66
Decision Method (EPEF007) Low Beng Yew EN227 67805670

EPEF007 Decision Methods Topic1

Embed Size (px)

DESCRIPTION

Linear Programming

Citation preview

  • DecisionMethod(EPEF007)LowBengYewEN22767805670

  • Topic1:LinearProgrammingModelsLearningObjectives

    After completing this chapter, students will be able to:

    1. Understandthebasicassumptionsandpropertiesoflinearprogramming(LP).

    2. GraphicallysolveanyLPproblemthathasonlytwovariablesbycornerpointmethod.

    3. UnderstandspecialissuesinLPsuchasinfeasibility,unboundedness,redundancy,andalternativeoptimalsolutions.

    4. UseExcelspreadsheetstosolveLPproblems.

  • Topic1:LinearProgrammingModelsTopicOutline(TextbookChapter7)

    1.1 Introduction

    1.2 RequirementsofaLinearProgrammingProblem

    1.3 FormulatingLPProblems

    1.4 GraphicalSolutiontoanLPProblem

    1.5 SolvingFlairFurnituresLPProblemusingExcel

    1.6 SolvingMinimizationProblems

    1.7 FourSpecialCasesinLP

  • Topic1:LinearProgrammingModels1.1Introduction

    Manymanagementdecisionsinvolvetryingtomakethemosteffectiveuseoflimitedresources.

    Linearprogramming (LP)isawidelyusedmathematicalmodelingtechniquedesignedtohelpmanagersinplanninganddecisionmakingrelativetoresourceallocation.

    Thisbelongstothebroaderfieldofmathematicalprogramming.

    Inthissense,programming referstomodelingandsolvingaproblemmathematically.

  • Topic1:LinearProgrammingModels1.2RequirementsofaLinearProgrammingProblem

    AllLPproblemshave4propertiesincommon:1. Allproblemsseektomaximize orminimize somequantity

    (theobjectivefunction).2. Restrictionsorconstraints thatlimitthedegreetowhichwe

    canpursueourobjectivearepresent.3. Theremustbealternativecoursesofactionfromwhichto

    choose.4. Theobjectiveandconstraintsinproblemsmustbeexpressed

    intermsoflinear equationsorinequalities.

  • Topic1:LinearProgrammingModels1.2RequirementsofLP:BasicAssumptions

    Weassumeconditionsofcertainty existandnumbersintheobjectiveandconstraintsareknownwithcertaintyanddonotchangeduringtheperiodbeingstudied.

    Weassumeproportionality existsintheobjectiveandconstraints. Weassumeadditivity inthatthetotalofallactivitiesequalsthe

    sumoftheindividualactivities. Weassumedivisibility inthatsolutionsneednotbewhole

    numbers. Allanswersorvariablesarenonnegative.

  • Topic1:LinearProgrammingModels1.2RequirementsofLP:LPProperties

  • Topic1:LinearProgrammingModels1.3FormulatingLPProblems

    Formulatingalinearprograminvolvesdevelopingamathematicalmodeltorepresentthemanagerialproblem.

    Thestepsinformulatingalinearprogramare:1. Completelyunderstandthemanagerialproblembeingfaced.2. Identifytheobjectiveandtheconstraints.3. Definethedecisionvariables.4. Usethedecisionvariablestowritemathematicalexpressions

    fortheobjectivefunctionandtheconstraints.

  • Topic1:LinearProgrammingModels1.3FormulatingLPProblems

    OneofthemostcommonLPapplicationsistheproductmixproblem.

    Twoormoreproductsareproducedusinglimitedresourcessuchaspersonnel,machines,andrawmaterials.

    Theprofitthatthefirmseekstomaximizeisbasedontheprofitcontributionperunitofeachproduct.

    Thecompanywouldliketodeterminehowmanyunitsofeachproductitshouldproducesoastomaximizeoverallprofitgivenitslimitedresources.

  • Topic1:LinearProgrammingModelsProblemExample:FlairFurnitureCompany

    TheFlairFurnitureCompanyproducesinexpensivetablesandchairs.

    Processesaresimilarinthatbothrequireacertainamountofhoursofcarpentryworkandinthepaintingandvarnishingdepartment.

