25
2018. 04. 18. 원종호 Evaluation of material properties using IIT

Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

2018 04 18 원종호

Evaluation of material properties using IIT

2

Contents

What is IIT

Evaluation of materials properties

- Strength

- Residual stress

- Fracture toughness

3

Introduction

Deformation

Fracture

σYS UTS n E

KIC JIC δIC

Destructive

How can I measure the mechanical properties

I am working Do not touch

4

Introduction

Specimens for tensile test Specimens for fracture test

Not applicable for small scale testing

Large scale testing

5

Introduction

Convenient

In-situ amp In-field System

Non-destructive amp Local test

Simple amp fast

6

Instrumented Indentation test

A novel method to characterize mechanical properties

Hardness Elastic modulus Tensile properties Residual stress Fracture toughness

Indentation load-depth curve

Load

Depth

Loading

Unloading

7

Research history

Brinell (1900) defining as the ratio of the load to the surface area

Meyer (1908) defining as the ratio of the load to the projected area

OrsquoNeill (1944) expressing dD as the indentation strain plotting pm against dD

Tabor (1950) representing the uniaxial stress and strain

2

2

44 minus

==

m

m DdA

dLp

ππ

22 )(112

DdDLNHBminusminus

Ddp

rm

r 20 == εψ

σ

bull σr εr representative stress strain bull ψ plastic constraint factor (asymp28-30)

bull L applied load bull d diameter of residual impression bull D diameter of the ball indenter

bull A material constant bull m Meyer index ( asymp n+2)

8

Strength

9

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

10

Contact Area

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

11

Representation

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 2: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

2

Contents

What is IIT

Evaluation of materials properties

- Strength

- Residual stress

- Fracture toughness

3

Introduction

Deformation

Fracture

σYS UTS n E

KIC JIC δIC

Destructive

How can I measure the mechanical properties

I am working Do not touch

4

Introduction

Specimens for tensile test Specimens for fracture test

Not applicable for small scale testing

Large scale testing

5

Introduction

Convenient

In-situ amp In-field System

Non-destructive amp Local test

Simple amp fast

6

Instrumented Indentation test

A novel method to characterize mechanical properties

Hardness Elastic modulus Tensile properties Residual stress Fracture toughness

Indentation load-depth curve

Load

Depth

Loading

Unloading

7

Research history

Brinell (1900) defining as the ratio of the load to the surface area

Meyer (1908) defining as the ratio of the load to the projected area

OrsquoNeill (1944) expressing dD as the indentation strain plotting pm against dD

Tabor (1950) representing the uniaxial stress and strain

2

2

44 minus

==

m

m DdA

dLp

ππ

22 )(112

DdDLNHBminusminus

Ddp

rm

r 20 == εψ

σ

bull σr εr representative stress strain bull ψ plastic constraint factor (asymp28-30)

bull L applied load bull d diameter of residual impression bull D diameter of the ball indenter

bull A material constant bull m Meyer index ( asymp n+2)

8

Strength

9

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

10

Contact Area

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

11

Representation

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 3: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

3

Introduction

Deformation

Fracture

σYS UTS n E

KIC JIC δIC

Destructive

How can I measure the mechanical properties

I am working Do not touch

4

Introduction

Specimens for tensile test Specimens for fracture test

Not applicable for small scale testing

Large scale testing

5

Introduction

Convenient

In-situ amp In-field System

Non-destructive amp Local test

Simple amp fast

6

Instrumented Indentation test

A novel method to characterize mechanical properties

Hardness Elastic modulus Tensile properties Residual stress Fracture toughness

Indentation load-depth curve

Load

Depth

Loading

Unloading

7

Research history

Brinell (1900) defining as the ratio of the load to the surface area

Meyer (1908) defining as the ratio of the load to the projected area

OrsquoNeill (1944) expressing dD as the indentation strain plotting pm against dD

Tabor (1950) representing the uniaxial stress and strain

2

2

44 minus

==

m

m DdA

dLp

ππ

22 )(112

DdDLNHBminusminus

Ddp

rm

r 20 == εψ

σ

bull σr εr representative stress strain bull ψ plastic constraint factor (asymp28-30)

bull L applied load bull d diameter of residual impression bull D diameter of the ball indenter

bull A material constant bull m Meyer index ( asymp n+2)

8

Strength

9

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

10

Contact Area

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

11

Representation

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 4: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

4

Introduction

Specimens for tensile test Specimens for fracture test

Not applicable for small scale testing

Large scale testing

5

Introduction

Convenient

In-situ amp In-field System

Non-destructive amp Local test

Simple amp fast

6

Instrumented Indentation test

A novel method to characterize mechanical properties

Hardness Elastic modulus Tensile properties Residual stress Fracture toughness

Indentation load-depth curve

Load

Depth

Loading

Unloading

7

Research history

Brinell (1900) defining as the ratio of the load to the surface area

Meyer (1908) defining as the ratio of the load to the projected area

OrsquoNeill (1944) expressing dD as the indentation strain plotting pm against dD

