el municipio de Amanalco el 48% se encontraba ocupado en el sector 1° mientras que en Valle

    de Bravo, sólo el 10% de la población económicamente activa se dedicaba a las actividades primarias. (INEGI,

    2000). La rama del sector secundario predominante en ambos municipios es la construcción y del sector

    secundario la actividad predomina el comercio.

    El maíz grano es el cultivo con mayor superficie en la subcuenca y también el que sobresale por tener unarentabilidad promedio superior a la nacional. Los cultivos de riego de la subcuenca se encuentran

    principalmente en el municipio de Amanalco. Las parcelas irrigadas de Valle de Bravo se ubican principalmente

    en la subcuenca Colorines. El consumo de agua por hectárea es de xxx, superior/inferior al consumo que tienen

    las parcelas de las subcuencas aledañas pero superior/inferior si se le compara con el consumo promedio

    nacional (que es de x ha) (Bunge 2011 en Diagnóstico de cuencas).

    31% de la superficie de la subcuenca tiene uso de suelo agrícola, 55% de bosque, 5% pastizal, 3% riego, 2%

    asentamientos y 4% cuerpos de agua

    En el conteo de población 2005, la subcuenca tenía 63,949 personas. La tasa de crecimiento entre los años 2000

    y 2005 fue de -0.9%. La proyección de la población para el año 2020 es, tanto para Amanalco como para Valle deBravo, negativa: -0.3 y -0.1% respectivamente.

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    31/42

    31

    VALLE DE BRAVO

    VARIABLE DATO REFERENCIA

    Superficie subcuenca 53,712 ha Uso de suelo y vegetación, INEGI 2008

    Precipitación promedio anual en la

    subcuenca912 mm Plan Rector de la Cuenca Amanalco - Valle de Bravo

    Precipitación promedio anual en la

    presa909 mm Plan Rector de la Cuenca Amanalco - Valle de Bravo

    Volumen anual precipitado en la presa 19 hm3Precipitación promedio anual en la presa y una

    superficie de la presa de 2,100 ha

    Área presa1759 ha

    2,100 ha

    INEGI 1:50,000

    Plan Rector Subcuenca

    Capacidad Almacenamiento 394.4 hm3 CONAGUA

    Escurrimiento total 236 hm3 (random) Plan Rector de la Cuenca Amanalco - Valle de Bravo

    % de la precipitación que se evapora

    en la presa78% Plan Rector de la Cuenca Amanalco - Valle de Bravo

    Tasa de cambio estimada en la

    precipitación por cambio climático-0.00256 Escenario cl1 1910 - 1929

    Promedio de trasvases anuales de

    presa El Bosque y Colorines hacia Vallede Bravo (1998 – 2010)

    16 hm3 CNA, 2010. Gerencia de Aguas del Valle de México.

    Tasa de crecimiento población rural 0.92% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento población urbana 0.06% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento agricultura de

    riego1% SIAP (2003 – 2008)

    Tasa de crecimiento granjas acuícolas 0% Censo Económico, 2004-2009, INEGI

    Población inicial urbana 25,554 Censo de Población y Vivienda, 2010, INEGI

    Población inicial rural 47,781 Censo de Población y Vivienda, 2010, INEGI

    Superficie inicial de agricultura de riego 1355 haPromedio SIAP, 2003-2008

    Carta de uso de suelo y vegetación, 2008, INEGI

    N° Granjas acuícolas inicial 71

    Censo Económico, 2009, INEGI

    Plan para la gestión integral del agua y recursos

    asociados de la cuenca V deBravo (61 en Amanalco)

    Consumo de agua por hectárea 11084 m3/haCONAGUA, 2008

    SIAP, 2008

    Consumo de agua por población

    urbana (incluye 45% de fugas en la

    infraestructura)

    500 l/habitante/día APAS (comunicación oral)

    Consumo de agua por población rural

    (incluye 45% de fugas en la

    infraestructura)

    150 l/habitante/díaAPAS (comunicación oral)

    Plan Rector Cuenca Amanalco-Valle de Bravo

    Consumo de agua por granja acuícola 0.23 hm3/año Plan Rector Cuenca Amanalco-Valle de Bravo