    Eachtabletakes4hoursofcarpentryand2hoursofpaintingandvarnishing.

    Eachchairrequires3hoursofcarpentryand1hourofpaintingandvarnishing.

    Thereare240hoursofcarpentrytimeavailableand100hoursofpaintingandvarnishing.

    Eachtableyieldsaprofitof$70andeachchairaprofitof$50.

  • Topic1:LinearProgrammingModelsFlairFurnitureCompanyData

    Thecompanywantstodeterminethebestcombinationoftablesandchairstoproducetoreachthemaximumprofit.

  • Topic1:LinearProgrammingModelsFlairFurnitureCompanyData

    Theobjectiveisto:Maximizeprofit Theconstraintsare:

    1. Thehoursofcarpentrytimeusedcannotexceed240hoursperweek.

    2. Thehoursofpaintingandvarnishingtimeusedcannotexceed100hoursperweek.

    Thedecisionvariablesrepresentingtheactualdecisionswewillmakeare:

    T =numberoftablestobeproducedperweek.C =numberofchairstobeproducedperweek.

  • Topic1:LinearProgrammingModelsFlairFurnitureCompany WecreatetheLPobjectivefunctionintermsofT andC:

    Maximizeprofit=$70T +$50C

    Developmathematicalrelationshipsforthetwoconstraints: Forcarpentry,totaltimeusedis:

    (4hourspertable)(Numberoftablesproduced)+(3hoursperchair)(Numberofchairsproduced).

    Weknowthat:CarpentrytimeusedCarpentrytimeavailable.

    4T +3C 240(hoursofcarpentrytime)

  • Topic1:LinearProgrammingModelsFlairFurnitureCompany

    Similarly,Paintingandvarnishingtimeused

    Paintingandvarnishingtimeavailable.2T +1C 100(hoursofpaintingandvarnishingtime)

    Thismeansthateachtableproducedrequirestwohoursofpaintingandvarnishingtime.

    Bothoftheseconstraintsrestrictproductioncapacityandaffecttotalprofit.

  • Topic1:LinearProgrammingModelsFlairFurnitureCompany

    ThevaluesforT andCmustbenonnegative.T 0(numberoftablesproducedisgreater

    thanorequalto0)C 0(numberofchairsproducedisgreater

    thanorequalto0)Thecompleteproblemstatedmathematically:

    Maximizeprofit=$70T +$50C

    subjectto4T +3C 240 (carpentryconstraint)2T +1C 100 (paintingandvarnishingconstraint)T,C 0 (nonnegativity constraint)

  • Topic1:LinearProgrammingModels1.4GraphicalSolutiontoanLPProblem

    The easiest way to solve a small LP problems is by graphical method.The graphical method only works when there are just two decision variables. When there are more than two variables, a more complex approach is needed as it is not possible to plot the solution on a two-dimensional graph.The graphical method provides valuable insight into how other approaches work.

  • Topic1:LinearProgrammingModels1.4GraphicalRepresentationofaConstraint

    QuadrantContainingAllPositiveValues

    100

    80

    60

    40

    20

    C

    | | | | | | | | | | | |0 20 40 60 80 100 T

    N

    u

    m

    b

    e

    r

    o

    f

    C

    h

    a

    i

    r

    s

    Number of Tables

    This Axis Represents the Constraint T 0

    This Axis Represents the Constraint C 0

  • Topic1:LinearProgrammingModels1.4GraphicalRepresentationofaConstraint

    Thefirststepinsolvingtheproblemistoidentifyasetorregionoffeasiblesolutions.

    Todothisweploteachconstraintequationonagraph. Westartbygraphingtheequalityportionofthe

    constraintequations:4T +3C =240

    Wesolvefortheaxisinterceptsanddrawtheline.

