12
15 農桿菌感染誘發紅豆上胚軸之黃化反應 程台生 1 *、潘怡蓉 2 、郭貞吟 3 1 國立臺南大學生物科技學系 2 高雄市楠梓區翠屏國民中小學 3 嘉南藥理科技大學生物科技學系 摘要 豆科植物因為組織的再生能力,或農桿 菌的感染效果不好,使其利用農桿菌基因轉 殖的效率不佳。紅豆上胚軸農桿菌基因轉殖 系統,由於胚軸黃化及壞死情形嚴重,導致 基因轉殖效率降低。農桿菌 EHA105- pCAMBIA1201 對紅豆高雄 6 8 9 號的 GUS 基因轉殖效率相當,在高雄 7 號的 GUS 表現 不佳。農桿菌 LBA4404 KYRT1 ,因為 GUS 表現差或過度引起組織黃化,所以並不適合 用在紅豆上胚軸農桿菌基因轉殖。使用組織 化學染色及影像處理軟體,分析胚軸切面細 胞超氧陰離子、H 2 O 2 及木質素的累積,發現 黃化現象與這些因子有關,而且 H 2 O 2 的釋放 呈現雙相。細胞膜 NADPH 氧化抑制劑 DPI (0.5 μM),可以提昇胚軸切面細胞 GUS 基因的表現 1.96 倍,並降低 H 2 O 2 與超氧陰 離子的累積,分別達 43%16%,但是 DPI 對細胞黃化減輕的能力有限。有關 DPI 在紅 豆胚軸農桿菌基因轉殖的功能以及作用機 制,須要進一步探討。 關鍵詞︰紅豆、農桿菌、活性氧、DPIAgrobacterium-induced Hypersensitive Necrotic Reaction in Azuki Bean (Vigna angularis) Epicotyls Tai-Sheng Cheng 1 *, Yi-Rong Pan 2 and Zhen-Yin Guo 3 1 TSLAB, Department of Biological Science and Technology, National University of Tainan, Tainan 70005, Taiwan ROC 2 Kaohsiung Municipal Cuei-Ping Junior High and Elementary School, Kaohsiung 81166, Taiwan ROC 3 Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan ROC ABSTRACT The most commonly transformation method for legumes is based on infection by Agrobacterium tumefaciens. However, tissue necrosis and cell death are seriously problems for the success of gene transfer. The A. tumefaciens strains EHA105, LBA4404, and KYRT1 harboring the binary plasmid pCAMBIA1201 were used in the studies on Agrobacterium-mediated gene transfer in azuki bean. Azuki bean cultivar KS7 showed much lower GUS gene expression while others (KS6, 8, and 9) expressed better having almost equivalent transformation efficiency in epicotyls explants. LBA4404 and KYRT1 may not suitable for azuki bean transformation due to low GUS expression or high tissue browning. Results of histochemical detection and image analysis for reactive oxygen species (ROS), superoxide and hydrogen peroxide and lignin accumulation in these necrotic cells revealed that tissue browning was partly affected by ROS production. Hydrogen peroxide production was a biphasic response during co-clutivation. Diphenylene iodonium (DPI), a specific inhibitor for flavoenzymes such as NAD(P)H oxidase, was tested for its possible function in improvement of Agrobacterium- * 通信作者, [email protected] 投稿日期:2008 10 11 接受日期:2009 2 7 作物、環境與生物資訊 6:15-26 (2009) Crop, Environment & Bioinformatics 6:15-26 (2009) 189 Chung-Cheng Rd., Wufeng, Taichung Hsien 41362, Taiwan ROC 研究報告

農桿菌感染誘發紅豆上胚軸之黃化反應 - TARIweb.tari.gov.tw/csam/CEB/member/publication/6(1)/002.pdf · 農桿菌誘發紅豆之黃化反應 15 農桿菌感染誘發紅豆上胚軸之黃化反應

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • 農桿菌誘發紅豆之黃化反應 15

    農桿菌感染誘發紅豆上胚軸之黃化反應

    程台生 1*、潘怡蓉 2、郭貞吟 3 1國立臺南大學生物科技學系 2高雄市楠梓區翠屏國民中小學 3嘉南藥理科技大學生物科技學系

    摘要

    豆科植物因為組織的再生能力,或農桿

    菌的感染效果不好,使其利用農桿菌基因轉

    殖的效率不佳。紅豆上胚軸農桿菌基因轉殖

    系統,由於胚軸黃化及壞死情形嚴重,導致

    基 因 轉 殖 效 率 降 低 。 農 桿 菌 EHA105- pCAMBIA1201 對紅豆高雄 6、8、9 號的 GUS基因轉殖效率相當,在高雄 7 號的 GUS 表現不佳。農桿菌 LBA4404 及 KYRT1,因為 GUS表現差或過度引起組織黃化,所以並不適合

    用在紅豆上胚軸農桿菌基因轉殖。使用組織

    化學染色及影像處理軟體,分析胚軸切面細

    胞超氧陰離子、H2O2 及木質素的累積,發現黃化現象與這些因子有關,而且 H2O2 的釋放呈現雙相。細胞膜 NADPH 氧化酶抑制劑DPI (0.5 μM),可以提昇胚軸切面細胞 GUS基因的表現 1.96 倍,並降低 H2O2 與超氧陰離子的累積,分別達 43%及 16%,但是 DPI對細胞黃化減輕的能力有限。有關 DPI 在紅豆胚軸農桿菌基因轉殖的功能以及作用機

    制,須要進一步探討。 關鍵詞︰紅豆、農桿菌、活性氧、DPI。

    Agrobacterium-induced Hypersensitive Necrotic Reaction in Azuki Bean (Vigna angularis) Epicotyls

    Tai-Sheng Cheng1*, Yi-Rong Pan2 and Zhen-Yin Guo3 1 TSLAB, Department of Biological Science and

