23
1/46 4. Computer Simulation of Switching Converters Power Electronic Systems & Chips Lab., NCTU, Taiwan 電力電子系統與晶片實驗室 Power Electronic Systems & Chips Lab. 交通大學 電機控制工程研究所 台灣新竹交通大學電機與控制工程研究所電力電子實驗室~鄒應嶼 教授 2/46 Contents Introduction Challenges in Computer Simulation Simulation Process Open-Loop Large Signal Simulation Small-Signal Modeling Controller Design Closed-Loop Large-Signal System Behavior Switching Details Mechanics of Simulation Widely Used Circuit-Oriented Simulators

【電力電子】04:Computer Simulation of Switching Converterspemclab.cn.nctu.edu.tw/W3news/實驗室課程網頁... · 2016-03-28 · (KVL) (KCL) ( ) 0 1 1 1 1 L v t v i C CR

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • 1/46

    4. Computer Simulation of Switching Converters

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    電力電子系統與晶片實驗室Power Electronic Systems & Chips Lab.交通大學 • 電機控制工程研究所

    台灣新竹‧交通大學‧電機與控制工程研究所‧電力電子實驗室~鄒應嶼教授

    2/46

    Contents

    Introduction Challenges in Computer Simulation Simulation Process Open-Loop Large Signal Simulation Small-Signal Modeling Controller Design Closed-Loop Large-Signal System Behavior Switching Details Mechanics of Simulation Widely Used Circuit-Oriented Simulators

  • 3/46

    Introduction

    power input power processor

    power outputload

    control signals

    controller

    measurements

    reference

    viii iv

    vo

    Switching nature of power converters Modeling of power converters Modeling of power devices Modeling of power losses Dynamic & steady-state behaviors Computer simulation vs. hardware prototype

    4/46

    Challenges in Computer Simulation

    Modeling of power devices

    Simulation may take a long time

    Accurate models are not always available

    Modeling of the (analog or digital) controller

    Simulation of steady-state

  • 5/46

    Simulation Process

    OPEN-LOOP, LARGE-SIGNAL SIMULATION

    SMALL-SIGNAL MODELING AND CONTROLLER DESIGN

    CLOSED-LOOP, LARGE-SIGNAL SYSTEM BEHAVIOR

    SWITCHING DETAILS

    Switch-Mode Power Supplies - SPICE Simulations and Practical Designs,Christophe Basso, McGraw-Hill, Feb. 1, 2008.

    6/46

    Open-Loop, Large-Signal Simulation

    power input Power processor (each switching is represented, simple component models)

    power outputload

    Prespecified control signals

    vi iiiv

    vo

    開關採用理想模型 (ideal switch model)

    設定適當的工作點 (define the operating point)

    模擬電路的穩態週期行為

    決定主要功率元件的額定與峰值

    選擇電路架構的依據

  • 7/46

    Small-Signal (Linear) Model and Controller Design

    △ input△ load

    control signals

    controller△ reference

    Power processor (small-signal,

    linearized) models

    選擇適當的工作點 非線性之開關以線性化之平均化之線性模型替代 建立轉換器的小信號模型 頻域響應分析 控制器設計 分析系統的穩定性與輸出阻抗

    8/46

    Closed-Loop, Large-Signal System Behavior

    power inputPower processor (each switching

    is represented; simple switch models; saturation and pertinent

    nonlinearities are included)

    power outputload

    control signals

    controller

    measurements

    reference

    閉迴路控制下的大信號模擬,例如POWER ON 模擬開關採用理想模型

    電路中之saturation, limit, dead zone等非線性特性應納入模擬控制器可以等效之函數或電路替代

    完整電路、數仟週期之模擬

  • 9/46

    Switching Details

    power input Power processor (some components represented in

    detail; a few switching cycles)

    power output

    prespecified control signals

    功率開關元件的模型建立

    磁性元件的模型建立

    緩震電路之設計

    開關損失之分析

    最惡劣情況元件峰值之決定

    局部電路、少數週期之模擬

    10/46

    Mechanics of Simulation

    EQUATION SOLVERS

    CIRCUIT-ORIENTED SIMULATORS

    COMPARISON

  • 11/46

    Solution Techniques for Time-Domain Analysis

    LINEAR DIFFERENTIAL EQUATIONS

    TRAPEZOIDAL METHOD OF INTREGRATION

    NONLINEAR DIFFERENTIAL EQUATIONS

    12/46

    Linear Differential Equations

    oicL

    LL vvdtdiLir

    0Rv

    dtdvCi ccL

    (KVL)

    (KCL)

    )(0

    1

    11

    1

    tvLvi

    CRC

    LLr

    dtdvdtdi

    oic

    L

    L

    c

    L

    Lvc

    iL

    rLvoi(t) RC

    voiVd

    ton toffTs

    t0

    Simplified equivalent circuit of a switch-mode, regulated DC power supply.