  • Topic1:LinearProgrammingModels1.4GraphicalRepresentationofaConstraint

    WhenFlairproducesnotables,thecarpentryconstraintis:

    4(0)+3C =2403C =240C =80

    Similarlyfornochairs:4T +3(0)=240

    4T =240T =60

    Thislineisshownonthefollowinggraph:

  • Topic1:LinearProgrammingModels1.4GraphicalRepresentationofaConstraint

    Graphofcarpentryconstraintequation

    | | | | | | | | | | | |0 20 40 60 80 100

    100

    80

    60

    40

    20

    N

    u

    m

    b

    e

    r

    o

    f

    C

    h

    a

    i

    r

    s

    (T = 60, C = 0)

    (T = 0, C = 80)

    Number of Tables

  • 100

    80

    60

    40

    20

    C

    | | | | | | | | | | | |0 20 40 60 80 100 T

    N

    u

    m

    b

    e

    r

    o

    f

    C

    h

    a

    i

    r

    s

    Number of Tables

    (70, 40)

    (30, 20)

    Topic1:LinearProgrammingModels1.4GraphicalRepresentationofaConstraint

    RegionthatSatisfiestheCarpentryConstraint

    Anypointonorbelowtheconstraintplotwillnotviolatetherestriction.

    Anypointabovetheplotwillviolatetherestriction.

    (30, 40)

  • Topic1:LinearProgrammingModels1.4GraphicalRepresentationofaConstraint

    Thepoint(30,40)liesontheplotandexactlysatisfiestheconstraint

    4(30)+3(40)=240.

    Thepoint(30,20)liesbelowtheplotandsatisfiestheconstraint

    4(30)+3(20)=180.

    Thepoint(70,40)liesabovetheplotanddoesnotsatisfytheconstraint

    4(70)+3(40)=400.

  • Topic1:LinearProgrammingModels1.4GraphicalRepresentationofaConstraint

    RegionthatSatisfiesthePaintingandVarnishingConstraint

    100

    80

    60

    40

    20

    C

    | | | | | | | | | | | |0 20 40 60 80 100 T

    N

    u

    m

    b

    e

    r

    o

    f

    C

    h

    a

    i

    r

    s

    Number of Tables

    (T = 0, C = 100)

    (T = 50, C = 0)

  • Topic1:LinearProgrammingModels1.4GraphicalRepresentationofaConstraint

    Toproducetablesandchairs,bothdepartmentsmustbeused.

    Weneedtofindasolutionthatsatisfiesbothconstraintssimultaneously.

    Anewgraphshowsbothconstraintplots.

    Thefeasibleregion (orareaoffeasiblesolutions)iswhereallconstraintsaresatisfied.

    Anypointinsidethisregionisafeasible solution.

    Anypointoutsidetheregionisaninfeasible solution.

  • Topic1:LinearProgrammingModels1.4GraphicalRepresentationofaConstraint

    FeasibleSolutionRegionfortheFlairFurnitureCompanyProblem

    100

    80

    60

    40

    20

    C

    | | | | | | | | | | | |0 20 40 60 80 100 T

    N

    u

    m

    b

    e

    r

    o

    f

    C

    h

    a

    i

    r

    s

    Number of Tables

    Painting/Varnishing Constraint

    Carpentry Constraint

  • Topic1:LinearProgrammingModels1.4GraphicalRepresentationofaConstraint

    Forthepoint(30,20)

    Carpentry constraint

    4T + 3C 240 hours available(4)(30) + (3)(20) = 180 hours used

    Painting constraint

    2T + 1C 100 hours available(2)(30) + (1)(20) = 80 hours used

    Forthepoint(70,40)Carpentry constraint

    4T + 3C 240 hours available(4)(70) + (3)(40) = 400 hours used

    Painting constraint

    2T + 1C 100 hours available(2)(70) + (1)(40) = 180 hours used

  • Topic1:LinearProgrammingModels1.4GraphicalRepresentationofaConstraint

    Forthepoint(50,5)

    Carpentry constraint

    4T + 3C 240 hours available(4)(50) + (3)(5) = 215 hours used

    Painting constraint

    2T + 1C 100 hours available(2)(50) + (1)(5) = 105 hours used

  • Topic1:LinearProgrammingModelsCornerPointSolutionMethod

    Oncethefeasibleregionhasbeengraphed,weneedtofindtheoptimalsolutionfromthemanypossiblesolutions.

    Itinvolveslookingattheprofitateverycornerpointofthefeasibleregion.Thisisknownascornerpointmethod.