    Technology, National University of Tainan, Tainan 70005, Taiwan ROC

    2 Kaohsiung Municipal Cuei-Ping Junior High and Elementary School, Kaohsiung 81166, Taiwan ROC

    3 Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan ROC

    ABSTRACT The most commonly transformation method

    for legumes is based on infection by Agrobacterium tumefaciens. However, tissue necrosis and cell death are seriously problems for the success of gene transfer. The A. tumefaciens strains EHA105, LBA4404, and KYRT1 harboring the binary plasmid pCAMBIA1201 were used in the studies on Agrobacterium-mediated gene transfer in azuki bean. Azuki bean cultivar KS7 showed much lower GUS gene expression while others (KS6, 8, and 9) expressed better having almost equivalent transformation efficiency in epicotyls explants. LBA4404 and KYRT1 may not suitable for azuki bean transformation due to low GUS expression or high tissue browning. Results of histochemical detection and image analysis for reactive oxygen species (ROS), superoxide and hydrogen peroxide and lignin accumulation in these necrotic cells revealed that tissue browning was partly affected by ROS production. Hydrogen peroxide production was a biphasic response during co-clutivation. Diphenylene iodonium (DPI), a specific inhibitor for flavoenzymes such as NAD(P)H oxidase, was tested for its possible function in improvement of Agrobacterium-

    * 通信作者 , [email protected] 投稿日期:2008 年 10 月 11 日 接受日期:2009 年 2 月 7 日 作物、環境與生物資訊 6:15-26 (2009) Crop, Environment & Bioinformatics 6:15-26 (2009) 189 Chung-Cheng Rd., Wufeng, Taichung Hsien 41362, Taiwan ROC

    研究報告

  • Crop, Environment & Bioinformatics, Vol. 6, March 2009 16

    mediated azuki bean gene transfer. In general, tissue browning was improved slightly, GUS gene expression was increased by 1.96-fold in DPI (0.5 μM) treated explants and H2O2 and superoxide accumulation was reduced by 43% and 16% respectively. Further investigations are necessary for the possible mechanism and useful theory of DPI in Agrobacterium-mediated azuki bean gene transfer. Key words: Azuki bean, Agrobacterium, Reactive

    oxygen species, Diphenylene iodonium.

    前言

    農桿菌基因轉殖係在微生物和寄主接

    觸、辨識後,經微生物和寄主啟動相關的基

    因表現,最後再經由農桿菌體內的 T-DNA 將外源基因送進寄主細胞,而達到轉殖目的

    (Gustavo et al. 1998)。不過,農桿菌對一些重要的作物,如玉米、小麥、黃豆的基因轉

    殖效率通常都很低。主要原因之一,或許和

    寄主細胞對農桿菌感染的生理反應有關,例

    如 寄 主 細 胞 防 禦 機 制 的 過 敏 反 應

    (hypersensitive reaction; HR)即屬之(Ko et al. 2003, Kuta and Tripathi 2005, Olhoft and Somers 2001, Olhoft et al. 2001, Zheng et al. 2005)。T-DNA 或農桿菌感染都能引起寄主細胞黃化(Deng et al. 1995), 並引發組織死亡 (Hansen 2000, Das et al. 2002)。由於T-DNA 轉殖、細胞黃化與死亡,有可能發生在同一細胞;或者接受 T-DNA 的細胞,其生長及分化受其他黃化或死亡細胞的抑制,

    而降低轉殖效率(Potrykus 1990)。此外,黃化的細胞或組織可能累積大量次級代謝物,

    抑制 T-DNA 轉殖與轉殖細胞的生理活性(Goodman and Novacky 1994)。因此,利用抗氧化物質減輕細胞死亡,達到提昇植物基

    因 轉 殖 效 率 的 研 究 日 益 普 遍

    (Enriquez-Obergon et al. 1997, 1999, Hirano et al. 1995, Ishida et al. 1996, Olhoft et al. 2001b)。

    植物細胞能夠辨識入侵的微生物,釋放

    化學訊號分子,引發防禦機制將微生物排拒

    於體外(Somssich and Hahlbrock 1998)。在植物的防禦機制中,細胞受微生物感染發生

    氧爆作用(oxidative burst)釋放大量的活性氧(reactive oxygen species; ROS),包括超氧陰 離 子 (superoxide; O2·–) 、 過 氧 化 氫(hydrogen peroxide; H2O2, 雙氧水)、 ·OH (hydroxyl)、peroxyl and alkoxyl radicals等,其中以過氧化氫的累積最受重視(Kuta and Tripathi 2005)。氧爆作用所釋放的活性氧,其毒性足以殺死農桿菌 (Baker and Orlandi 1995, Wojtaszek 1997)。而活性氧也可以誘發 PR 蛋白質(pathogenesis-related proteins; Mehdy 1994),抑制 T-DNA 轉殖到植物細胞。此外,·OH 可以破壞 DNA 結構,使 外 源 基 因 在 寄 主 細 胞 不 能 正 常 表 現

    (Finnegan and McElroy 1994)。Baker et al. (1995)發現過氧化氫在細胞的累積呈現雙相(biphasic response)特性。植物細胞與致病性(virulent)或非致病性(avirulent)微生物接觸後,會立即釋放過氧化氫(phase I)。而只有非致病性微生物與植物細胞的接觸,才有第

    二次大量的過氧化氫累積(phase II)。另外,細胞過敏反應所釋放的過氧化氫,能促進植

    物酚類化合物 (Koga 1994)與木質素的形成(Barcelo 1998a),造成植物細胞壁增厚使其防止病菌侵襲的能力增強。

    細胞間隙的鹼性環境與外物(elicitor)刺激所引發的氧爆反應,以及 pH 依賴型細胞壁過氧化酵素催化所釋出的 H2O2,是寄主在生物逆境(biotic stress)下,植物產生 ROS 的重 要 途 徑 (Bolwell and Wojtaszek 1997, Neill et al. 2002a, 2002b)。其中原生質膜NADPH 氧化酶(NADPH oxidases; NOX)是當病菌入侵非致病性寄主時,氧爆作用中

    O2·–的主要來源(Lamb and Dixon 1997)。NADPH 氧化酶在哺乳類是由兩個膜蛋白gp91phox、p22phox (phox; phagocyte oxidase),三個細胞質調控蛋白 p40phox、 p47phox、p67phox 共同組成(Bokoch et al. 1994)。植物含有類似 gp91phox的氧化酵素 Rboh (respiratory