    (a) (b)

  • 13/46

    Solution of Linear Dynamic Equations

    oic

    L vtgvi

    t

    )(and)(x

    )()()( tgtdt

    td bAxx

    0

    1and11

    1

    L

    CRC

    LLrL

    bA

    )()()()()( tgtttdt

    td bxAx

    dgttt ttt )()()()()()( bxAxx

    14/46

    Trapezoidal Method of Integration

    t00 t

    dtdx

    )()( tbgtAx

    )()( ttbgttAx

    tt

    tgtttgttttttttttttt bbxAxAxx 2121

    dgttt ttt )()()()()()( bxAxx

    tgtttgttttttttttt bbxAIxAI 212121

    tgtttgttttttttttt bbxAIAIx 2121121

  • 15/46

    Solution of the Linear Differential Equation

    tgttgttt NMxx

    AIAIM tt 21121

    bAIN tt 21121

    tgtttgttttttttttt bbxAIAIx 2121121

    AAA )()( ttt

    bbb )()( ttt

    If A and B are independent of time:

    Selection of the time step t plays a key role in computation accuracy!

    16/46

    Nonlinear Differential Equations

    tt ,xfx

    t

    ttdttt ,xfxx

    tttttttttt ,,2

    xfxfxx

    Numerical Method:Simpsons-Rule, Newton-Raphson Iteration Procedure, Runge-Kutta Methods,

  • 17/46

    Equation Solver: MATLAB Simulation

    % Solution of the Circuit using Trapezoidal Method of Integrationclc, clg, clear% Input DataVd=8; L=5e-6; C=100e-6; rL=1e-3; R=1.0; fs=100e3; Vcontrol=0.75;Ts=1/fs; tmax=50Ts; deltat=Ts/50;%time=0: deltat : tmaxvst=time/Ts - fix (Time/Ts);%A=[-rL/L -1/L; 1/C -1/(C R)];b=[1/L 0]’;MN=inv(eye(2)-deltat/2 A);MN=MN (eye(2)+deltat/2 A);N=MN deltat/2 b%IL(1)=4.0; vC(1)=5.5;timelength=length(time);%For k=2 : timelengthx=M [iL(k-1) vC(k-1)]’+N (voi(k)+voi(k-1));iL(k)=x(1); vC(k)=x(2);end%plot (time, iL, time, vC)meta Example

    vst

    )1(s

    s fT

    vcontrol

    0

    0

    voi

    Tst

    t

    )(0

    1

    11

    1

    tvLvi

    CRC

    LLr

    dtdvdtdi

    oic

    L

    L

    c

    L

    Lvc

    iL

    rLvoi(t) RC

    18/46

    MATLAB Simulation Result of Low Frequency Behavior

    iL

    vc

    0t

    0.5 1 1.5 2 2.5 3 3.5 4.54 53

    4

    5

    6

    7

    8

    9

    10

    Real Signal

  • 19/46

    Simulation Example of a Buck Converter

    Rload

    Ton=7.5 st0

    (a)

    (b)

    Switch-control signal on off on off

    )101( sf

    Ts

    s

    (a) Circuit for simulation. (b) Switch control waveform.

    Lvc

    iL

    rL

    vd(t)C

    (5H) (5m)(100F)

    (8.0V)

    20/46

    Circuit Simulation: SPICE Approach

    vD

    0

    0

    6 2

    5

    3 4

    Diode

    Model name= Power_diode

    vCNTL

    Rsnub=100

    Csnub=0.1FSnubber

    iL

    L rL

    C vc

    RloadSW

    Model name= Switch

    Initial conditions: iL(O)=4AvC(O)=5.5V

    PSpice Example*DIODE 2 1 POWER_DIODERsnub 1 5 100.0Csnub 5 2 0.1uF*SW 2 0 6 0 SWITCHVCNTL 6 0 PULSE (0V, 1V, 0s, 1ns, 7.5us, 10us)*L 1 3 5uH IC=4ArL 3 4 1mC 4 2 100uF IC=5.5VRLOAD 4 2 1.0*VD 1 0 8.0*.MODEL POWER_DIODE D (RS=0.01, CJ0=10pF).MODEL SWITCH VSWITCH (RON=0.01).TRAN 10us 500.0us 0s 0.2us uic.PROBE.END

    1

  • 21/46

    PSPICE Simulation Results

    i(L)9.0

    5.0

    3.0

    0 100s 200 s 300 s 400s 500s

    v(4, 2)

    time

    Results of PSpice simulation: iL and vc.