Tabor (1950) representing the uniaxial stress and strain

2

2

44 minus

==

m

m DdA

dLp

ππ

22 )(112

DdDLNHBminusminus

Ddp

rm

r 20 == εψ

σ

bull σr εr representative stress strain bull ψ plastic constraint factor (asymp28-30)

bull L applied load bull d diameter of residual impression bull D diameter of the ball indenter

bull A material constant bull m Meyer index ( asymp n+2)

8

Strength

9

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

10

Contact Area

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

11

Representation

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 5: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

5

Introduction

Convenient

In-situ amp In-field System

Non-destructive amp Local test

Simple amp fast

6

Instrumented Indentation test

A novel method to characterize mechanical properties

Hardness Elastic modulus Tensile properties Residual stress Fracture toughness

Indentation load-depth curve

Load

Depth

Loading

Unloading

7

Research history

Brinell (1900) defining as the ratio of the load to the surface area

Meyer (1908) defining as the ratio of the load to the projected area

OrsquoNeill (1944) expressing dD as the indentation strain plotting pm against dD

Tabor (1950) representing the uniaxial stress and strain

2

2

44 minus

==

m

m DdA

dLp

ππ

22 )(112

DdDLNHBminusminus

Ddp

rm

r 20 == εψ

σ

bull σr εr representative stress strain bull ψ plastic constraint factor (asymp28-30)

bull L applied load bull d diameter of residual impression bull D diameter of the ball indenter

bull A material constant bull m Meyer index ( asymp n+2)

8

Strength

9

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

10

Contact Area

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

11

Representation

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 6: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

6

Instrumented Indentation test

A novel method to characterize mechanical properties

Hardness Elastic modulus Tensile properties Residual stress Fracture toughness

Indentation load-depth curve

Load

Depth

Loading

Unloading

7

Research history

Brinell (1900) defining as the ratio of the load to the surface area

Meyer (1908) defining as the ratio of the load to the projected area

OrsquoNeill (1944) expressing dD as the indentation strain plotting pm against dD

Tabor (1950) representing the uniaxial stress and strain

2

2

44 minus

==

m

m DdA

dLp

ππ

22 )(112

DdDLNHBminusminus

Ddp

rm

r 20 == εψ

σ

bull σr εr representative stress strain bull ψ plastic constraint factor (asymp28-30)

bull L applied load bull d diameter of residual impression bull D diameter of the ball indenter

bull A material constant bull m Meyer index ( asymp n+2)

8

Strength

9

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

10

Contact Area

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

11

Representation

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 7: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

7

Research history

Brinell (1900) defining as the ratio of the load to the surface area

Meyer (1908) defining as the ratio of the load to the projected area

OrsquoNeill (1944) expressing dD as the indentation strain plotting pm against dD

Tabor (1950) representing the uniaxial stress and strain

2

2

44 minus

==

m

m DdA

dLp

ππ

22 )(112

DdDLNHBminusminus

Ddp

rm

r 20 == εψ

σ

bull σr εr representative stress strain bull ψ plastic constraint factor (asymp28-30)

bull L applied load bull d diameter of residual impression bull D diameter of the ball indenter

bull A material constant bull m Meyer index ( asymp n+2)

8

Strength

9

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

10

Contact Area

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

11

Representation

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 8: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

8

Strength

9

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

10

Contact Area

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

11

Representation

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 9: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

9

Algorithm for strength evaluation

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

diams Step 1Determining contact areataking into considerationplastic pile-upsink-in

SphericalIndentation

Stress and StrainState in Material

=

Rhnf

hh max

ITc

pile

diams Step 2Defining stress and strain statein materials underneath spherical indenteras representative stress and strain

c

maxT A

F1Ψ

σ = θξε tan=T

diams Step 3 amp 4Fitting to constitutive equation andevaluating tensile properties

True strain εΤ

True

stre

ss σ

Τ

σ=E(ε-0002) σ=Kεn

Representative stress-strain points

E

Instrumented indentation testwith a spherical indenter

Tensile propertiesTensile properties

σy IT σu IT nIT EIT

Force-depth curveof multiple unloadings

10

Contact Area

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

11

Representation

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 10: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

10

Contact Area

Reference plane

Elastic deflection

dh-Plastic pile-upsink-in

pileh+

R

h c h d

h max

h pile

piledc hhhh +minus= max

SLhd

maxε= ) ( max

Rhnfhpile =

-WC Oliver amp GM Pharr J Mater Res (1992) -SH Kim et al Mater Sci Eng A (2006)