    ThemathematicaltheorybehindLPisthattheoptimalsolutionmustlieatoneofthecornerpoints,orextremepoint,inthefeasibleregion.

    ForFlairFurniture,thefeasibleregionisafoursidedpolygonwithfourcornerpointslabeled1,2,3,and4onthegraph.

  • Topic1:LinearProgrammingModelsCornerPointSolutionMethod

    FourCornerPointsoftheFeasibleRegion

    3

    41

    100

    80

    60

    40

    20

    C

    | | | | | | | | | | | |0 20 40 60 80 100 T

    N

    u

    m

    b

    e

    r

    o

    f

    C

    h

    a

    i

    r

    s

    Number of Tables

    2

  • Topic1:LinearProgrammingModelsCornerPointSolutionMethod

    TofindthecoordinatesforPointaccuratelywehavetosolvefortheintersectionofthetwoconstraintlines.

    Usingthesimultaneousequationsmethod,wemultiplythepaintingequationby2andaddittothecarpentryequation

    4T +3C = 240 (carpentryline) 4T 2C = 200 (paintingline)

    C = 40 Substituting40forC ineitheroftheoriginalequations

    allowsustodeterminethevalueofT.4T +(3)(40)= 240 (carpentryline)

    4T +120= 240T = 30

    3

  • Topic1:LinearProgrammingModelsCornerPointSolutionMethod

    Point:(T =0,C =0) Profit=$70(0)+$50(0)=$0

    Point:(T =0,C =80) Profit=$70(0)+$50(80)=$4,000

    Point:(T =50,C =0) Profit=$70(50)+$50(0)=$3,500

    Point:(T =30,C =40) Profit=$70(30)+$50(40)=$4,1003

    1

    2

    4

    BecausePointreturnsthehighestprofit,thisistheoptimalsolution.

    3

  • Topic1:LinearProgrammingModelsSlackandSurplus

    Slackistheamountofaresourcethatisnotused.Foralessthanorequalconstraint:

    Slack=Amountofresourceavailable amountofresourceused.

    Surplusisusedwithagreaterthanorequalconstrainttoindicatetheamountbywhichtherighthandsideoftheconstraintisexceeded.

    Surplus=Actualamount minimumamount.

  • Topic1:LinearProgrammingModelsSummaryofGraphicalSolutionUsingCornerPointMethod

    1. Graphallconstraintsandfindthefeasibleregion.

    2. Findthecornerpointsofthefeasibleregion.

    3. Computetheprofit(orcost)ateachofthefeasiblecornerpoints.

    4. SelectthecornerpointwiththebestvalueoftheobjectivefunctionfoundinStep3.Thisistheoptimalsolution.

  • Topic1:LinearProgrammingModels1.5SolvingFlairFurnituresLPProblemUsingExcel

    MostorganizationshaveaccesstosoftwaretosolvebigLPproblems.

    Whiletherearedifferencesbetweensoftwareimplementations,theapproacheachtakestowardshandlingLPisbasicallythesame.

    OnceyouareexperiencedindealingwithcomputerizedLPalgorithms,youcaneasilyadjusttominorchanges.

  • Topic1:LinearProgrammingModels1.5SolvingFlairFurnituresLPProblemUsingExcel

    TheSolvertoolinExcelcanbeusedtofindsolutionsto: LPproblems. Integerprogrammingproblems. Nonintegerprogrammingproblems.

    Solverislimitedto200variablesand100constraints.

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    RecallthemodelforFlairFurnitureis:

    Maximizeprofit= $70T + $50CSubjectto 4T + 3C 240

    2T + 1C 100

    TouseSolver,itisnecessarytoenterformulasbasedontheinitialmodel.

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    1. Enterthevariablenames,thecoefficientsfortheobjectivefunctionandconstraints,andtherighthandsidevaluesforeachoftheconstraints.

    2. Designatespecificcellsforthevaluesofthedecisionvariables.

    3. Writeaformulatocalculatethevalueoftheobjectivefunction.

    4. Writeaformulatocomputethelefthandsidesofeachoftheconstraints.

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    ExcelDataInputfortheFlairFurnitureExample

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    FormulasfortheFlairFurnitureExample

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    Excel Spreadsheet for the Flair Furniture Example

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    Oncethemodelhasbeenentered,thefollowingstepscanbeusedtosolvetheproblem.