    22/46

    Simulation and Experimental Results

    Simulation Experiment

  • 23/46

    Simulation Options for Power Conversion Systems

    Switching-Mode System

    Average modeling Cycle by cycle

    Analog Simulation(SPICE, SABER, etc.)

    Discrete Simulation(MATLAB, ACSI, etc.)

    LargeSignal DC

    SmallSignal

    AnalyticalExpressional

    Voltage,CurrentStresses

    Voltage,CurrentRipples

    LargeSignal

    Analog (SPICE,…)&Digital (MATLAB,…); Control Loop Design

    Closed-Loop Response

    Symbolic Analysis(MATHMATICA,MACSYMA, etc.)

    ‘Real’ or ‘Ideal’Devices

    Analog Simulation

    24/46

    Simulation of a Boost Converter

    Sam Ben-Yaakov, "Simulation of Power Conversion Systems: From the State of the Art to Future Trends," pp. 13-24, PCIM Proc., Nuremberg, 1999.

    The “real” device is replaced by an ideal “switch”.

    200V

    3.3

    IN D4 L2 OUT

    RL160

    1m

    C1

    MUR860

    30nH

    SD

    VinRg

    Vgate

    1nH

    Lmain

    50nH

    LSW

    IRFP460

    0

    M3

    200V

    3.3

    IN D1 L1 OUT

    RL160

    1m

    C1

    30nH

    SD

    VinRg

    Vgate

    1nH

    Lmain

    50nH

    LSW

    Sbreak

    0

    R1

    DbreakS1

    0.3

  • 25/46

    Behavioral Average-Model Representation of a Power Conversion System

    Passive and Active Partsof Circuit

    Duty-CycleGenerator

    (DCG)

    SIM-CircuitInteraction

    Switching InductionModel (SIM)

    V(a,b)

    V(a,c)

    a b

    c

    V(a,b)

    V(a,c)

    Constant

    VE Error Signal

    Don Doff ILDon

    26/46

    Switch Inductor Modeling Techniques

    (a) The switch inductor (b) Average switch inductor model

    a c

    b

    Ia

    L

    Ib

    IL = Ic

    a

    bc

    GaGb Gc

    ILEL L+–

  • 27/46

    Simulation of a Boost PFC Converter

    L1 L2 L3

    R2

    R3 R4

    R5

    R6R7 R8

    R9

    R10

    C1 C2

    C6

    C5

    C7

    C8

    C9

    D1

    IC1

    IC2

    +

    +

    –VREF

    CURRENT-ERRORAMPLIFIER

    VOLTAGE-ERRORAMPLIFIER

    MULTIPLIER

    PULSE-WIDTHMODULATOR

    RAMP

    ACINPUT

    LOAD

    Q

    28/46

    Simulation of a Soft-Switching Boost PFC Converter

    L1 L2 L3 L4 R1

    R2

    R3 R4

    R5

    R6R7 R8

    R9

    R10

    C1 C3 C4

    C6

    C5

    C7

    C8

    C9

    D1

    D2 D3

    IC1

    IC2

    +

    +

    –VREF

    CURRENT-ERRORAMPLIFIER

    VOLTAGE-ERRORAMPLIFIER

    MULTIPLIER

    PULSE-WIDTHMODULATOR

    RAMP

    ACINPUT

    LOAD

    Q

  • 29/46

    Equation Solver Oriented Simulators

    MATLAB http://www.mathworks.com/

    MathCAD http://www.mathcad.com/

    Mathematica http://www.mathematica.com/

    30/46

    General-Purpose Circuit-Oriented Simulators

    Ansoft http://www.ansoft.de/ EMTP http://www.eeug.de/ SABER (Analogy) http://www.analogy.com/ PSPICE (OrCAD) http://www.orcad.com/ ICAP4 (Intusoft) http://www.intusoft.com/ PSIM http://www.powersimtech.com/ PowerDesigners http://www.powerdesigners.com/ Simplis http://www.transim.com/ SimPlorer http://www.simplorer.com/ CASPOC http://www.caspoc.com/ Electronics Workbench http://www.interactiv.com/

  • 31/46

    Co-Simulation of a Motor Drive

    Control System(analog, digital, DSP, FPGA etc.)

