doc_008_Coxeter_3

Embed Size (px)

Citation preview

  • 8/10/2019 doc_008_Coxeter_3

    1/8

  • 8/10/2019 doc_008_Coxeter_3

    2/8

    2 SOS440

    Among various relations which Bpxqsatisfies,1

    xB1

    x 2 ?x Bpxq, px0q

    and

    Bp1 xq 12

    log x log 2 Opxq asx0`

    are particularly worth to notice.

    Then theAhmed integralsApp, q, rqare defined by

    App, q, rq def1

    0

    Bpqppx2 `1qqpr 1qpx2 `1 dx, (1.3)

    and similarly theassociated Ahmed integrals App, q, rqare defined by

    App, q, rq def App, q, rq B prpq 1qqB

    pqq 1

    App, q, rq 1?pqr

    arctan

    brpq 1q arctan

    c pq

    q 1 .(1.4)

    These integrals reduce to the classical Ahmed integrals for special choices of parameters,

    as we can see 10

    tan1?

    x2 `px2 `1q

    ?x2 ` dxA

    1

    ,, 1

    , (1.5)

    which holds for 1. The definition (1.3) and (1.4) seem very bizarre and visuallyunappealing at first glance. But this definition is designed to capture some symmetries

    innate in the Ahmed integrals, as we will see.

    1.2. Identities involving Ahmed integrals. We first show the following identity.

    Theorem 1.6. For p, q, r0, we haveApp, q, rq Apq, r,pq Apr,p, qq. (1.7)

    Proof. We perform a direct calculation. By partial fraction, we have

    App, q, rq 1

    0

    1

    pr 1qpx2 `11

    0

    dy

    qppx2 `1qy2 `1

    dx

    1

    01

    0

    dxdy

    ppr 1qpx2 `1q pqppx2 `1qy2 `1q1

    0

    10

    1

    qry2 `r 1

    1 rp1 rqpx2 `1

    qy2

    pqy2x2 `qy2 `1

    dxdy.

    Then by definition (1.1) ofB, the former fraction becomes10

    10

    1 rpqry2 `r 1q pp1 rqpx2 `1q dxdyB pppr 1qqB

    qr

    r 1

    .

  • 8/10/2019 doc_008_Coxeter_3

    3/8

    COXETERS INTEGRALS 3

    Similarly, the latter becomes

    10

    qy2

    pqy2x2 `qy2 `1 dx qy2

    qy2 `1B pqy2

    qy2 `1c

    q

    p

    yaqy2 `1

    arctan

    d pqy2

    qy2 `1 .

    by (1.2). So we have

    App, q, rq B pppr 1qqB

    qr

    r 1

    c

    q

    p

    10

    y

    pqry2 `r 1qa

    qy2 `1arctan

    d pqy2

    qy2 `1 dy,

    and it remains to evaluate the last integral. But it is easy to observe that

    d

    dy

    arctan

    brpqy2 `1q

    q

    ?r y

    pqry2 `r 1qa

    qy2 `1thus we obtain

    cq

    p

    10

    y

    pqry2 `r 1qa

    qy2 `1arctan

    d pqy2

    qy2 `1 dy

    1?pqr

    arctan

    brpqy2 `1q arctan

    d pqy2

    qy2 `1

    ff10

    1

    0

    arctan arpqy2 `1qpp1 pqqy2 `1q arpqy2 `1q dy B prpq 1qqB

    pq

    q 1

    Apq, r,pq,

    from which we deduce (1.7) as desired.

    This theorem allows us to transform one Ahmed integral to another one, and in some

    limiting case we can obtain a meaningful results. For instance, the limiting condition r0applied to the first part of the identity (1.7), together with Apq, 0,pq B pq pp 1qq,immediately yields

    A

    pp, q, 0

    q B

    pq

    pp

    1

    qqB

    pp

    q B pq

    q 1 ,and especially for pq1, (1.5) gives1

    0

    tan1?

    x2 `1px2 `1q

    ?x2 `1 dx

    Ap1, 1, 0q 3?

    2

    2 arctan

    ?2

    4p2

    ?2 1q.

    But in general, (1.7) alone gives no specific information about the actual value. So we need

    the following identity.