    InExcel2010,selectData Solver.IfSolverdoesnotappearintheindicatedplace,seeAppendixFforinstructionsonhowtoactivatethisaddin.

    1. IntheSetObjectivebox,enterthecelladdressforthetotalprofit.

    2. IntheByChangingCellsbox,enterthecelladdressesforthevariablevalues.

    3. ClickMax foramaximizationproblemandMin foraminimizationproblem.

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    4. ChecktheboxforMakeUnconstrainedVariablesNonnegative.

    5. ClicktheSelectSolvingMethodbuttonandselectSimplexLP

    fromthemenuthatappears.

    6. ClickAdd toaddtheconstraints.

    7. Inthedialogboxthatappears,enterthecellreferencesforthelefthandsidevalues,thetypeofequation,andtherighthandsidevalues.

    8. ClickSolve.

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    StartingSolver

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    SolverParametersDialogBox

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    SolverAddConstraintDialogBox

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    SolverResultsDialogBox

  • Topic1:LinearProgrammingModels1.5UsingSolvertoSolvetheFlairFurnitureProblem

    SolutionFoundbySolver

  • Topic1:LinearProgrammingModels1.6SolvingMinimizationProblems

    ManyLPproblemsinvolveminimizinganobjectivesuchascostinsteadofmaximizingaprofitfunction.

    Minimizationproblemscanbesolvedgraphicallybyfirstsettingupthefeasiblesolutionregionandthenusingthecornerpointmethodtofindthevaluesofthedecisionvariables(e.g.,X1 andX2)thatyieldtheminimumcost.

  • Topic1:LinearProgrammingModelsHolidayMealTurkeyRanchTheHolidayMealTurkeyRanchisconsideringbuyingtwodifferentbrandsofturkeyfeedandblendingthemtoprovideagood,lowcostdietforitsturkeys

    X1 =numberofpoundsofbrand1feedpurchasedX2 =numberofpoundsofbrand2feedpurchased

    Let

    Minimizecost(incents)=2X1 +3X2subjectto:

    5X1+10X2 90ounces (ingredientconstraintA)4X1 +3X2 48ounces (ingredientconstraintB)

    0.5X1 1.5ounces (ingredientconstraintC)X1 0 (nonnegativityconstraint)

    X2 0 (nonnegativityconstraint)

  • Topic1:LinearProgrammingModelsHolidayMealTurkeyRanch

    HolidayMealTurkeyRanchData

    INGREDIENT

    COMPOSITION OF EACH POUND OF FEED (OZ.) MINIMUM MONTHLY

    REQUIREMENT PER TURKEY (OZ.)BRAND 1 FEED BRAND 2 FEED

    A 5 10 90

    B 4 3 48

    C 0.5 0 1.5Cost per pound 2 cents 3 cents

  • Topic1:LinearProgrammingModelsHolidayMealTurkeyRanch

    Usethecornerpointmethod.

    Firstconstructthefeasiblesolutionregion.

    Theoptimalsolutionwilllieatoneofthecornersasitwouldinamaximizationproblem.

  • Topic1:LinearProgrammingModelsHolidayMealTurkeyRanch FeasibleRegion

    20

    15

    10

    5

    0

    X2

    | | | | | |5 10 15 20 25 X1

    P

    o

    u

    n

    d

    s

    o

    f

    B

    r

    a

    n

    d

    2

    Pounds of Brand 1

    a

    b

    c

    Ingredient C Constraint

    Ingredient B Constraint

    Ingredient A Constraint

    Feasible Region

    DECISIONANALYSIS(ESZ2001)

  • Topic1:LinearProgrammingModelsHolidayMealTurkeyRanch

    Solveforthevaluesofthethreecornerpoints.

    Pointa istheintersectionofingredientconstraintsCandB.

    4X1 +3X2 =48

    X1 =3

    Substituting3inthefirstequation,wefindX2 =12.

    SolvingforpointbwithbasicalgebrawefindX1 =8.4andX2=4.8.

    SolvingforpointcwefindX1 =18andX2 =0.