    Powersupply

    AC/DCConverter/

    rectifier

    AC/DCConverter/

    inverterDClink

    BLDCmotor

    Mechanicalload

    PSIM

    32/46

    Ansoft: PExprt for Power Supply Design Simulation

    High Frequency Ansoft DesignerHFSS

    Signal Integrity SIwaveSpicelinkTPA

    Electromechanical Maxwell 2DMaxwell 3DSIMPLORERPExprtRMxprt

    Add-Ons AnsoftLinksFull-Wave SpiceOptimetricsParICsWinIQSIM

  • 33/46

    NS Webench for LED Design

    34/46

    TI Power Design Tools

  • 35/46

    TI Analog eLAB™ Design Center

    36/46

    SPICE-Based Analog Simulation ProgramTINA-TI™ Version 7.0 (Aug 21, 2008)

  • 37/46

    TI SwitcherPro(TM) Online Design Creator and Management Software

    http://focus.ti.com/en/download/aap/demos/switcherpro/switcherpro.html

    1. Define a Design Based on the PWM IC

    2. Select Components from a Database

    3. Complete the Design to Make AnalysesFrequency Response Analysis

    Calculated Effuiciency Analysis

    PCB Layout Guide

    38/46

    iSim - Intersil’s Interactive Web Design Simulation Toolhttp://web.transim.com/iSim/

  • 39/46

    ISL6721 Flexible Single Ended Current Mode PWM Controller

    ISL6721 Simulation Results

    Frequency Response (Loop Gain)

    Secondary Responses

    Primary Responses

  • 41/46

    PowerEsim

    It’s on-line It’s for everyone Worldwide access 100% server side simulation

    It’s FREE !!

    http://www.powerEsim.com

    42/46

    AEi: Power IC Model Library (http://www.aeng.com/)SPICE Models for the Power Electronics Designer

  • 43/46

    Wolfram Computable Document Format (CDF) Player

    44/46

    Operational Amplifier Gain-Bandwidth Characteristics

  • 45/46

    Summary

    電路模型化與電腦模擬在電力電子系統的分析與設計過程中,扮演著重要的角色。

    模擬的目標應與模型化的層次配合。

    CAD在高功率密度交換式電源轉器的分析、設計、與驗證過程中,將愈為重要。

    善選使用的CAD輔助設計軟體,有助於快速完成電力電子的系統設計。

    46/46

    References

    [1] H. Jin, “Behavior-mode simulation of power electronic circuits,” IEEE Trans. on Power Electronics, vol. 12, no. 3, pp, 443-452, May 1997.

    [2] D. Maksimovic, A. M. Stankovic, and V. J. Thottuvelil, and G. C. Verghese, “Modeling and simulation of power electronic converters,”Proceedings of the IEEE, vol. 89, no. 6, pp. 898-912, June 2001.

    [3] Sam Ben-Yaakov, “Simulation of power conversion systems: from the state of the art to future trends,” pp. 13-24, PCIM Proc., Nuremberg,1999.

    [4] V. Rajagopalan (Guest Editor), Special Issue on Computers in Power Electronics, Guest Editorial, p. 397, IEEE Trans. on PowerElectronics, vol. 12, no. 3, May 1997.

    [5] Christophe Basso, Switch-Mode Power Supplies - SPICE Simulations and Practical Designs, McGraw-Hill, Feb. 1, 2008.

    [6] Christophe P. Basso, Switch-Mode Power Supply SPICE Cookbook, McGraw-Hill Professional; 1st Ed., March 19, 2001.

    [7] Steven M. Sandler, SMPS Simulation with Spice 3, McGraw-Hill., 2st Ed., 1996.

    [8] Steven M. Sandler and Charles E. Hymowitz, SPICE Circuit Handbook, McGraw-Hill Publishing Co., Aug. 2006.

    [9] Muhammad H. Rashid, SPICE for Power Electronics and Electric Power, Second Edition, CRC Press, Nov. 2005.

    [10] G. Massobrio and P. Antognetti, Semiconductor Device Modeling with SPICE, McGraw-Hill., 1993.

    [11] W. Banzhaf, Computer-Aided Circuit Analysis Using PSPICE, Prentice-Hall, Inc., 1992.

    [12] M. H. Rashid, SPICE for Circuits and Electronics Using PSPICE, Prentice-Hall, Inc., 1990.

    [13] W. Banzhaf, Computer-Aided Circuit Analysis Using PSPICE, Prentice-Hall, Inc., 1989.

    [14] P. W. Tuinenga, SPICE: A Guide to Circuit Simulation & Analysis Using PSPICE, Prentice-Hall, Inc., 1988.

    [15] Power Specialist's App Note Book, Papers on Simulation, Modeling and More, Edited by Charles Hymowitz,http://www.intusoft.com/lit/psbook.zip

    [16] Inline equations offer hysteresis switch in PSpice, Christophe Basso, On Semiconductor, EDN, August 16, 2001