  • 農桿菌誘發紅豆之黃化反應 17

    burst oxidase homologs),依基因體晶片分析結果,擬南芥的 Rboh 基因分成根部(AtrbohA-G, I)、花粉(AtrbohH and J)與植株各部位(AtrbohD and F)均可表現等三型,其中 AtrbohC, E 和 F 的表現可經由農桿菌誘發(Sagi and Fluhr 2006)。Torres et al. (2002)指出 AtrbohD 突變可以大幅降低擬南芥葉片ROS 的累積,而 AtrbohF 突變對細胞死亡的影響最大。Sagi et al. (2004)研究反義 Rboh基因轉殖番茄,除了葉片內 ROS 累積降低外,植物的分枝數增加,生長由無限型轉

    換為有限型並有助於繁殖生長。因為蛋白

    水 解 酵素抑制素 II (PIN II; proteinase inhibitor II)在反義 Rboh 番茄的表現量降低,該作者認為受傷(wounding)引發的系統性防禦反應過程中,Rboh 基因的角色十分重要。

    本研究依據前人的重要發現,利用農桿

    菌紅豆胚軸基因轉殖系統,探討農桿菌感染

    對紅豆胚軸細胞活性氧的誘發作用,以及受

    感染細胞木質化的改變。由於紅豆細胞對農

    桿菌的感染十分敏感,細胞黃化現象嚴重。

    因 此 , 利 用 抑 制 劑 DPI (diphenylene iodonium)嘗試降低由 NAD(P)H 氧化酶等核黃酵素 (flavin-containing enzymes)所引發的氧爆作用,了解紅豆胚軸對農桿菌感染

    的生理反應,以及是否有助於提昇紅豆胚軸

    基因轉殖的效率。

    材料與方法 一、材料

    本研究所使用的國產紅豆高雄 6、7、8、9 四個品種(KS6, KS7, 8 and KS9),係由農委會高雄區農業改良場提供。試驗材料取回

    後,儲存於4℃冰箱備用。農桿菌(Agrobacterium tumefaciens) LBA4404、EHA105 得自中央研究院,KYRT1 則取自美國肯塔基大學 Dr. GB Collins 研究室。轉殖用的 pCAMBIA1201 binary vector,乃由澳洲 CAMBIA (Center

    for the Application of Molecular Biology to International Agriculture)提供。本研究所使用的藥品,Acetosyringone (Fluka 38766)購自 Fluka Chemie , 無 水 乙 醇 (99.5%, CH3CH2OH) 購 自 默 克 (MERCK KGaA, Darmstadt, Germany)。Gelrite 購自 Kelco, USA,Phyto agar 購自 Duchefa Biochemie, the Netherlands,Sucrose Ultrapure 購自Bio Basic Inc,X-Gluc (5-bromo-4-chloro-3- indolyl-β-D-glucuronic acid cyclohexy- lammonium)購自 Gold Biotechnology Inc.。 BA (6-benzyl-aminopurine, B-9395)、chlor- amphenicol (C-3787)、DAB (3, 3’-diamino- benzidine, D-8001) 、 DPI (diphenyl- eneiodonium chloride, D-2926) 、 NBT (nitroblue tetrazolium, N-5514) 、phloroglucinol (P-3502)均購自 Sigma 公司(Sigma, Saint Louis, MO, USA)。MS 鹽、硝酸鉀 (KNO3)、硝酸銨 (NH4NO3)、氯化鈉(NaCl)、濃鹽酸(HCl)是購自和光純藥工業株式會社 (Wako Pure Chemicals Industries, Ltd., Osaka, Japan)。Tryptone、yeast extract則購自 USB corporation, USA,利拉西林(lilacillin)購自臺灣武田製藥。以上所有溶劑與藥品的純度,都是各公司生產販售之最高

    等級產品。95%乙醇則是購自臺灣菸酒公司。

    二、方法 1. 紅豆種子消毒與上胚軸組織培養

    紅豆高雄 6、7、8、9 號種子消毒依照Di et al. (1996)氯氣薰蒸法,將存放在抽氣櫥內的乾燥器,放入已平鋪紅豆種子的培養皿

    (15 x 100-mm)。另外,於燒杯中裝乘 100 mL的漂白水(Clorox, 6% NaOCl),並緩緩滴入3.5 mL 的濃鹽酸(12N),緊閉乾燥器並連續薰蒸 16-24 h。處理完畢的種子,可以封存在培養皿,於 4℃冰箱保存。取薰蒸消毒過的紅豆種子,以無菌水清洗並浸泡 16 h。用 11 號解剖刀片剝去種皮,將處理完畢的種子,置於

    不含維他命、荷爾蒙的 MS 固態培養基

  • Crop, Environment & Bioinformatics, Vol. 6, March 2009 18

    (Murashige and Skoog 1962),於 25℃、黑暗生長箱(KS LTI613)中發芽培養 7~10 d。選擇胚軸高度 9~11 cm 的健康植株為材料,去除頂芽、子葉與下胚軸。將上胚軸切成長 1 cm之片段,並倒立在固態 MS 培養基備用。 2. DPI 前處理

    將準備好長 1 cm 的培植體片段,於室溫下 浸 泡 在 不 同 濃 度 的 DPI (diphenyleneiodonium chloride) 水 溶 液(0.1-10 μM),10-15 min (10 μM 處理 30 min)。處理完畢的紅豆培植體,以吸水紙吸去多餘的 DPI 水溶液,然後以基部向上倒插在 MS 固體培養基備用。 3. 農桿菌培養與感染

    取含有質體 pCAMBIA1201 的農桿菌菌落 , 置 於 含 有 氯 黴 素 (25 mg L- 1 chloramphenicol)的 3 mL Luria broth (LB)培養基中(10.0 g L- 1 tryptone, 5.0 g L- 1 yeast extract, 10.0 g L-1 NaCl, pH7.0),於 28℃震盪培養 24 h。取菌液 20 μL,加入含acetosyringone (100 μM)及氯黴素的 50 mL LB 培養基中,於 28℃震盪培養,待 O.D600到達 0.8-1.0 為止。進行感染前,將菌液離心(2,190 xg, 10 min),以液態 MS 培養基清洗三次,再用 LB 調整 O.D600 值至適當濃度。