    Consumo anual por el sistema

    Cutzamala (redondeo)189 hm3 Comisión de Aguas del Valle de México

    Aguas residuales generadas por año

    (aproximado)

    150 l/s que equivale a

    4.7 hm3 / añoAPAS (comunicación oral)

    Extracción agua presa para agricultura

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    32/42

    32

    SUBCUENCA COLORINES

    VARIABLE DATO REFERENCIA

    Superficie subcuenca 24,437 ha Uso de suelo y vegetación, INEGI 2008

    Precipitación promedio anual en la

    subcuenca1,107mm

    Serv. Meteo. Nnal. 1971-2000 (Estación Presa

    Colorines y Asunción en Donato Guerra)

    Precipitación promedio anual en la

    presa963.8mm Serv. Meteo. Nnal. 1971-2000

    Volumen anual precipitado en la presa 0.3 hm3/año Cálculo

    Área presa 44 haINEGI 1:50,000

    Capacidad Almacenamiento 1.5 hm3 CONAGUA

    Escurrimiento total 38 hm3 Pp tot * (1- ETR)

    % de la precipitación que se evapora

    en la presa86%

    % de escurrimiento en la subcuenca

    presa

    Tasa de cambio estimada en la

    precipitación por cambio climático-0.256% Para Valle de Bravo. Escenario cl1 1910 - 1929

    Promedio de trasvases anuales depresa El Bosque hacia Colorines (1998

     – 2010)

    16 hm3/año CNA, 2010. Gerencia de Aguas del Valle de México.

    Tasa de crecimiento población rural 0.62% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento población urbana 0.45% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento agricultura de

    riego4.36% SIAP (2003 – 2008)

    Tasa de crecimiento granjas acuícolas 0% Censo Económico, 2004-2009, INEGI

    Población inicial urbana 14169 Censo de Población y Vivienda, 2010, INEGI

    Población inicial rural 32423 Censo de Población y Vivienda, 2010, INEGI

    Superficie inicial de agricultura de riego

    2,364 ha

    3,320 ha

    Promedio SIAP, 2003-2008

    Carta de uso de suelo y vegetación, 2008, INEGIN° Granjas acuícolas inicial 4 Censo Económico, 2009, INEGI

    Consumo de agua por hectárea 8,932 m3/haCONAGUA, 2008

    SIAP, 2008

    Consumo de agua por población

    urbana (incluye 45% de fugas en la

    infraestructura)

    360 l/pers/día Promedio nacional

    Consumo de agua por población rural

    (incluye 45% de fugas en la

    infraestructura)

    150 l/pers/día Promedio nacional

    Consumo de agua por granja acuícola 0.23 hm3/año Plan Rector Cuenca Amanalco-Valle de Bravo

    Consumo anual por el sistema

    Cutzamala (redondeo)1 m3/s Comisión de Aguas del Valle de México

    Aguas residuales generadas por año

    (aproximado)

    Lo que genera Valle de

    Bravo se vierte en presa

    Colorines

    APAS (comunicación oral)

    Extracción agua presa para agricultura

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    33/42

    33

    SUBCUENCA CHILESDO

    VARIABLE DATO REFERENCIA

    Superficie subcuenca 23,175 ha Uso de suelo y vegetación, INEGI 2008

    Precipitación promedio anual en la

    subcuenca907.5 mm anuales

    Serv. Meteo. Nnal. 1971-2000 (Estación Presa

    Colorines y Asunción en Donato Guerra)

    Precipitación promedio anual en la

    presa983.5 mm Serv. Meteo. Nnal. 1971-2000

    Volumen anual precipitado en la presa 0.2 hm3/año Cálculo

    Área presa 20.7 haINEGI 1:50,000

    Capacidad Almacenamiento 0.8 hm3 CONAGUA

    Escurrimiento total 58.8 hm3 Pp tot * (1- ETR)

    % de la precipitación que se evapora

    en la presa72%

    Tasa de cambio estimada en la

    precipitación por cambio climático-0.256% anual Para Valle de Bravo. Escenario cl1 1910 - 1929

    Promedio de trasvases anuales de

    otras presas0 CNA, 2010. Gerencia de Aguas del Valle de México.