  • 8/10/2019 doc_008_Coxeter_3

    4/8

    4 SOS440

    Theorem 1.8. For a, b, c, d0, we have

    cadbc A

    ab d,

    b

    d

    c ,

    d

    b` c

    bc

    ad A c

    b d,b

    d

    a ,

    b

    d

    2

    arctan

    d ad

    bpa b dq`arctand

    bc

    dpb c dq

    arctan

    ca

    barctan

    cc

    d.

    (1.9)

    Proof. We begin from the expression

    Iarctanc

    a

    barctan

    cc

    d1

    0

    10

    ?abcd

    pax2 `bqpcy2 `dq dxdy.

    By exploiting the partial fraction decomposition

    1

    AB A B

    ABpA Bq 1

    ApA Bq` 1

    BpA Bq,

    we have

    I1

    0

    10

    ?abcd

    pax2 `bqpax2 `cy2 `b dq dxdy

    `1

    0

    10

    ?abcd

    pcy2 `dqpax2 `cy2 `b dq dxdydef I1 I2

    By symmetry, it suffices to evaluateI1. By simple calculation,

    I1 1

    0 1

    0

    ?abcd

    pax2

    `b

    qpax2

    `cy2

    `b

    d

    q

    dydx

    1

    0

    ?abcdpax2 `bqpax2 `b dqB

    c

    ax2 `b d

    dx

    1

    0

    ?abcd

    cpax2 `bq

    2

    ?c?

    ax2 `b d B

    ax2 `b dc

    dx

    1

    0

    2

    ?abd

    pax2 `bq?ax2 `b d c

    ad

    bc

    1

    pa{bqx2 `1B

    ax2 `b dc

    dx

    2

    10

    ?abd

    pax2 `bq?

    ax2 `b d dxc

    ad

    bcA

    a

    b d,b d

    c,

    d

    b

    .

    Then the integral in the last line is evaluated as follows: By the substitution xt1,

    2

    10

    ?abdpax2 `bq?ax2 `b d dx 28

    1?abd tpbt2 `aqa

    pb dqt2 `a dt

    2

    arctan

    c b

    adppb dqt2 `aq

    ff81

    2

    arctan

    d ad

    bpa b dq .

  • 8/10/2019 doc_008_Coxeter_3

    5/8

    COXETERS INTEGRALS 5

    Therefore we have

    I1

    2arctan d ad

    bpa b dqAa

    c,

    b

    d

    c,

    ad

    bc ,

    and likewise

    I2 2

    arctan

    d bc

    dpb c dqA

    c

    a,

    b da

    ,bc

    ad

    .

    Combining these results yields (1.9).

    An asymmetric form of (1.9) is given by

    ?pqrApp, q, rq 1?

    pqrA

    1

    q,

    1

    p,

    1

    r

    2arctan d

    1

    rpq 1q`arctan c

    pr

    p 1arctan bpp

    r

    1

    q arctan d

    r 1

    qr

    .

    (1.10)

    As a special case of (1.10) with pq1 andr1, we have

    A

    1

    , , 1

    2arctan

    c 1

    11

    2

    arctan

    c2

    2,

    hence in conjunction with(1.5), we obtain10

    tan1?

    x2 `2px2 `1q

    ?x2 `2 dx

    A

    1

    2, 2, 1

    5

    2

    96 , (1.11)

    which is the original result of Ahmed in [Ahm02].

    2. Calculation ofCoxeters integrals

    2.1. Reduction of Coxeters integral to Ahmed integral. A Coxeters integral is an in-

    tegral of the form 00

    arctan

    c cos 1a cos b d. (2.1)

    We impose additional condition a |b|and min00pa cos bq 0. Our aim in thischapter is to show that any Coxeters integral is reduced to an Ahmed integral.

    We make use of simple change of variable to obtain00

    arctan

    c cos 1a cos b d

    00

    arctan

    d 2cos2p{2q

    a b 2a sin2p{2q d

    20{2

    0

    arctan

    cos a

    pa bq{2 a sin2

    d,

    where the substitution2is used in the last line. This shows that it suffices to considerthe integral of the form

    Ip,,q

    0

    arctan

    cos

    a2 sin2

    d, (2.2)

  • 8/10/2019 doc_008_Coxeter_3

    6/8

    6 SOS440

    where0, P r0, {2sand sin 1. With this notation we readily identify (2.1)as

    00

    arctanc

    cos 1a cos b d2I

    ?a, ca b2a

    , 02

    .