11

Representation

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 11: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

11

Representation

Indentation depth increases Stress and strain increase

γ γ

Representative Stress Definition

Ψ=σR

mPΨ Constraint Factor (about 3)

2max

cm a

LPπ

=

Representative Strain Definition

γααε tan)(1 2

=minus

=Ra

Rac

c

R

-DTabor The Hardness of Metals (1951) -JH Ahn et al JMR (2000)

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 12: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

12

Representation

Continuous

indentation

test

Load depth data

at each unloading

step (15th)

Stress strain

determination

at each step

(15 points)

Flow curve fitting

from stress-strain

points (K n determination)

Extrapolation of flow curve

up to yield strain and

uniform strain

Yield strength(YS)

Ultimate tensile strength (UTS)

Extrapolation for YS UTS

Stress strain determination

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 13: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

13

Determination

)0020( minus= yny EK εε

True

stre

ss

True strain

Yield strength

AL σ=

εdA

dAd=minus=

ll

σσd

AdA

=minus

σεσ=

dd

Tensile strength

nu =ε

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 14: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

14

Residual stress

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 15: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

15

Concept

0S LLL minus=∆

ht

ΔL

ΔL

LT

L0

Indentation depth

L o a d Compressive Tensile

Stress free

LC

Tensile stress

Indentation Load-Depth Curves

CLTL or

Vickersindenter

136

119923119923119931119931

119923119923119914119914

Compressive stress

Condition same indentation depth

High load is needed to reach to the same indentation depth

Less load is needed to reach to the same indentation depth

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 16: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

16

Stress tensor

Non-equibiaxial residual stress state

xres

yresp

σσ

=

σ+

σ+

σ+

xres

xres

xres

)p(

)p(

)p(

3100

03

10

003

1

σ+

minus

σminus

σminus

xres

xres

xres

)p(

)p(

)p(

3100

03

120

003

2

σσ

0000000

yres

xres

σσ

0000000

xres

xres

p

hydrostatic stress deviatoric stress

xresσ

yresσ

x

y

z

Stress Ratio

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 17: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

17

Evaluation

xresσ

3p)(1+

S

xres A

L1p)(1

3σ ∆Ψ+

=

S

xres A

L1σ3

p)(1 ∆Ψ

=+

=

σσ

= AreaContactp xres

yres A S

Deviatoric stress along Z direction Indentation stress

intσ

Ψ

=SA

ΔL1

where = constraint factor (30) Ψ

L σxres ∆prop

Residual Stress Indentation Load

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 18: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

18

Fracture toughness

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 19: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

19

Approach

How to correlate flat punch indentation with crack tip behavior in CRB test

isotropic

Virtual crack

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 20: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

20

concept

Scibetta (1999)

ldquoMaximum load can be evaluated by limit load in case of cracked round bar geometryrdquo

Limit load

For cracked round bar geometry

Von mises yield criterion a crack length b ligament radius R specimen radius

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 21: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

21

Fracture toughness calculation

J-integral formula from fracture mechanics

119869119869119868119868119868119868 = 119869119869119890119890 + 119869119869119901119901 =(1 minus 1205841205842)1198701198701198681198682

119864119864+ 120578120578119901119901119901119901

1198601198601199011199011199011199011205871205871198861198862

Apl area under force versus displacement record ηpl factor for specimen geometry and crack size πa2 ligament area

119870119870119869119869119868119868 =119869119869119868119868119868119868 ∙ 1198641198641 minus 1205921205922

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 22: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

22

Research Extension

High temp Low temp

MicroNano

Non-metallic material

scale

temp

material

bull Indentation size effect

bull Creep behavior bull Ductile to brittle transition

bull Ceramic bull Polymer

(RT Macro Metal)

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 23: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

23

Nanoindentation

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 24: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

24

Adhesion concept

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25
Page 25: Evaluation of material properties using IIT - ocw.snu.ac.kr of... · 7 . Research history . Brinell (1900): defining as the ratio of the load to the surface area , Meyer (1908): defining

25

  • 슬라이드 번호 1
  • Contents
  • Introduction
  • Introduction
  • Introduction
  • Instrumented Indentation test
  • Research history
  • 슬라이드 번호 8
  • Algorithm for strength evaluation
  • Contact Area
  • Representation
  • Representation
  • Determination
  • 슬라이드 번호 14
  • Concept
  • Stress tensor
  • Evaluation
  • 슬라이드 번호 18
  • Approach
  • concept
  • Fracture toughness calculation
  • Research Extension
  • Nanoindentation
  • Adhesion concept
  • 슬라이드 번호 25