    Tasa de crecimiento población rural 3.53% Censo de Población y Vivienda, 2000 – 2010, INEGITasa de crecimiento población urbana -8% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento agricultura de

    riego0 SIAP (2003 – 2008)

    Tasa de crecimiento granjas acuícolas 0 Censo Económico, 2004-2009, INEGI

    Población inicial urbana 3332 Censo de Población y Vivienda, 2010, INEGI

    Población inicial rural 36551 Censo de Población y Vivienda, 2010, INEGI

    Superficie inicial de agricultura de riego 0Promedio SIAP, 2003-2008

    Carta de uso de suelo y vegetación, 2008, INEGI

    N° Granjas acuícolas inicial 1 Censo Económico, 2009, INEGI

    Consumo de agua por hectárea 0

    CONAGUA, 2008

    SIAP, 2008

    Consumo de agua por población

    urbana (incluye 45% de fugas en la

    infraestructura)

    360 l/pers/día Promedio nacional

    Consumo de agua por población rural

    (incluye 45% de fugas en la

    infraestructura)

    150 l/pers/día Promedio nacional

    Consumo de agua por granja acuícola 0.23 hm3/año Plan Rector Cuenca Amanalco-Valle de Bravo

    Consumo anual por el sistema

    Cutzamala (redondeo)1 m3/s Comisión de Aguas del Valle de México

    Aguas residuales generadas por año

    (aproximado) APAS (comunicación oral)

    Extracción agua presa para agricultura

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    34/42

    34

    SUBCUENCA IXTAPAN DEL ORO

    VARIABLE DATO REFERENCIA

    Superficie subcuenca 15,490 ha Uso de suelo y vegetación, INEGI 2008

    Precipitación promedio anual en la

    subcuenca995.6 mm anuales Eric II. No hay estaciones en la subcuenca.

    Estimación de Zitácuaro, Villa de Allende (Z. Alta) y

    Donato Guerra (Z. Alta)Precipitación promedio anual en la

    presa995.6 mm

    Volumen anual precipitado en la presa 0.01 hm3/año Cálculo

    Área presa Muy chicaINEGI 1:50,000

    Capacidad Almacenamiento 0.5 hm3 CONAGUA

    Escurrimiento total 30.88 hm3 Pp tot * (1- ETR)

    % de la precipitación que se evapora

    en la presa80%

    Tasa de cambio estimada en la

    precipitación por cambio climático-0.256% anual Para Valle de Bravo. Escenario cl1 1910 - 1929

    Promedio de trasvases anuales de

    otras presas0 CNA, 2010. Gerencia de Aguas del Valle de México.

    Tasa de crecimiento población rural 1.96% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento población urbana 0% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento agricultura de

    riego0.8% anual SIAP (2003 – 2008)

    Tasa de crecimiento granjas acuícolas 0 Censo Económico, 2004-2009, INEGI

    Población inicial urbana 3022 Censo de Población y Vivienda, 2010, INEGI

    Población inicial rural 5863 Censo de Población y Vivienda, 2010, INEGI

    Superficie inicial de agricultura de riego 892 haPromedio SIAP, 2003-2008

    Carta de uso de suelo y vegetación, 2008, INEGI

    N° Granjas acuícolas inicial 3 Censo Económico, 2009, INEGI

    Consumo de agua por hectárea 6775 m3/ha CONAGUA, 2008SIAP, 2008

    Consumo de agua por población

    urbana (incluye 45% de fugas en la

    infraestructura)

    360 l/pers/día Promedio nacional

    Consumo de agua por población rural

    (incluye 45% de fugas en la

    infraestructura)

    150 l/pers/día Promedio nacional

    Consumo de agua por granja acuícola 0.23 hm3/año Plan Rector Cuenca Amanalco-Valle de Bravo

    Consumo anual por el sistema

    Cutzamala (redondeo)0.5 m3/s Comisión de Aguas del Valle de México

    Aguas residuales generadas por año

    (aproximado)APAS (comunicación oral)