    將準備好並倒插在 MS 固體培養基的培植體片段,以微量分注器點上 2 μL 的農桿菌菌液,靜置 10 min。然後將培植體片段平放在含 BA (10 mg L- 1 6-benzyl-aminopurine)的 MS 培養基(10 BA)中,於 25℃黑暗,培養48 h。共培養 48 h 後,將培植體取出,以無菌水清洗並用吸水紙輕輕吸除培植體上多餘

    的液體,再將培植體移到含 BA (1 mg L- 1 )以及利拉西林(500 mg L-1 lilacillin)的 MS 培養基(1 BA-L),於 25℃、冷白光(30 μmol m-2 s-1)、16 h 光照生長箱中培養。每項試驗皆重覆三次,每次試驗取 20-30 個培植體,三重覆。 4. 超氧陰離子、過氧化氫及木質素偵測

    紅豆培植體的超氧陰離子、過氧化氫及

    木質素偵測,通常是在共培養 48 h 後進行。

    過氧化氫偵測是依照 Thordal-Christensen (1997)的方法,將培植體受農桿菌感染面徒手切成 0.5 mm 薄片,滴上 2 μL DAB 溶液(1 mg mL-1 3, 3’-diaminobenzidine-HCl, pH 3.8),染色 10 min。累積 H2O2 的組織,染色後呈現黃褐色(deep brown)。超氧陰離子偵測則依照 Barcelo (1998b)的方法,在受農桿菌感染的培植體切片(0.5 mm),滴上 2 μL 的 0.25 mM NBT 溶液(nitroblue tetrazolium in 50 mM K-phosphate buffer, pH 7.8)。在照光環境下,染色 15-20 min,含超氧陰離子的組織,染色後呈現紫藍色(purple blue)。木質素偵測是依照 Barcelo (1998a)的方法,將培植體0.5 mm 薄片,滴上 2 μL 的 1.0 (w/v) phloroglucinol-HCl 乙醇溶液(25:75, v/v),染色 10-15 min。在木質素累積的組織,染色後呈現洋紅色(magenta)。染色後的培植體切片,可以在解剖顯微鏡下觀察並拍照記錄。 5. GUS 基因表現

    GUS 基因表現偵測係遵循 Jefferson et al. (1987),將共培養感染 48 h 的培植體洗淨後,浸置於 X-Gluc (5-bromo-4-chloro-3-indolyl- β-D-glucuronic acid cyclohexylammonium)溶液(pH 7.0)中,於 37℃反應 48 h 之後,取出培植體在解剖顯微鏡下觀察GUS藍色反應並拍照紀錄。 6. 影像處理及統計分析

    紅豆胚軸感染面的徒手切片(0.5 mm),經適當染色處理後,在解剖顯微鏡 (Nikon SMZ-10A)下所拍攝的數位影像照片(Nikon Coolpix 995 digital camera) ,可以利用Image J 影像處理軟體(Rasband 2001, 軟體下載自 NIH 網站),統計染色面積或顏色強弱度。為避免數位影像對比不一所造成的差

    異,將數位影像以 PhotoImpact 10.0 開啟,調整為高亮度、設定中間值並勾選陰影。另

    存新檔後,再將影像轉檔成 8-bit 灰階相片。在 Image J 軟體的黑白計算上限則定為 180,最低下限為零。利用工具選項圈選培植體切

    面,由軟體算出總面積(total area)與總強度

  • 農桿菌誘發紅豆之黃化反應 19

    (total intensity)。接著圈選未黃化(或無 GUS表現)之區塊,由軟體算出其面積(area)與強度(intensity)。兩者相減後,得到培植體切面黃化(或 GUS 表現)區塊之面積與強度。將統計所得試驗數據,以 SPSS for Windows10.0軟體進行平均數及變異數分析(P < 0.05)。

    結果與討論

    一、不同的農桿菌系對紅豆的感染效果 利用帶有質體 pCAMBIA1201 的農桿菌

    EHA105、LBA4404、KYRT1 分別感染紅豆高雄 6、7、8、9 號,在 10BA 培養基共培養48 h 後,GUS 基因表現的情形如 Table 1。依 GUS 基因表現的藍色面積大小或顏色深淺 程 度 分 析 , 農 桿 菌 EHA105- pCAMBIA1201 對紅豆的感染能力最強。其中紅豆高雄 6、8、9 號的反應相近,高雄 7號效果較差。這個結果與 Yamada et al. (2001)的研究相似,農桿菌 EHA105-pIG121 感染紅豆後的 GUS 藍色反應比率達 90.4%,遠大於LBA4404-pIG121 的 50%。在後續試驗中,作者們指出 EHA105 的基因轉殖效果,也高過 LBA4404,達兩倍之多 (Yamada et al. 2001)。

    二、 農桿菌感染引起的細胞黃化反應與木質素累積 紅豆切離胚軸的細胞生長及分化速度很

    快(Chien 2004, Mohamed et al. 2006),又可以利用農桿菌進行基因轉殖 (Chien et al. 2004, Yamada et al. 2001)。只是紅豆胚軸農桿菌基因轉殖的效率,似乎和其他豆科植物

    的情況一樣都很低。使用一些新的策略,

    Khalafalla et al. (2005)對紅豆胚軸農桿菌基因轉殖的效率雖然略有改進,但仍不理想。

    Pan (2006)的試驗觀察顯示,受感染的紅豆胚軸組織受農桿菌感染後的黃化情形十分嚴

    重。Potrykus (1990)認為轉殖細胞的生長與發育,可能受到黃化組織的抑制,這也是造

    成農桿菌基因轉殖效率降低的主要原因

    (Deng et al. 1995, Hansen 2000)。 Table 2 顯示紅豆高雄 8 號培植體,受農

    桿菌 EHA105-pCAMBIA1201 感染後的細胞黃 化 程 度 , 較 其 他 紅 豆 品 種 輕 。

    KYRT1-pCAMBIA1201 在紅豆高雄 8 號培植體所引起的細胞黃化,雖然與 EHA105- pCAMBIA1201 相當,但是 GUS 基因的表現並不理想(Table 1)。由於 T-DNA 導入外源基因的過程,受 vir 基因、農桿菌染色體基因及寄主基因三方面的影響 (Gelvin 2008)。因此,農桿菌 KYRT1 雖然適合黃豆子葉節基因轉殖(Meurer et al. 1998),但是在紅豆胚軸的感染效果不佳。可能的原因,或許和 KYRT1與 寄 主 間 的 交 互 作 用 有 關 。 至 於