  • Topic1:LinearProgrammingModelsHolidayMealTurkeyRanch

    Substitutingthesevaluebackintotheobjectivefunctionwefind

    Cost =2X1 +3X2Costatpointa =2(3)+3(12)=42Costatpointb =2(8.4)+3(4.8)=31.2Costatpointc =2(18)+3(0)=36

    Thelowestcostsolutionistopurchase8.4poundsofbrand1feedand4.8poundsofbrand2feedforatotalcostof31.2centsperturkey.

  • Topic1:LinearProgrammingModelsHolidayMealTurkeyRanch ExcelSolver

  • Topic1:LinearProgrammingModelsHolidayMealTurkeyRanch ExcelSolver

  • Topic1:LinearProgrammingModels1.7FourSpecialCasesinLP

    FourspecialcasesanddifficultiesariseattimeswhenusingthegraphicalapproachtosolvingLPproblems.

    Nofeasiblesolution

    Unboundedness

    Redundancy

    AlternateOptimalSolutions

  • Topic1:LinearProgrammingModels1.7FourSpecialCasesinLP

    Nofeasiblesolution

    Thisexistswhenthereisnosolutiontotheproblemthatsatisfiesalltheconstraintequations.

    Nofeasiblesolutionregionexists.

    Thisisacommonoccurrenceintherealworld.

    Generallyoneormoreconstraintsarerelaxeduntilasolutionisfound.

  • Topic1:LinearProgrammingModels1.7FourSpecialCasesinLP

    Aproblemwithnofeasiblesolution

    8

    6

    4

    2

    0

    X2

    | | | | | | | | | |2 4 6 8 X1

    RegionSatisfyingFirstTwoConstraints

    Region Satisfying Third Constraint

  • Topic1:LinearProgrammingModels1.7FourSpecialCasesinLP

    Unboundedness

    Sometimesalinearprogramwillnothaveafinitesolution.

    Inamaximizationproblem,oneormoresolutionvariables,andtheprofit,canbemadeinfinitelylargewithoutviolatinganyconstraints.

    Inagraphicalsolution,thefeasibleregionwillbeopenended.

    Thisusuallymeanstheproblemhasbeenformulatedimproperly.

  • Topic1:LinearProgrammingModelsFourSpecialCasesinLP

    AFeasibleRegionThatisUnboundedtotheRight

    15

    10

    5

    0

    X2

    | | | | |5 10 15 X1

    Feasible Region

    X1 5

    X2 10

    X1 + 2X2 15

  • Topic1:LinearProgrammingModels1.7FourSpecialCasesinLP

    Redundancy

    Aredundantconstraintisonethatdoesnotaffectthefeasiblesolutionregion.

    Oneormoreconstraintsmaybebinding.

    Thisisaverycommonoccurrenceintherealworld.

    Itcausesnoparticularproblems,buteliminatingredundantconstraintssimplifiesthemodel.

  • Topic1:LinearProgrammingModels1.7FourSpecialCasesinLP

    ProblemwithaRedundantConstraint

    30

    25

    20

    15

    10

    5

    0

    X2

    | | | | | |5 10 15 20 25 30 X1

    Feasible Region

    X1 25

    2X1 + X2 30

    X1 + X2 20

  • Topic1:LinearProgrammingModels1.7FourSpecialCasesinLP

    AlternateOptimalSolutions

    Occasionallytwoormoreoptimalsolutionsmayexist.

    Graphicallythisoccurswhentheobjectivefunctionsisoprofitorisocostlinerunsperfectlyparalleltooneoftheconstraints.

    Thisactuallyallowsmanagementgreatflexibilityindecidingwhichcombinationtoselectastheprofitisthesameateachalternatesolution.

  • Topic1:LinearProgrammingModels1.7FourSpecialCasesinLP

    ExampleofAlternateOptimalSolutions

    8

    7

    6

    5

    4

    3

    2

    1

    0

    X2

    | | | | | | |1 2 3 4 5 6 7 X1

    Feasible Region

    Isoprofit Line for $8

    Optimal Solution Consists of All Combinations of X1 and X2 Along the AB Segment

    Isoprofit Line for $12 Overlays Line Segment AB

  • Topic1:LinearProgrammingModels

    EndofTopic1