    Extracción agua presa para agricultura

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    35/42

    35

    SUBCUENCA EL BOSQUE 

    VARIABLE DATO REFERENCIA

    Superficie subcuenca 43956 ha Uso de suelo y vegetación, INEGI 2008

    Precipitación promedio anual en la

    subcuenca829.9 mm anuales

    Eric IIPrecipitación promedio anual en la

    presa836.9 mm

    Volumen anual precipitado en la presa 6.8 hm3/año Cálculo

    Área presa 815 haCuerpos de agua, INEGI 1:50,000

    Capacidad Almacenamiento 202.4 hm3 CONAGUA

    Escurrimiento total 62 hm3 Pp tot * (1- ETR)

    % de la precipitación que se evapora

    en la presa83%

    Tasa de cambio estimada en la

    precipitación por cambio climático-0.256% anual Para Valle de Bravo. Escenario cl1 1910 - 1929

    Promedio de trasvases anuales de

    otras presas (Tuxpan)105 hm3 al año CNA, 2010. Gerencia de Aguas del Valle de México.

    Tasa de crecimiento población rural 0.97% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento población urbana 1.3% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento agricultura de

    riego2.44% anual SIAP (2003 – 2008)

    Tasa de crecimiento granjas acuícolas 0 Censo Económico, 2004-2009, INEGI

    Población inicial urbana 95,924 Censo de Población y Vivienda, 2010, INEGI

    Población inicial rural 52,969 Censo de Población y Vivienda, 2010, INEGI

    Superficie inicial de agricultura de riego 2603 haPromedio SIAP, 2003-2008

    Carta de uso de suelo y vegetación, 2008, INEGI

    N° Granjas acuícolas inicial 1 Censo Económico, 2009, INEGI

    Consumo de agua por hectárea 23818 m3/haCONAGUA, 2008

    SIAP, 2008

    Consumo de agua por población

    urbana (incluye 45% de fugas en la

    infraestructura)

    360 l/pers/día Promedio nacional

    Consumo de agua por población rural

    (incluye 45% de fugas en la

    infraestructura)

    150 l/pers/día Promedio nacional

    Consumo de agua por granja acuícola 0.23 hm3/año Plan Rector Cuenca Amanalco-Valle de Bravo

    Consumo anual por el sistema

    Cutzamala (redondeo)161 hm3 anual Comisión de Aguas del Valle de México

    Aguas residuales generadas por año

    (aproximado)

    Extracción agua presa para agricultura

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    36/42

    36

    SUBCUENCA TUXPAN 

    VARIABLE DATO REFERENCIA

    Superficie subcuenca 120275 ha Uso de suelo y vegetación, INEGI 2008

    Precipitación promedio anual en la

    subcuencamm anuales

    Eric IIPrecipitación promedio anual en la

    presamm

    Volumen anual precipitado en la presa hm3/año Cálculo

    Área presa 4 haCuerpos de agua, INEGI 1:50,000

    Capacidad Almacenamiento 5 hm3 CONAGUA

    Escurrimiento total hm3 Pp tot * (1- ETR)

    % de la precipitación que se evapora

    en la presa%

    Tasa de cambio estimada en la

    precipitación por cambio climático-0.256% anual Para Valle de Bravo. Escenario cl1 1910 - 1929

    Promedio de trasvases anuales de

    otras presas (Tuxpan)0 CNA, 2010. Gerencia de Aguas del Valle de México.

    Tasa de crecimiento población rural 0.74% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento población urbana 1.48% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento agricultura de

    riego7.78% anual SIAP (2003 – 2008)

    Tasa de crecimiento granjas acuícolas 6% Censo Económico, 2004-2009, INEGI

    Población inicial urbana 95,924 Censo de Población y Vivienda, 2010, INEGI

    Población inicial rural 99952 Censo de Población y Vivienda, 2010, INEGI

    Superficie inicial de agricultura de riego 5664 haPromedio SIAP, 2003-2008

    Carta de uso de suelo y vegetación, 2008, INEGI

    N° Granjas acuícolas inicial 74 Censo Económico, 2009, INEGI

    Consumo de agua por hectárea 19013 m3/haCONAGUA, 2008

    SIAP, 2008

    Consumo de agua por población

    urbana (incluye 45% de fugas en la

    infraestructura)

    360 l/pers/día Promedio nacional

    Consumo de agua por población rural

    (incluye 45% de fugas en la

    infraestructura)

    150 l/pers/día Promedio nacional

    Consumo de agua por granja acuícola 0.23 hm3/año Plan Rector Cuenca Amanalco-Valle de Bravo