    LBA4404-pCAMBIA1201,一方面引起紅豆培植體的細胞黃化,另一方面造成木質素的

    累積(Table 2),容易引起細胞死亡,對紅豆胚軸基因轉殖不利。依照以上這些情況,本

    研 究 以 下 的 試 驗 是 以 農 桿 菌

    EHA105-pCAMBIA1201 感染紅豆高雄 8 號培植體為研究對象,針對農桿菌感染引發的

    過敏反應以及降低活性氧釋放,是否減輕黃

    化與有助於提昇轉殖效果進行探討。

    三、農桿菌感染引發的過敏反應 有關農桿菌轉殖引起植物組織過敏性反

    應,並降低受感染細胞存活的研究報告很多

    (Pu and Goodman 1992, Deng et al. 1995, Perl et al . 1996, Mercuri et al . 2000, Chakrabarty et al. 2002, Das et al. 2002)。利用紅豆高雄 8 號胚軸農桿菌基因轉殖系統,組織化學染色與影相處理軟體,針對受感染

    組織 48 h 內 H2O2 的累積統計作圖,如 Fig. 1。顯然,紅豆高雄 8 號切離胚軸感染後,H2O2 累積有雙相現象。氧爆作用 H2O2 累積的雙相現象,為過敏反應的重要指標(Lamb and Dixon 1997)。在未感染的切離胚軸,H2O2 雖然也有累積的情形,但是沒有明顯的雙相現象出現。Mahalingam and Fedoroff (2003)認為第一個活性氧發生的高峰在感染

  • Crop, Environment & Bioinformatics, Vol. 6, March 2009 20

    Table 1. GUS gene expression in azuki bean explants transformed with different A. tumefaciens strains.

    GUS spots Cultivar

    Area (%) Intensity (%) KS6

    EHA105 53.41±16.38a 70.31±25.12a’ LBA4404 ND ND KYRT1 1.56±1.67b 2.32±2.07b’

    KS7 EHA105 39.32±17.93a 58.08±26.85a’ LBA4404 0.12±0.07b 0.25±0.15b’ KYRT1 ND ND

    KS8 EHA105 53.39±14.97a 73.22±17.76a’ LBA4404 10.65±9.26b 11.48±10.47b’ KYRT1 ND ND

    KS9 EHA105 63.09±20.69 67.62±20.68 LBA4404 ND ND KYRT1 ND ND

    Data represent the mean±S.E. of three experimental replicates; values with different letters in the same experiment and same row are significantly different (p < 0.05). ND = not detectable.

    Table 2. Agrobacterium-induced cell browning and lignin accumulation. Browning Lignin accumulation

    Cultivar Area (%) Intensity (%) Area (%) Intensity (%)

    KS6 EHA105 62.88±14.97a 77.83±18.46a’ 12.75±5.01a 21.63±8.80a’ LBA4404 65.85±10.66a 90.02±19.15a’ 12.21±3.47a 21.59±7.28a’ KYRT1 32.16±8.96b 43.27±10.52b’ 10.52±4.58a 19.86±9.05a’

    KS7 EHA105 70.65±16.08a 99.55±23.94a’ 10.54±4.34a 19.95±8.43a’ LBA4404 58.62±14.62ab 90.62±21.65ab’ 14.91±7.18a 28.93±15.43a’ KYRT1 44.49±21b 67.19±28.35b 11.19±5.86a 19.95±11.26a’

    KS8 EHA105 38.86±9.58b 61.62±14.21b’ 20.01±5.03a 34.41±12.49a’ LBA4404 64.25±15.51a 89.01±19.51a’ 23.88±7.68a 45.11±15.13ab’ KYRT1 37.30±7.55b 70.99±12.66ab’ 13.39±4.21b 26.41±7.89a’

    KS9 EHA105 69.71±7.08a 77.27±8.95a’ 18.70±7.58a 33.99±18.60a’ LBA4404 58.11±15.61ab 78.87±22.05a’ 19.39±6.26a 35.03±11.53a’ KYRT1 52.25±6.43b 77.39±5.87a’ 14.73±5.38a 28.36±11.14a’

    Data represent the mean±S.E. of three experimental replicates; values with different letters in the same experiment and same row are significantly different (p < 0.05).

  • 農桿菌誘發紅豆之黃化反應 21

    後 1-2 h,而第二個高峰在感染後 3-6 h 產生。第二個活性氧高峰產生的原因是植物受非致

    病性病菌(avirulent pathogen)感染所引發,它可以引起寄主的過敏反應,包括引起局部

    的細胞死亡。一般當過敏反應發生後,受感

    染部位尤其近微生物附近的細胞,通常在

    12-24 h 左右即死亡(Hermanns et al. 2003)。紅豆的第二個 H2O2 高峰產生的時間是感染後 12 h 產生(Fig. 1),是否細胞死亡也在此時發生,目前並不清楚。但是,氧爆作用和長

    時間 ROS 的累積,是啟動細胞死亡機制的重要因素(Overmyer et al. 2003)。

    植物體釋放的活性氧 H2O2,因為具備了多 重 的 功 能 與 目 的 (Bhattacharjee 2005, Geisler et al. 2006, Varnova et al. 2002)而受到關注。近年來,毒性較低的超氧陰離子,

    雖然半衰期短(2-4 μs)( Dat et al. 2000)、又不能穿越生物膜,惟因為容易經超氧岐化酵素

    (superoxide dismutase; EC 1.15.1.1)反應產生過氧化氫而廣受重視。利用 Barcelo (1998b)組織染色偵測超氧陰離子的方法,紅豆高雄 8號切離胚軸的超氧陰離子分布呈現梯度效應