    Then the substitution sin sin witharcsinpsin {q, followed by the substitutiontan ttangives

    Ip,,q

    0

    arctan

    a1 2 sin2 cos

    cos a

    1 2 sin2 d

    1

    0

    arctan

    a1 t2p1 2q tan2

    a1 t2p1 2q tan2

    tandt

    1 t2 tan2 .

    Then by comparison with the definition(1.3), it follows that

    Ip,,q tan

    A

    p1 2q tan2 , 1

    22,

    2

    1 2

    ,

    hence after some simple algebraic manipulations, we obtain

    00

    arctan

    c cos 1a cos b d2

    d 1 cos 0a cos 0 b A

    a b

    2

    1 cos 0a cos 0 b ,

    2

    a b ,a ba b

    .

    (2.3)

    2.2. Calculation of Classical Coxeters Integrals. Now lets consider the following clas-

    sical Coxeters integrals:

    I1

    2

    0

    arccos

    cos

    1 2 cos

    d, I2

    3

    0

    arccos

    cos

    1 2 cos

    d,

    I3

    2

    0

    arccos

    1

    1 2 cos

    d, I4

    3

    0

    arccos

    1

    1 2 cos

    d,

    I5 arccosp 13 q

    0

    arccos

    1 cos

    2cos

    d, I6

    3

    0

    arccos

    1 cos

    2cos

    d,

    I7

    2

    0

    arccos

    c cos

    1 2 cos d, I8

    3

    0

    arccos

    c cos

    1 2 cos d.

    By the half-angle formula, for|A| 1,

    arccosA2 arccos cA

    1

    2 2 arctan c1

    A

    1 A .Thus we obtain0

    0

    arccos

    cos

    1 2 cos

    d20

    0

    arccos

    c3cos 14cos 2 d

    20

    0

    arctan

    c cos 13cos 1 d,

  • 8/10/2019 doc_008_Coxeter_3

    7/8

    COXETERS INTEGRALS 7

    and likewise

    00

    arccos 11 2 cos

    d

    2 00

    arccos c cos 1

    2cos 1 d

    20

    0

    arctan

    c cos

    cos 1 d

    20

    0

    2arctan

    c cos

    cos 1

    d

    0 20

    0

    arctan

    ccos 1

    cos d,

    00

    arccos

    1 cos

    2cos

    d2

    00

    arccos

    ccos 1

    4cos d

    2 0

    0

    2arccos c3cos

    1

    4cos

    d

    0 20

    0

    arctan

    c cos 13cos 1 d,0

    0

    arccos

    c cos

    2cos 1 d0

    0

    arctan

    c cos 12cos 1 d,

    So that

    I1 4 A

    1,1

    2, 2

    , I2 4?

    5A

    1

    5,

    1

    2, 2

    ,

    I3 2

    24

    ?28 A p8, 2, 1q , I4

    2

    34 A

    1

    2, 2, 1

    ,

    I5 2 arctan 1?2 2 ?28 A

    8, 1, 12 , I6 2

    34 A

    2, 1,1

    2

    ,

    I7 2 A

    1

    2,

    2

    3, 3

    , I8 A

    1

    8,

    2

    3, 3

    .

    Here the notation?8 Ap8, q, rq is understood as the limit case of?p App, q, rq, hence

    by (1.10) with p 8,?8 Ap8, q, rq

    2?

    qr

    arctan

    d 1

    rpq 1q`arctan?

    r arctand

    r 1qr

    . (2.4)

    HenceI3 and I5 are given by

    I3I5 2

    6 .

    Also, with aid of (1.7) and(1.11), we obtain

    A

    2, 1,

    1

    2

    13

    2

    288 , A

    1,

    1

    2, 2

    5

    2

    96

    and we obtain

    I1 52

    24, I4

    2

    8, I6 11

    2

    72 .

  • 8/10/2019 doc_008_Coxeter_3

    8/8

    8 SOS440

    References

    [Ahm02] Zafar Ahmed. Definitely an integral.American Mathematical Monthly, 109:670671, 2002.