    Consumo anual por el sistema

    Cutzamala (redondeo)136 hm3 anual Comisión de Aguas del Valle de México

    Aguas residuales generadas por año

    (aproximado)

    Extracción agua presa para agricultura

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    37/42

    37

    SUBCUENCA VILLA VICTORIA 

    VARIABLE DATO REFERENCIA

    Superficie subcuenca 60558 ha Uso de suelo y vegetación, INEGI 2008

    Precipitación promedio anual en la

    subcuencamm anuales

    Eric IIPrecipitación promedio anual en la

    presamm

    Volumen anual precipitado en la presa hm3/año Cálculo

    Área presa 2939 ha

    Cuerpos de agua, INEGI 1:50,000. Análisis de

    imagen de satélite

    Capacidad Almacenamiento 186 hm3 CONAGUA

    Escurrimiento total hm3 Pp tot * (1- ETR)

    % de la precipitación que se evapora

    en la presa88%

    Tasa de cambio estimada en la

    precipitación por cambio climático-0.256% anual Para Valle de Bravo. Escenario cl1 1910 - 1929

    Promedio de trasvases anuales de

    otras presas (Tuxpan) 0 CNA, 2010. Gerencia de Aguas del Valle de México.

    Tasa de crecimiento población rural 1.68% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento población urbana 11.57% Censo de Población y Vivienda, 2000 – 2010, INEGI

    Tasa de crecimiento agricultura de

    riego0% anual SIAP (2003 – 2008)

    Tasa de crecimiento granjas acuícolas 0% Censo Económico, 2004-2009, INEGI

    Población inicial urbana 10153 Censo de Población y Vivienda, 2010, INEGI

    Población inicial rural123139

    Censo de Población y Vivienda, 2010, INEGI

    Superficie inicial de agricultura de riego 0 haPromedio SIAP, 2003-2008

    Carta de uso de suelo y vegetación, 2008, INEGIN° Granjas acuícolas inicial 8 Censo Económico, 2009, INEGI

    Consumo de agua por hectárea 0 m3/haCONAGUA, 2008

    SIAP, 2008

    Consumo de agua por población

    urbana (incluye 45% de fugas en la

    infraestructura)

    360 l/pers/día Promedio nacional

    Consumo de agua por población rural

    (incluye 45% de fugas en la

    infraestructura)

    150 l/pers/día Promedio nacional

    Consumo de agua por granja acuícola 0.23 hm3/año Plan Rector Cuenca Amanalco-Valle de Bravo

    Consumo anual por el sistemaCutzamala (redondeo)

    82 hm3 anual (2.6m3/s)126 hm3 anual (4m3/s)

    Organismo de cuencaSegún copias

    Aguas residuales generadas por año

    (aproximado)

    Extracción agua presa para agricultura

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    38/42

    38

     ANEXO 3. Estaciones meteorológicas utilizadas para el cálculo del balancehídrico y los coeficientes de evapotranspiración, escurrimiento e infiltración

    SubcuencaSuperficie

    (Km2)

    Precipitación promedio

    cuenca alta y media

    (mm)

    % Evapotranspi-

    ración% Escurrimiento % Infiltración

    Chilesdo-Colorines 473.66 981.7 60% 29% 11%

    El_Bosque 437.12 829.9 66% 24% 10%

    Ixtapan_del_Oro 154.1 905.8 65% 26% 10%

    Tuxpan 1195.28 1022.9 61% 29% 10%

    Valle_de_Bravo 534.55 1136.9 58% 31% 11%

    Villa_Victoria 602.2 1184.0 63% 25% 12%

    Estaciones en Presas

    Fuente: http://200.4.8.21/climatologia/normales/normales-estacion.html   y ERICII IMTA

    PP en MM Normal 1971-2000

    Presa   Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Di c

    Valle de Bravo   19.9 6.2 5.5 7.5 52 163.9 187.8 175.5 156.4 81.9 18 11.9

    x100 mensual 0.02 0.01 0.01 0.01 0.06 0.18 0.21 0.20 0.18 0.09 0.02 0.01

    El Bosque   19.9 4.7 5.5 6.4 49.5 164.3 177.3 162.1 142.4 72.8 22.7 9.3

    x100 mensual 0.02 0.01 0.01 0.01 0.06 0.20 0.21 0.19 0.17 0.09 0.03 0.01

    Tuxpan   32.2 11.4 1.5 16.7 43.7 147.1 179.2 176.7 132 77.6 17.2 7.6x100 mensual 0.04 0.01 0.00 0.02 0.05 0.17 0.21 0.21 0.16 0.09 0.02 0.01