    (Fig. 2)。在近頂芽端的胚軸組織,超氧陰離子濃度高(upper left);靠近胚軸基部的組織(lower right),超氧陰離子濃度較低 (Fig. 2A)。但是,當紅豆高雄 8 號胚軸經農桿菌EHA105- pCAMBIA1201 感染後,超氧陰離子分布的梯度效應消失(Fig. 2B),胚軸切面細胞釋放大量的超氧陰離子。因此,在農桿菌

    感染的紅豆胚軸組織,大量的活性氧產生必

    定與細菌引發的過敏反應有關。至於過敏反

    應中,引起組織黃化的原因,除了細胞內 ROS的累積,也和培植體的生理狀態(例如:次級代謝物含量、乙烯生成)、微生物感染狀況、以及微生物和寄主間的交互作用有關(Kuta and Tripathi 2003)。因此,黃化現象會影響轉 殖 效 率 , 應 於 轉 殖 試 驗 中 盡 量 避 免

    (Potrykus 1990)。而組織黃化與農桿菌感染初期細胞內 ROS 累積程度不一(Table 3),應是可預期的結果,此亦顯示感染初期 H2O2

    的大量累積,似乎對紅豆胚軸細胞的黃化現

    象影響有限。

    四、DPI 降低活性氧釋放 有關農桿菌感染引起植物組織黃化,並

    降低受感染細胞存活的研究報告很多 (Pu and Goodman 1992, Deng et al. 1995, Perl et al. 1996, Mercuri et al. 2000, Chakrabarty et al. 2002, Das et al. 2002)。Ditt et al. (2001)認為植物可以針對農桿菌感染調控自身的基因

    表現,而農桿菌有能力誘發植物的防禦機

    制。前面的試驗結果顯示,紅豆胚軸對農桿

    菌的感染十分敏感,通常在微生物侵襲後釋

    放大量的活性氧,引發過敏反應並出現組織

    黃化及壞死現象。 原生質膜 NADPH 氧化酶 (NADPH

    oxidase, NOX or Rhbo in plant)是病菌入侵非致病寄主時,氧爆作用初期細胞間隙 ROS (superoxide and hydrogen peroxide)的重要來源(Lamb and Dixon 1997, Overmyer et al. 2003)。它們對細胞死亡的效應,可能是促進或是抑制。例如 Torres et al. (2005)發現擬南芥 Atrboh 蛋白產生的 ROS,和水楊酸(salicylic acid)參與的細胞死亡機制產生拮抗作用。DPI 對 NAD(P)H 氧化酶所產生的ROS 具有很好的抑制效果,可以降低氧爆作用中植物細胞 ROS,如 O2·–和 H2O2 的釋放(Levine et al. 1994, Auh and Murphy 1995, Desikan et al. 1996, Dwyer et al. 1996),減輕過敏反應過程中植物細胞黃化及死亡。Table 4 顯示 DPI 不影響農桿菌 T-DNA 將基因殖入寄主的功能。事實上,當 DPI 濃度在 0.5 μM時,可以增加 GUS 基因表現 1.96X,降低細胞間隙超氧陰離子累積(16%)並減少過氧化氫產生達 43%。而 GUS 基因表現與過氧化氫累積,兩者呈中度負相關(-0.423)。DPI減少超氧陰離子和降低 H2O2 累積的能力,並不完全一致(0.392),因此細胞間隙超氧陰離子或 H2O2的產生仍有其他來源。至於 DPI (0.5 μM)對改善細胞黃化程度的效果,大

  • Crop, Environment & Bioinformatics, Vol. 6, March 2009 22

    Fig. 1. H2O2 production after challenge of azuki bean explants (KS8) by A. tumefaciens. ○ EHA105-

    pCAMBIA1201; ● Not infected.

    Fig. 2. Effect of Agrobacterium on superoxide production of azuki bean explants (KS8) as

    monitored by the NBT method (Barcelo 1998). The 0.5-mm segments were cut by free hand from azuki bean explants and stained with the NBT solution for 15-20 min. A superoxide gradient was detectable from the non-infected explants (A). Challenge of azuki bean explants by A. tumefaciens eliminated superoxide gradient (B). Plant segments were photographed at the end of coclutivation and arranged from the apical to the bottom of the epicotyl in alphabetical order. Bar = 0.3 mm. A. control; B. Agrobacterium-induced superoxide production.

  • 農桿菌誘發紅豆之黃化反應 23

    Table 3. Agrobacterium-induced cell browning and H2O2 production.

    Browning H2O2 accumulation Explant Area (%) Intensity (%) Area (%) Intensity (%)

    Stain immediately 0a 0a’ 4.24±2.22a 9.46±4.89a’ Co-cultivation and no infection 31.42±8.26b 22.41±6.66b’

    15.63±1.64b 26.62±1.51b’

    Co-cultivation and infected 27.41±3.01c 16.21±4.59c’ 34.33±4.39c 52.60±4.27c’ Data represent the mean±S.E. of three experimental replicates; values with different letters in the same experiment and same row are significantly different (p < 0.05).

    Table 4. Effect of diphenylene iodonium on Agrobacterium-induced necrotic reaction in azuki bean explants (KS8).

    Browning GUS blue spot H2O2 accumulation

    Superoxide accumulation Treatment Area

    (%) Intensity

    (%) Area

    (%) Intensity

    (%) Area

    (%) Intensity

    (%) Area

    (%) Intensity

    (%) Control 51.65±7.62 80.12±17.60 38.67±15.70 67.09±28.49 33.70±4.37 61.60±6.57 45.00±3.64 70.57±10.06 DPI (M) 0.1 56.99±12.22 79.33±5.08 83.84±5.09 153.63±10.78 24.56±4.84 42.91±5.68 42.06±7.38 72.35±12.08 0.2 50.70±9.10 72.66±5.00 69.29±14.87 121.15±19.23 20.10±6.08 37.00±9.88 38.91±9.65 57.92±14.15 0.5 43.59±11.19 65.00±12.76 75.97±12.90 135.59±20.88 19.26±2.17 35.91±3.86 37.84±3.05 46.25±7.12 1.0 49.33±8.67 76.28±13.87 52.53±6.46 95.98±9.80 27.58±5.42 51.11±9.58 41.04±9.66 57.63±9.44 2.0 42.31±2.34 61.48±4.54 49.93±18.53 87.73±32.93 24.73±8.03 36.01±3.61 36.01±3.61 54.85±5.97 5.0 42.65±2.22 53.32±7.18 58.79±16.44 103.82±28.71 24.87±2.01 55.69±0.68 55.69±0.68 84.60±2.65 10.0 45.96±14.47 76.69±19.76 77.20±13.26 135.62±25.20 22.87±19.55 43.31±24.77 51.27±1.20 78.34±6.38 Data represent the mean ± S.E. of three experimental replicates; results of one-way analysis of variance indicated that DPI treatments at 0.5 M on explants were significantly different (p < 0.05).