    Colorines   19.7 3.6 5.8 6.6 52.4 181.8 201.3 203.2 171.1 90.2 19.8 8.3

    x100 mensual 0.02 0.00 0.01 0.01 0.05 0.19 0.21 0.21 0.18 0.09 0.02 0.01

    Chilesdo   31.3   14 10.8 18.5 76.4 164.6 216.7 188.1 141.3 79.7 31.1 11

    x100 mensual 0.03 0.01 0.01 0.02 0.08 0.17 0.22 0.19 0.14 0.08 0.03 0.01

    Villa Victoria   18.9   12.5 11.7 22.6 66.5 153.7 191.5 174.4 135.8 72 19.5 11.7

    x100 mensual 0.02 0.01 0.01 0.03 0.07 0.17 0.21 0.20 0.15 0.08 0.02 0.01

    Notas:(a)

    (b)

    Datos de la normal climatológica 1971-2000,SMN. Fuente:

    http://200.4.8.21/climatologia/normales/normales-estacion.html

    Datos obtenidos de ERIC II (IMTA) para períodos diversos  

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    39/42

    39

    Estaciones en cuenca alta

    Fuente: http://200.4.8.21/climatologia/normales/normales-estacion.html

    PP en MM Normal 1971-2000

    Subcuenca Municipio Estacion Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic

     Amanal co Amanal co   26.2 9.37 9.95 20 68.2 195.5 272.3 232 184.2 89.5 19.4 17.7

    x100 mensual 0.02 0.01 0.01 0.02 0.06 0.17 0.24 0.20 0.16 0.08 0.02 0.02

     Amanal co Pal os Manco rnados   30.3 14.7 9.9 21.7 69.5 152.7 201.7 175.1 149.1 96.7 23.2 15.5x100 mensual 0.03 0.02 0.01 0.02 0.07 0.16 0.21 0.18 0.16 0.10 0.02 0.02

    Temascaltepec SanFrancisco   38.3 19.3 14.4 32.5 119 213.1 268.7 230.1 189.7 117 37.9 26.7

    x100 mensual 0.03 0.01 0.01 0.02 0.09 0.16 0.21 0.18 0.15 0.09 0.03 0.02

    Promedio Promedio   31.6 14.5 11.4 24.7 85.6 187.1 247.6 212.4 174.3 101 26.8 20

    x100 mensual 0.03 0.01 0.01 0.02 0.08 0.16 0.22 0.19 0.15 0.09 0.02 0.02

    Donato Guerra Asunción   10.9 4.2 8.8 14.9 72.1 197.4 290.7 283.5 189.3 120 42.7 15.2

    x100 mensual 0.01 0.00 0.01 0.01 0.06 0.16 0.23 0.23 0.15 0.10 0.03 0.01

    Villa de Allende Cuesta del Carmen   17.7 10 6 13.4 57.9 153.8 206.6 207.7 124.8 78.4 18 13.2

    x100 mensual 0.02 0.01 0.01 0.01 0.06 0.17 0.23 0.23 0.14 0.09 0.02 0.01

    Vi ll a Vi cto ri a Dol ores   24.3 21.8 11.4 34.7 55.7 133.3 155.8 136.7 111.7 76 15.1 11.5

    x100 mensual 0.03 0.03 0.01 0.04 0.07 0.17 0.20 0.17 0.14 0.10 0.02 0.01

    Promedio Promedio   17.63 12 8.73 21 61.9 161.5 217.7 209.3 141.9 91.4 25.3 13.3

    x100 mensual 0.02 0.01 0.01 0.02 0.06 0.16 0.22 0.21 0.14 0.09 0.03 0.01

    Vi ll a Vi cto ri a Ec Se c Te c 26   27.8 9.9 9.9 14.4 101 342.1 368.2 417.6 339.2 217 60.1 17.2x100 mensual 0.01 0.01 0.01 0.01 0.05 0.18 0.19 0.22 0.18 0.11 0.03 0.01