    約為 16%。Li and Trush (1998)發現 DPI 濃度為 0.5 μM 時,可以抑制人體細胞(human monoblastic ML-1)粒腺體 80%氧氣消耗;當DPI 濃度升高為 2.5 μM 時,粒腺體的氧氣消耗量接近零。本研究使用 DPI 濃度範圍為0.1-10 μM,只有當濃度為 0.5 μM 時,DPI對改善細胞黃化、降低超氧陰離子與 H2O2累積、增加 GUS 基因表現等作用,均可達統計分析之顯著性(P < 0.05)。在 DPI 濃度為10 μM 的試驗中,特別將浸泡時間延長為 30 min,但是紅豆胚軸細胞黃化程度的減輕幅度仍十分有限,而且共培養 48 h 的紅豆胚軸組織部分有變軟的現象。雖然在後續的 1BA 培養基,培植體可以正常生長,但是也有胚軸

    切面細胞黃化死亡較對照組更嚴重的情形發

    生。因此,高濃度 DPI (≧ 0.5 μM)不宜應用

    在紅豆胚軸農桿菌基因轉殖。至於 Rboh 產生的 ROS 和水楊酸參與的細胞死亡機制間的拮抗作用(Torres et al. 2005),在本研究是否因為 DPI 的作用而遭破壞,因此導致胚軸細胞黃化及死亡較對照組更嚴重 (DPI = 10 μM),則須要更進一步的研究才能結論。

    誌謝

    本研究承中正社會公益基金會 (94-中基-農-3; 95-中基-農-1)及國立臺南大學提供試驗場所與經費,行政院農業委員會

    高雄區農業改良場提供材料,特致謝忱。

    引用文獻

    Auh C-K, TM Murphy (1995) Plasma membrane redox enzyme is involved in the synthesis of O2-

  • Crop, Environment & Bioinformatics, Vol. 6, March 2009 24

    and H2O2 by Phytophthora elicitor-stimulated rose cells. Plant Physiol. 107:1241–1247.

    Baker CJ, EW Orlandi (1995) Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 33:299-321.

    Barcelo AR (1998a) Hydrogen peroxide production is a general property of the lignifying xylem from vascular plants. Ann. Bot. 82:97-103.

    Barcelo AR (1998b) The generation of H2O2 in the xylem of Zinnia elegans is mediated by an NADPH-oxidase-like enzyme. Planta 207: 207-216.

    Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr. Sci. 89:1113-1121.

    Bokoch GM, BP Bohl, TH Chuang (1994) Guaninenucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins. J. Biol. Chem. 269: 31674–31679.

    Bolwell GP, P Wojtaszek (1997) Mechanisms for the generation of reactive oxygen species in plant defence - a broad perspective. Physiol. Mol. Plant Pathol. 51: 347-366.

    Chien WY (2004) Azuki bean in efficient plant regeneration and the GUS expression during early Agrobacterium-mediated transformation stages. MS thesis (in Chinese). National Tainan Teachers College, Tainan, Taiwan ROC.

    Chien WY, TS Cheng, LJ Cheng (2004) Genetic transformation of legume: research and applications in teaching. (in Chinese) Nanjing, China.

    Chakrabarty R, N Viswakarma, SR Bhat, PB Kirti, BD Singh, VL Chopra (2002) Agrobacterium- mediated transformation of cauliflower: Optimization of protocol and development of Bt-transgenic cauliflower. J. Biosci. 27:495-502.

    Das DK, MK Reddy, KC Upadhyaya, SK Sopory (2002) An efficient leaf-disk culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep. 20: 999-1005.

    Dat J, F Van Breusegerm, S Vandenabeele, E Vranova, M Van Montagu, D Inze (2000) Active oxygen species and catalase during plant stress response. Cell. Mol. Life Sci. 57:779-786.

    Deng W, X-A Pu, RN Goodman, MP Gordon, EW Nester (1995) T-DNA genes responsible for inducing a necrotic response on grape vines. Mol. Plant-Microbe Interact. 8:538-548.

    Desikan R, JT Hancock, MJ Coffey, SJ Neill (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Letters 382:213–217.

    Desikan R, EC Barnett, JT Harcock, SJ Neill (1998) Harpin and hydrogen peroxide induced the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension cultures. J. Exp. Bot. 49:1767-1771.

    Di R, V Purcell, GB Collins, SA Ghabril (1996) Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep 15: 746-750.

    Ditt RF, EW Nester, L Comai (2001) The plant gene expression response to Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 98: 10954-10954.

    Dwyer SC, L Legendre, PS Low, TL Leto (1996) Plant and human neutrophil oxidative burst complexes contain immunologically related proteins. Biochim. Biophy. Acta 1289:231–7.

    Enriquez-Obergon GA, RI Vasquez-Padron, DL Prieto-Samsonov, M Perez, G Selman-Housein, (1997) Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidant compounds. Biotechnologia Aplicada 14:169- 174.

    Enriquez-Obergon GA, DL Prieto-Samsonov, GA dela Riva, M Perez, G Selman-Housein, RI Vasquez-Padron (1999) Agrobacterium-mediated Japonica rice transformation: a procedure assisted by an antinecrotic treatment. Plant Cell Tiss. Organ Cult. 59:159-168.

    Finnegan J, D McElroy (1994) Transgene inactivation: plants fight back! Biotechnol. 12: 883-888.

  • 農桿菌誘發紅豆之黃化反應 25

    Geisler M, LA Kleczkowski, S Karpinski (2006) A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis. Plant J. 45:384-398.