    Vi ll a Vi ctori a Mi na Vi ej a   21.7 10.8 9.2 21.9 72.5 180.3 195.1 172.7 141.1 81 17.9 14.5

    x100 mensual 0.02 0.01 0.01 0.02 0.08 0.19 0.21 0.18 0.15 0.09 0.02 0.02

    San Felipe Pueblo Nuevo   13.1 9.5 7.1 24 65.8 163.4 223.8 181.5 140.3 84.1 21.7 13.5

    x100 mensual 0.01 0.01 0.01 0.03 0.07 0.17 0.24 0.19 0.15 0.09 0.02 0.01

    San Felipe San Onofre   18.9 12.5 9.9 22.8 54.6 154 216.1 169.7 152.2 79.9 18 15.8

    x100 mensual 0.02 0.01 0.01 0.02 0.06 0.17 0.23 0.18 0.16 0.09 0.02 0.02

    Promedio Promedio   20.38 10.7 9.03 20.8 73.5 210 250.8 235.4 193.2 116 29.4 15.3

    x100 mensual 0.02 0.01 0.01 0.02 0.06 0.18 0.21 0.20 0.16 0.10 0.02 0.01

    Zitacuaro La encarnación   31.4 5.3 16.7 9.3 32.1 160.5 180.8 175.7 142.2 54.5 11.3 10.1

    x100 mensual 0.04 0.01 0.02 0.01 0.04 0.19 0.22 0.21 0.17 0.07 0.01 0.01

    Cd Hidalgo Cd Hidalgo   22.2 9 8.5   17.6 60.8 136.1 161 161.6 125.9 64.6 18.1 9.8

    x100 mensual 0.03 0.01 0.01 0.02 0.08 0.17 0.20 0.20 0.16 0.08 0.02 0.01

    Cd Hidalgo Huajumbaro   26 7.8 10.6 15.7 51.8 196.2 289.6 270.3 197.7 71.9 18.6 15.6

    x100 mensual 0.02 0.01 0.01 0.01 0.04 0.17 0.25 0.23 0.17 0.06 0.02 0.01

    Cd Hidalgo Los Azufres   23.9 11.9 9.4 29.4 62.6 215.6 315.2 276.9 251.6 99.1 37.2 16.5

    x100 mensual 0.02 0.01 0.01 0.02 0.05 0.16 0.23 0.21 0.19 0.07 0.03 0.01

    Irimbo Irimbo   35.4 9.9 12 15.1 47.6 118.1 163.4 176 133.9 51.5 14.4 15.8

    x100 mensual 0.04 0.01 0.02 0.02 0.06 0.15 0.21 0.22 0.17 0.06 0.02 0.02

    Zi napé cuaro Zi na pécua ro   26.7 6.9 7.2 8.5 56.9 151.5 217.1 263 158.7 64.7 25.8 18.1

    x100 mensual 0.03 0.01 0.01 0.01 0.06 0.15 0.22 0.26 0.16 0.06 0.03 0.02

    Promedio Promedio   26.8 9.1 9.5 17.3 55.9 163.5 229.3 229.6 173.6 70.4 22.8 15.2

    x100 mensual 0.03 0.01 0.01 0.02 0.05 0.16 0.22 0.22 0.17 0.07 0.02 0.01

    Notas:(a)

    (b) Datos obtenidos de ERIC II (IMTA) para períodos diversos

    Valle de Bravo

    Colorines

    Villa Victoria

    Tuxpan

    El bosque

    Datos de la normal climatológica 1971-2000,SMN. Fuente:

    http://200.4.8.21/climatologia/normales/normales-estacion.html

     

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    40/42

    40

     ANEXO 4. Modelo de Simulación del sistema Cutzamala

    Modelo de simulación del Sistema Cutzamala

    Modelo de simulación de la subcuenca Valle de Bravo

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    41/42

    41

    Modelo de simulación de la subcuenca Villa Victoria

    Modelo de simulación de la subcuenca El Bosque

  • 8/15/2019 Dinamica_Hidrica_Cutzamala.pdf

    42/42

    Modelo de simulación de la subcuenca Colorines