    Gelvin SB (2008) Function of host proteins in the Agrobacterium-mediated plant transformation process. p.483-522. In: Agrobacterium: From Biology to Biotechnology. T Tzfira, V Citovsky (eds.) Springer Press, New York, NY.

    Goodman RN, AJ Novacky (1994) The hypersensitive reaction in plants to pathogens. A resistant phenomenon. APS Press, St. Paul, Minnesota. 244pp.

    Gustavo AR, J Gonzalez-Cabrera, R Vazquez- Padron, C Ayra-Pardo (1998) Agrobacterium tumefaciens: A natural tool for plant transformation. Electronic J. Biotechnol. 1:118-133.

    Hansen G (2000) Evidence for Agrobacterium- induced apoptosis in maize cells. Mol. Plant-Microbe Interact. 13:649-657.

    Hermanns M, AJ Slusarenko, NL Schlaich (2003) Organ-specificity in a plant disease is determined independently of R gene signaling. Mol. Plant-Microbe Interact. 16:752-759.

    Hirano SS, DI Rouse, MK Clayton, CD Upper (1995) Pseudomonas syringae pv syringae and bacterial brown spot of snap bean: a study of epiphytic phytopathogenic bacteria and associated disease. Plant Dis. 79:1085-1093.

    Ishida Y, H Saito, S Ohta, Y Hiei, T Komari, T Kumashiro (1996) High efficiency transformation of maize (Zea mays) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 14:745-50.

    Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387-405.

    Khalafalla MM, HA El-Shemy, RS Mizanur, M Teraishi, M Teraishi, M Ishimoto (2005) Recovery of herbicide-resistant Azuki bean [Vigna angularis (Wild.), Ohwi & Ohashi] plants via Agrobacterium-mediated transformation.

    African J. Biotechnol. 4:61-67.

    Ko T-S, S Lee, S Krasnyanski, SS Korban (2003) Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theor. Appl. Genet. 107:439-447.

    Koga H (1994) Hypersensitive death, autofluorescence, and ultrastructural changes in cells of leaf sheaths of susceptible and resistant near-isogenic lines of rice (Pi-zt) in relation to the penetration and growth of Pyricularia oryzae. Can. J. Bot. 72:1463-1477.

    Kuta DD, L Tripath (2005) Agrobacterium-induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium- mediated DNA transfer. African J. Biotechnol. 4:752-757.

    Lamb D, RA Dixon (1997) The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251-275.

    Levine A, R Tenhaken, R Dixon, C Lamb (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593.

    Li Y, MA Trush (1998) Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem. Biophys Res. Commun. 253:295-299.

    Mahalingam R, N Fedoroff (2003) Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiol. Plant 119: 56-68.

    Mercuri A, LD Benedetti, G Burchi, T Schiva (2000) Agrobacterium-mediated transformation of African violet. Plant Cell Tiss. Organ Cult. 60:39-46.

    Meurer CA, RD Dinkins, GB Collins (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep. 18:180-186.

    Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol. 105:467-472.

    Mohamed SV, JM Sung, TL Jeng, CS Wang (2006)

  • Crop, Environment & Bioinformatics, Vol. 6, March 2009 26

    Organogenesis of Phaseolus angularis L.: high efficiency of adventitious shoot regeneration from etiolated seedlings in the presence of N6-benzylaminopurine and thidiazuron. Plant Cell Tiss. Organ Cult. 86:187–199

    Murashige T, F Skoog (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 15:472-493.

    Neill S, R Desikan, J Hancock (2002a) Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5:388–395.

    Neill SJ, R Desikan, A Clarke, RD Hurst, JT Hancock (2002b) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot. 53:1237–1247.

    Olhoft PM, DA Somers (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep. 20:706-711.

    Olhoft PM, K Lin, J Galbraith, NC Nielsen, DA Somers (2001) The role of thiol compounds in increasing Agrobacterium-mediated transforma- tion of soybean cotyledonary-node cells. Plant Cell Rep. 20:731-737.

    Overmyer K, M Brosche, J Kangasjarvi (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8:335-342.

    Pan YR (2006) Agrobacterium-induced necrotic reaction in azuki bean (Vigna angularis Willd. KS8) gene transfer. MS thesis (in Chinese). National University of Tainan, Tainan, Taiwan ROC.

    Perl A, O Lotan, M Abu-Abied, D Holland (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions. Nat. Biotechnol. 14: 624-628.

    Potrykus I (1990) Gene transfer to cereals: an assessment. Bio/Technol. 8:535-542.

    Pu X-A, RN Goodman (1992) Induction of necrosis by Agrobacterium tumefaciens on grape explants. Physiol. Mol. Plant Pathol. 41: 245-254.

    Rasband W (2001) ImageJ - Image Processing and

    Analysis in Java, Online Internet. June 26, 2001. Available at http://rsb.info.nih.gov/ij/. Accessed on March 04, 2005.

    Sagi M, O Davydov, S Orazova, Z Yesbergenova, R Ophir, JW Stratmann, R Fluhr (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16:616–628.

    Sagi M, R Fluhr (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141:336-340.

    Somssich IE, K Hahlbrock (1998) Pathogen defense in plants – a paradigm of biological complexity. Trends Plant Sci. 3:86-90.

    Thordal-Christensen H (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11:1187-1194.

    Torres MA, JL Dangl, JDG Jones (2002) Arabidopsis gp91(phox) homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99: 517–522.

    Torres MA, JDG Jones, JL Dangl (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates supress spread of cell death in Arabidopsis thaliana. Nat. Genet. 10:1130-1134.

    Varnova E, D Inze, F Van Breusegem (2002) Signal transduction during oxidative stress. J. Exp. Bot. 53:1227-1236.

    Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322:681-692.

    Yamada T, M Teraishi, K Hattori, M Ishimoto (2001) Transformation of azuki bean by Agrobcaterium tumefaciens. Plant Cell Tiss. Organ Cult. 64:47-54.

    Zheng Q, B Ju, L Liang, X Xiao (2005) Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut (Arachis hypogaea) explants by Agrobacterium tumefaciens. Plant Cell Tiss. Organ Cult. 81:83-90.

    -編輯:楊純明

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice